2,410 research outputs found

    Hamiltonian formalism of fractional systems

    Full text link
    In this paper we consider a generalized classical mechanics with fractional derivatives. The generalization is based on the time-clock randomization of momenta and coordinates taken from the conventional phase space. The fractional equations of motion are derived using the Hamiltonian formalism. The approach is illustrated with a simple-fractional oscillator in a free state and under an external force. Besides the behavior of the coupled fractional oscillators is analyzed. The natural extension of this approach to continuous systems is stated. The interpretation of the mechanics is discussed.Comment: 16 pages, 5 figure

    Fingerprints of Classical Instability in Open Quantum Dynamics

    Full text link
    The dynamics near a hyperbolic point in phase space is modelled by an inverted harmonic oscillator. We investigate the effect of the classical instability on the open quantum dynamics of the oscillator, introduced through the interaction with a thermal bath, using both the survival probability function and the rate of von Neumann entropy increase, for large times. In this parameter range we prove, using influence functional techniques, that the survival probability function decreases exponentially at a rate, K', depending not only on the measure of instability in the model but also on the strength of interaction with the environment. We also show that K' determines the rate of von Neumann entropy increase and that this result is independent of the temperature of the environment. This generalises earlier results which are valid in the limit of vanishing dissipation. The validity of inferring similar rates of survival probability decrease and entropy increase for quantum chaotic systems is also discussed.Comment: 13 pages, to be published in Physical Review

    Scale invariant distribution functions in quantum systems with few degrees of freedom

    Full text link
    Scale invariance usually occurs in extended systems where correlation functions decay algebraically in space and/or time. Here we introduce a new type of scale invariance, occurring in the distribution functions of physical observables. At equilibrium these functions decay over a typical scale set by the temperature, but they can become scale invariant in a sudden quantum quench. We exemplify this effect through the analysis of linear and non-linear quantum oscillators. We find that their distribution functions generically diverge logarithmically close to the stable points of the classical dynamics. Our study opens the possibility to address integrability and its breaking in distribution functions, with immediate applications to matter-wave interferometers.Comment: 8+10 pages. Scipost Submissio

    Scale invariant distribution functions in quantum systems with few degrees of freedom

    Full text link
    Scale invariance usually occurs in extended systems where correlation functions decay algebraically in space and/or time. Here we introduce a new type of scale invariance, occurring in the distribution functions of physical observables. At equilibrium these functions decay over a typical scale set by the temperature, but they can become scale invariant in a sudden quantum quench. We exemplify this effect through the analysis of linear and non-linear quantum oscillators. We find that their distribution functions generically diverge logarithmically close to the stable points of the classical dynamics. Our study opens the possibility to address integrability and its breaking in distribution functions, with immediate applications to matter-wave interferometers.Comment: 8+10 pages. Scipost Submissio

    Parametric Competition in non-autonomous Hamiltonian Systems

    Full text link
    In this work we use the formalism of chord functions (\emph{i.e.} characteristic functions) to analytically solve quadratic non-autonomous Hamiltonians coupled to a reservoir composed by an infinity set of oscillators, with Gaussian initial state. We analytically obtain a solution for the characteristic function under dissipation, and therefore for the determinant of the covariance matrix and the von Neumann entropy, where the latter is the physical quantity of interest. We study in details two examples that are known to show dynamical squeezing and instability effects: the inverted harmonic oscillator and an oscillator with time dependent frequency. We show that it will appear in both cases a clear competition between instability and dissipation. If the dissipation is small when compared to the instability, the squeezing generation is dominant and one can see an increasing in the von Neumann entropy. When the dissipation is large enough, the dynamical squeezing generation in one of the quadratures is retained, thence the growth in the von Neumann entropy is contained

    Energy Dissipation Via Coupling With a Finite Chaotic Environment

    Get PDF
    We study the flow of energy between a harmonic oscillator (HO) and an external environment consisting of N two-degrees of freedom non-linear oscillators, ranging from integrable to chaotic according to a control parameter. The coupling between the HO and the environment is bilinear in the coordinates and scales with system size with the inverse square root of N. We study the conditions for energy dissipation and thermalization as a function of N and of the dynamical regime of the non-linear oscillators. The study is classical and based on single realization of the dynamics, as opposed to ensemble averages over many realizations. We find that dissipation occurs in the chaotic regime for a fairly small N, leading to the thermalization of the HO and environment a Boltzmann distribution of energies for a well defined temperature. We develop a simple analytical treatment, based on the linear response theory, that justifies the coupling scaling and reproduces the numerical simulations when the environment is in the chaotic regime.Comment: 7 pages, 10 figure
    corecore