63 research outputs found

    Effect of Cover Quantization on Steganographic Fisher Information

    Full text link

    An Analysis of Perturbed Quantization Steganography in the Spatial Domain

    Get PDF
    Steganography is a form of secret communication in which a message is hidden into a harmless cover object, concealing the actual existence of the message. Due to the potential abuse by criminals and terrorists, much research has also gone into the field of steganalysis - the art of detecting and deciphering a hidden message. As many novel steganographic hiding algorithms become publicly known, researchers exploit these methods by finding statistical irregularities between clean digital images and images containing hidden data. This creates an on-going race between the two fields and requires constant countermeasures on the part of steganographers in order to maintain truly covert communication. This research effort extends upon previous work in perturbed quantization (PQ) steganography by examining its applicability to the spatial domain. Several different information-reducing transformations are implemented along with the PQ system to study their effect on the security of the system as well as their effect on the steganographic capacity of the system. Additionally, a new statistical attack is formulated for detecting ± 1 embedding techniques in color images. Results from performing state-of-the-art steganalysis reveal that the system is less detectable than comparable hiding methods. Grayscale images embedded with message payloads of 0.4bpp are detected only 9% more accurately than by random guessing, and color images embedded with payloads of 0.2bpp are successfully detected only 6% more reliably than by random guessing

    Side-Information For Steganography Design And Detection

    Get PDF
    Today, the most secure steganographic schemes for digital images embed secret messages while minimizing a distortion function that describes the local complexity of the content. Distortion functions are heuristically designed to predict the modeling error, or in other words, how difficult it would be to detect a single change to the original image in any given area. This dissertation investigates how both the design and detection of such content-adaptive schemes can be improved with the use of side-information. We distinguish two types of side-information, public and private: Public side-information is available to the sender and at least in part also to anybody else who can observe the communication. Content complexity is a typical example of public side-information. While it is commonly used for steganography, it can also be used for detection. In this work, we propose a modification to the rich-model style feature sets in both spatial and JPEG domain to inform such feature sets of the content complexity. Private side-information is available only to the sender. The previous use of private side-information in steganography was very successful but limited to steganography in JPEG images. Also, the constructions were based on heuristic with little theoretical foundations. This work tries to remedy this deficiency by introducing a scheme that generalizes the previous approach to an arbitrary domain. We also put forward a theoretical investigation of how to incorporate side-information based on a model of images. Third, we propose to use a novel type of side-information in the form of multiple exposures for JPEG steganography

    Side-Informed Steganography for JPEG Images by Modeling Decompressed Images

    Full text link
    Side-informed steganography has always been among the most secure approaches in the field. However, a majority of existing methods for JPEG images use the side information, here the rounding error, in a heuristic way. For the first time, we show that the usefulness of the rounding error comes from its covariance with the embedding changes. Unfortunately, this covariance between continuous and discrete variables is not analytically available. An estimate of the covariance is proposed, which allows to model steganography as a change in the variance of DCT coefficients. Since steganalysis today is best performed in the spatial domain, we derive a likelihood ratio test to preserve a model of a decompressed JPEG image. The proposed method then bounds the power of this test by minimizing the Kullback-Leibler divergence between the cover and stego distributions. We experimentally demonstrate in two popular datasets that it achieves state-of-the-art performance against deep learning detectors. Moreover, by considering a different pixel variance estimator for images compressed with Quality Factor 100, even greater improvements are obtained.Comment: 13 pages, 7 figures, 1 table, submitted to IEEE Transactions on Information Forensics & Securit

    Analysis of MHPDM algorithm for data hiding in JPEG images

    Get PDF
    In the recent years, there has been a great deal of interest in developing a secure algorithm for hiding information in images, or steganography. There has also been a lot of research in steganalysis of images, which deals with the detection of hidden information in supposedly natural images. The first section of this thesis reviews the steganography algorithms and steganalysis techniques developed in the last few years. It discusses the breadth of steganographic algorithms and steganalytic techniques, starting with the earliest, based on LSB flipping of the DCT coefficients, to more recent and sophisticated algorithms for data hiding and equally clever steganalytic techniques. The next section focuses on the steganographic algorithm, MHPDM which was first developed by Eggers and then modified by Tzschoppe, Bauml, Huber and Kaup. The MHPDM algorithm preserves the histogram of the stego image and is thus perfectly secure in terms of Cachin\u27s security definition. The MHPDM algorithm is explained in detail and implemented in MATLAB. It is then tested on numerous images and steganalysed using Dr. Fridrich\u27s recent feature-based steganalytic technique. The thesis concludes with observations about the detectibility of MHPDM using feature-based steganalysis for different payloads (embedded message lengths)

    Double-Compressed JPEG Detection in a Steganalysis System

    Get PDF
    The detection of hidden messages in JPEG images is a growing concern. Current detection of JPEG stego images must include detection of double compression: a JPEG image is double compressed if it has been compressed with one quality factor, uncompressed, and then re-compressed with a different quality factor. When detection of double compression is not included, erroneous detection rates are very high. The main contribution of this paper is to present an efficient double-compression detection algorithm that has relatively lower dimensionality of features and relatively lower computational time for the detection part, than current comparative classifiers. We use a model-based approach for creating features, using a subclass of Markov random fields called partially ordered Markov models (POMMs) to modeling the phenomenon of the bit changes that occur in an image after an application of steganography. We model as noise the embedding process, and create features to capture this noise characteristic. We show that the nonparametric conditional probabilities that are modeled using a POMM can work very well to distinguish between an image that has been double compressed and one that has not, with lower overall computational cost. After double compression detection, we analyze histogram patterns that identify the primary quality compression factor to classify the image as stego or cover. The latter is an analytic approach that requires no classifier training. We compare our results with another state-of-the-art double compression detector. Keywords: steganalysis; steganography; JPEG; double compression; digital image forensics

    Edge-based image steganography

    Get PDF

    Information Analysis for Steganography and Steganalysis in 3D Polygonal Meshes

    Get PDF
    Information hiding, which embeds a watermark/message over a cover signal, has recently found extensive applications in, for example, copyright protection, content authentication and covert communication. It has been widely considered as an appealing technology to complement conventional cryptographic processes in the field of multimedia security by embedding information into the signal being protected. Generally, information hiding can be classified into two categories: steganography and watermarking. While steganography attempts to embed as much information as possible into a cover signal, watermarking tries to emphasize the robustness of the embedded information at the expense of embedding capacity. In contrast to information hiding, steganalysis aims at detecting whether a given medium has hidden message in it, and, if possible, recover that hidden message. It can be used to measure the security performance of information hiding techniques, meaning a steganalysis resistant steganographic/watermarking method should be imperceptible not only to Human Vision Systems (HVS), but also to intelligent analysis. As yet, 3D information hiding and steganalysis has received relatively less attention compared to image information hiding, despite the proliferation of 3D computer graphics models which are fairly promising information carriers. This thesis focuses on this relatively neglected research area and has the following primary objectives: 1) to investigate the trade-off between embedding capacity and distortion by considering the correlation between spatial and normal/curvature noise in triangle meshes; 2) to design satisfactory 3D steganographic algorithms, taking into account this trade-off; 3) to design robust 3D watermarking algorithms; 4) to propose a steganalysis framework for detecting the existence of the hidden information in 3D models and introduce a universal 3D steganalytic method under this framework. %and demonstrate the performance of the proposed steganalysis by testing it against six well-known 3D steganographic/watermarking methods. The thesis is organized as follows. Chapter 1 describes in detail the background relating to information hiding and steganalysis, as well as the research problems this thesis will be studying. Chapter 2 conducts a survey on the previous information hiding techniques for digital images, 3D models and other medium and also on image steganalysis algorithms. Motivated by the observation that the knowledge of the spatial accuracy of the mesh vertices does not easily translate into information related to the accuracy of other visually important mesh attributes such as normals, Chapters 3 and 4 investigate the impact of modifying vertex coordinates of 3D triangle models on the mesh normals. Chapter 3 presents the results of an empirical investigation, whereas Chapter 4 presents the results of a theoretical study. Based on these results, a high-capacity 3D steganographic algorithm capable of controlling embedding distortion is also presented in Chapter 4. In addition to normal information, several mesh interrogation, processing and rendering algorithms make direct or indirect use of curvature information. Motivated by this, Chapter 5 studies the relation between Discrete Gaussian Curvature (DGC) degradation and vertex coordinate modifications. Chapter 6 proposes a robust watermarking algorithm for 3D polygonal models, based on modifying the histogram of the distances from the model vertices to a point in 3D space. That point is determined by applying Principal Component Analysis (PCA) to the cover model. The use of PCA makes the watermarking method robust against common 3D operations, such as rotation, translation and vertex reordering. In addition, Chapter 6 develops a 3D specific steganalytic algorithm to detect the existence of the hidden messages embedded by one well-known watermarking method. By contrast, the focus of Chapter 7 will be on developing a 3D watermarking algorithm that is resistant to mesh editing or deformation attacks that change the global shape of the mesh. By adopting a framework which has been successfully developed for image steganalysis, Chapter 8 designs a 3D steganalysis method to detect the existence of messages hidden in 3D models with existing steganographic and watermarking algorithms. The efficiency of this steganalytic algorithm has been evaluated on five state-of-the-art 3D watermarking/steganographic methods. Moreover, being a universal steganalytic algorithm can be used as a benchmark for measuring the anti-steganalysis performance of other existing and most importantly future watermarking/steganographic algorithms. Chapter 9 concludes this thesis and also suggests some potential directions for future work

    Review of steganalysis of digital images

    Get PDF
    Steganography is the science and art of embedding hidden messages into cover multimedia such as text, image, audio and video. Steganalysis is the counterpart of steganography, which wants to identify if there is data hidden inside a digital medium. In this study, some specific steganographic schemes such as HUGO and LSB are studied and the steganalytic schemes developed to steganalyze the hidden message are studied. Furthermore, some new approaches such as deep learning and game theory, which have seldom been utilized in steganalysis before, are studied. In the rest of thesis study some steganalytic schemes using textural features including the LDP and LTP have been implemented
    • …
    corecore