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ABSTRACT

ANALYSIS OF MHPDM ALGORITHM FOR DATA HIDING IN JPEG IMAGES

by
Pooja Gore

In the recent years, there has been a great deal of interest in developing a secure
algorithm for hiding information in images, or steganography. There has also been a lot
of research in steganalysis of images, which deals with the detection of hidden
information in supposedly natural images. The first section of this thesis reviews the
steganography algorithms and steganalysis techniques developed in the last few years. It
discusses the breadth of steganographic algorithms and steganalytic techniques, starting
with the earliest, based on LSB flipping of the DCT coefficients, to more recent and
sophisticated algorithms for data hiding and equally clever steganalytic techniques.

The next section focuses on the steganographic algorithm, MHPDM which was
first developed by Eggers and then modified by Tzschoppe, Bauml, Huber and Kaup. The
MHPDM algorithm preserves the histogram of the stego image and is thus perfectly
secure in terms of Cachin’s security definition. The MHPDM algorithm is explained in
detail and implemented in MATLAB. It is then tested on numerous images and
steganalysed using Dr. Fridrich’s recent feature-based steganalytic technique. The thesis
concludes with observations about the detectibility of MHPDM using feature-based

steganalysis for different payloads (embedded message lengths).
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CHAPTER 1

INTRODUCTION

Steganography is the art of secret or covert communication in which the very presence of
a message is hidden along with its contents. Embedding the message in some multimedia
data (cover data) such as images, sound or video hides the presence of a message.
Steganography aims at embedding data in a way such that the altered data is perceptually
the same as the cover data.

Steganalysis on the other hand, seeks to analyze the cover data and detect the
presence of the embedded message. If an algorithm exists, which can guess whether or
not the given cover data contains a hidden message with a success rate better than
random guessing, the steganographic system is considered broken.

According to B.Pfitzmann’s standard information hiding terminology [18] a stegosystem
consists of two parties, Alice and Bob, who are the users of the stegosystem. Alice wishes
to send an innocent-looking message with a hidden meaning over a public channel to
Bob, such that the third party, the adversary Eve does not detect the hidden

information.

cover data x

Steganalysis

steganographic data r message u

Data reception ¢—————P»

message u
I Data Embedding

Alice Bob

|

Figure 1.1 Dataflow in a stegosystem.



This thesis begins with a review of the most important steganography algorithms
and steganalytic techniques developed in the last few years. Chapter 2 describes in
greater detail, Eggers’s HPDM (Histogram Preserving Data Mapping) algorithm [1],
which is a recent steganography algorithm for JPEG images and its modified version,
MHPDM. The design rules and implementation details of MHPDM are explained,
followed by the experimental results for the MHPDM implementation in Chapter 3 and 4.
Chapter 5 discusses the performance of the MHPDM algorithm and the motivation for
steganalyzing MHPDM using Dr. J. Fridrich’s recent feature-based steganalytic method
[9]. It further reviews the feature-based steganalytic method, describes the experimental
setup for steganalysis of MHPDM and then analyses the obtained results. The thesis
concludes with observations about the effect of embedding rate or payload size on the

detectibility of MHPDM embedded images by feature-based steganalysis.



CHAPTER 2

A REVIEW OF STEGNOGRAPHY ALGORITHMS
AND STEGANALYSIS TECHNIQUES

2.1 Steganalysis by “Chi-Square Attack”
The Chi-Square Attack by Westfield [10] was one of the first general steganalytic
methods. The original version of this method could detect sequentially embedded
messages and it was later generalized to randomly scattered messages. This approach is
based solely on the first order statistics and can be applied only to the early
steganography algorithms like LSB (Least Significant Bit) flipping. An example of an

algorithm embedding in the LSB of DCT coefficients is Jsteg.

2.2 Steganography with Histogram Preserving Data Mapping (HPDM)

The HPDM works by altering a subset of the DCT coefficients of a JPEG compressed
image. This algorithm preserves in a statistical sense, the histogram of the cover data.
This algorithm and its modified version are described in detail in Chapter 3.

In [2], Cachin defined the security of a steganograpic system in an information-
theoretic way. He postulated for a perfectly secure system that the relative entropy of the
cover data and the stego data is zero. His concept of security is based on the probability
distributions of cover and stego data and assumed independent and identically distributed

cover data elements. HPDM is perfectly secure in terms of Cachin’s security definition.



2.3 Steganalysis using Higher-order Statistical Models

Steganalysis approaches previous to this technique typically examined first-order
statistical distributions of intensity or transform coefficients. Therefore simple counter-
measures to match first-order statistics could foil detection. This steganalysis method
pioneered by Memon and Farid [12, 13] is based on building higher-order statistical
models for natural images and looking for deviations from these models. Support vector
machines (linear and non-linear) are employed to detect the alteration of higher-order
statistics within a wavelet-like decomposition.

The images are decomposed using separable quadrature mirror filters (QMFs).
Given this image decomposition, the statistical model is composed of the mean, variance,

skewness and kurtosis.

2.4 Steganography using Modified HPDM (MHPDM)
The HPDM algorithm was perfectly secure in terms of Cachin’s security definition. In
[7], the authors modify HPDM such that perfect security with Farid’s method described
in Section 1.2 is achieved. HPDM embeds into DCT coefficients regardless of whether
higher frequency components are present in the block. The reason is the structure of the
embedding scheme, which treats the DCT channels as parallel and independent
subchannels. The embedding distortion per subchannel due to switched data mapping is
distributed over the whole subchannel. Therefore blocks containing low frequency or DC

components are not treated separately and data is embedded there.



The modified HPDM or the MHPDM states that the DCT coefficients with values
equal to —1, 0 and 1 should be ignored in the mapping process and thus DCT coefficients

with these values are not modified.

2.5 Steganalysis Based on the Concept of a Distinguishing Statistic
In this approach by J. Fridrich [11], the steganalyst first carefully inspects the embedding
algorithm and then identifies a quantity (the distinguishing characteristic) that changes
predictably with the length of the embedded message, but can be calibrated for cover
images. For JPEG images this calibration is done by decompressing the stego image,
cropping by a few pixels in each direction, and recompressing using the same
quantization table.

J. Fridrich subsequently combines this concept of calibration with feature based
classification to device a blind detector specific to JPEG images [9].The features are
calculated directly in the DCT domain and thus, detection is made more sensitive to
wider types of embedding algorithms because the calibration process increases the

feature’s sensitivity to the embedding modifications while suppressing variations.



CHAPTER 3

DETAILED DESCRIPTION OF MHPDM ALGORITHM

3.1 Data Mapping to Achieve a Predefined Histogram
Eggers [1] proposes an efficient implementation of the random mapping x, = y, which
involves randomizing the input data x, and quantizing this randomized input data to the
output data y, The mapping is characterized completely by the scalar quantizer Q,, which

is itself characterized by the set T = {t; t, _Ny.;} of decision thresholds.
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Figure 3.1 Derivation of thresholds {t; t, N} for the data mapping x = y.
Source: J.J.Eggers, R.Bauml and B.Girod, “A Communications Approach to Image Steganography,” in

Proc. Of SPIE vol. 4675, Security and Watermarking of Multimedia Contents IV, (San Jose, CA, USA),
January 2002.



3.2 Information Embedding based on Switched Data Mapping
The data mapping described in Section 4.1 is used for information embedding where
mappings X, ~> 1, are defined and the data to be embedded is used to switch between the
possible mapping rules. The information embedding is based on a principle called
quantization index modulation (QIM), as proposed by Chen and Wornell [3]. Thus for
information embedding, the cover data x has to be mapped onto members from disjoint

sets for different possible secret messages u.

Two disjoint sets X and X, are defined where X, 'J X;= X and X, /' X, =0.
These sets X, and X, are interpreted as the representatives of two different quantizers.
The message u is encoded into a binary stream, b and is embedded into x by the mapping
X, — 1, using the mappings Map(X, Xo) and Map(X, X;) for b, = 0 and b, = 1,

respectively.

123456789 o s
o [:‘[b = ]

!

Map(V. o) | | Mapet ) |

! i

012343567809 =0y jlo ) D1234567809 rb=h

Figure 3.2 Switched data mapping for message b.

Source: J.J.Eggers, R.Bauml and B.Girod, “A Communications Approach to Image Steganography,” in
Proc. Of SPIE vol. 4675, Security and Watermarking of Multimedia Contents IV, (San Jose, CA, USA),
January 2002.



The mapping rules are designed such that the conditional PMFs p,[r | b =0] and
p:[r | b = 1] are scaled proportional to the cover PDF py [x] for all members of set X and
X, respectively, and zero elsewhere.

The PMF of the cover data is not modified by the information embedding scheme
if the probability Prob (b = 1) of number of “1” bits in the binary message b is equal to
the probability that the elements of cover data x belong to the set X,

According to the modification of MHPDM algorithm in [7], the DCT coefficients
with values —1, 0 and 1 are ignored in the mapping process. Thus, the implemented

algorithm is MHPDM.



CHAPTER 4

THE MHPDM IMPLEMENTATION

4.1 Experimental Setup

A two-dimensional Discrete Cosine Transform (DCT) is performed of non-overlapping
8 x 8 blocks of the image pixels. Each 8 x 8 block of image pixels is transformed into 64
DCT coefficients. There are i such 8 x 8 blocks with each block containing j = 64 number
of DCT coefficients. The coefficients with identical frequency index j from all 8 x 8
blocks compose a subchannel. Thus there are 64 subchannels, all having the same length
L, which is identical to the number of 8 x 8 blocks in the given image. The subchannels
are labeled according to the zig-zag scan.

Each subchannel is modeled by an IID random process. Each subchannel is
quantized according to JPEG compression with quality factor 75. The subchannel
numbers 1 to 21 in zig-zag scan were used for information embedding.

The MHPDM (modified histogram preserving data mapping) algorithm for data
hiding in JPEG images was studied in detail and implemented in matlab. The publicly

available JPEG source code written by Arno Swart (swart@math.uu.nl) is used in the

implementation of MHPDM. The MHPDM algorithm was rigorously tested by running
100 trials using pseudo-random data as input. The relative entropy between the original
histogram and the embedded histogram was calculated for 100 trials of pseudo random
data and plotted in Figure 4.1. The relative entropy was found to be very small (to the

order of 10"-3).
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4.2 Results
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Figure 4.1 Relative entropy between original and embedded histogram of random
pseudo-data for 100 trials using MHPDM.

Next, binary messages with equal number of zeros and ones were embedded into
subchannels 1 to 21 of several different 512 x 512 grayscale images. The USC-SIPI

image database at http://sipi.usc.edu/database was used for the images. The relative

entropy between the original and embedded subchannel was calculated for subchannels 1
to 21 of every image and plotted. Sample plots for 4 images are shown in Figure 4.2, 4.3

and 4.4.
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Figure 4.2 Relative entropy between original and embedded subchannels for lenna.tiff
using MHPDM.
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Figure 4.3 Relative entropy between original and embedded subchannels for baboon.tiff
using MHPDM.
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Figure 4.4 Relative entropy between original and embedded subchannels for ziffany.tiff
using MHPDM.

The histogram of a single subchannel, subchannel 15 of lenna.tiff was plotted for
values before and after message-embedding. These histograms shown in Figure 4.4 prove
that HPDM algorithm maintains the first order statistics, i.e. the histogram of the stego
image after data hiding.

Figure 4.5 shows an example of an image, peppers.jpg with different embedding
rates. Note that visually, there is hardly any difference between the cover image with 0 %

embedding and the stego images when viewed by a casual viewer.






CHAPTER 5

FEATURE-BASED STEGANALYSIS OF MHPDM

5.1 Motivation
The MHPDM algorithm for image steganography preserves the histogram of the stego
image after data-hiding. Thus, it is considered secure with respect to Cachin’s definition
of security within the given stochastic data model.

The stochastic data model assumed for development of the MHPDM algorithm
models each DCT subchannel in an image by an IID random process. This model is not
very accurate because in natural images, there are bound to be dependencies between
different subchannels and different elements within one subchannel. Entropy encoding
within JPEG compression takes advantage of dependencies between different DCT
coefficients, whereas MHPDM breaks these dependencies.

J. Fridrich’s feature-based steganalysis for JPEG images [9], introduced in
Section 1.5, compares JPEG steganographic algorithms and further evaluates their
embedding mechanisms and detectibility. This detection method is a linear classifier
trained on feature vectors corresponding to cover and stego images. The features are
calculated as an L; norm of the difference between a specific macroscopic functional
calculated from a stego image and the same functional obtained from a decompressed,
cropped and recompressed stego image. Dr. Fridrich tests the feature-based detection
scheme on three steganographic algorithms, Outguess [14], F5 [16] and Model Based
Steganography [15, 17] and concludes that all three algorithms are detectible.

In this thesis, the MHPDM algorithm for data hiding in jpeg images is

steganalyzed using the feature-based steganalytic method.

14
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5.2 Review of Feature-Based Steganalytic Method

This steganalytic method proposed by Jessica Fridrich [9] is a linear classifier trained on
feature vectors corresponding to cover and stego images. There are two types of feature
vectors — first order and second order features. All features are constructed by first
applying a vector functional to the stego jpeg image, then decompressing it to the spatial
domain, cropping by 4 pixels in either direction, recompressing it with the same
quantization table, and then applying the same vector functional on this decompressed,
cropped and recompressed image. The final feature f is then obtained as the L; norm of
the difference between the two functionals.

The cropping and recompression produces a ‘calibrated’ image which is
perceptually similar to the original cover image. The features in the feature vector are
based on 23 functionals - global histogram, individual histograms for 5 DCT modes,
(2,1), (3,1), (1,2), (2,2) and (1,3), dual histograms for 11 DCT values, -5, -4, -3, -2, -1, 0,

1,2, 3, 4,5, variation, L; and L, blockiness and co-occurrence, Ngg, No; and Ny

5.3 Experimental Setup

The USC-SIPI image database at http://sipi.usc.edu/database was used as a source of

uncompressed .tiff images. All images were converted to grayscale and a quality factor of
75% was used for the JPEG compression. Messages of three different message lengths
were embedded in 460 images. The message lengths were proportional to the number of
DCT coefficients excluding coefficients with values of 0, 1 and —1, as MHPDM prohibits
change in these coefficients. The message lengths used were:

x1 = 0.005* number of DCT coefficients excluding 0, 1 and —1
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x2 = 0.05 * number of DCT coefficients excluding 0, 1 and -1
x3 = 0.15 * number of DCT coefficients excluding 0, 1 and —1
x4= 0.30 * number of DCT coefficients excluding 0, 1 and —1
x5= 0.45 * number of DCT coefficients excluding 0, 1 and -1
x6=0.90 * number of DCT coefficients excluding 0, 1 and —1
Feature vectors were calculated for six sets of 460 stego images with the different
embedding rates and 460 cover images. Instead of the Fisher Linear Discriminant
classifier, used for classification in [9], we use the more sophisticated classifier, Support
Vector  Machines by  Chih-Chung Chang and  Chih-Jen Lin  at

http://www.csie.ntu.edu.tw/~cilin/libsvm. The SVM classifier is trained with 660 feature

vectors from random stego and cover images for every embedding rate and then the
trained classifier is tested with the remaining feature vectors. The output of the SVM
classifier is the percentage accuracy in detecting the stego and cover images. The
percentage accuracy of detection is averaged over 10 trials with random training data set
for each embedding rate. This accuracy is used to calculate the probability of success,
P {success}, miss probability, P{miss}, probability of false positives, P{false positives}
and probability of false negatives, P{false negatives} for all six embedding rates.

Observations are made based on these values and conclusions drawn.
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Figure 5.1 Block diagram of the experimental setup for steganalysis of MHPDM
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5.4 Results of Steganalysis
The percentage accuracy values for detection of stego images for all six data embedding
rates were obtained using the set up described in the previous Section. The average
accuracy was calculated from 10 trials for each set.

Table 5.1 Classification Accuracy for Different Embedding Rates as an Average of 10
Random Trials.

Embedding 0.5% 5% 15% 30 % 45 % 90 %
Rate/ Trials

1 53.8776  65.7143 73.7288 73.5099 78.0731 84.898
2 48.1633 66.5306 72.8814 74.5033 76.0797 78.7755
3 50.6122 59.5918 73.7288 71.8543 76.079 80.4082
4 52.6531 63.2653 68.6441 73.1788 74.4186 77.9592
5 57.1429 64.0816 67.7966 71.8543 73.4219 78.3673
6 50.7143 61.6327 69.4915 76.4901 72.4252 80.4082
7 49.7959 60.8163 70.339 75.1656 79.0698 78.3673
8 52.6531 66.5306 70.7627 71.8543 76.412 82.0408
9 50.2041 63.2653 67.3729 76.589 78.0303 80.0

10 50.9388 62.8571 72.4576 76.4901 76.7442 84.0816
Average 50.7555 63.428 70.720 74.105 76.075 80.530
Accuracy(%)

A ROC plot of the average percentage accuracy of detection verses the embedding rate

was plotted as shown in Figure 5.1.
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Figure 5.2 Plot of average percentage accuracy of detection for different embedding rates



CHAPTER 6

CONCLUSION

The MHPDM algorithm for data hiding in JPEG images was implemented and tested on
many images. The MHPDM algorithm for image steganography preserves the histogram
of the stego image after data-hiding. Thus, it can be considered perfectly secure with
respect to Cachin’s definition of security.

This MHPDM algorithm was then steganalyzed using the feature-based
steganalytic method and the SVM (Support Vector Machines) classifier. The
effectiveness of the feature-based steganalytic method for MHPDM embedded stego
images with different message lengths was studied. Experiments were performed on
stego images with message lengths ranging from 0.5 % to 90% of number of DCT
coefficients excluding those with values of —1, 0 or 1. The accuracy results from the
SVM classifier and their ROC plot in Figure 5.2 show that the classification accuracy of
detection of stego and cover test images increases with increase in embedding rate. The
classification accuracy of detection for 0.5 % embedding rate is an average of 50.755 %
which means that MHPDM embedded stego images with a low embedding rate of 0.5 %
are virtually indistinguishable from cover images when steganayzed using the feature-
based method whereas for embedding rates higher than 5% of DCT coefficients, the
feature-based steganalytic method works well in detecting MHPDM embedded stego

images.

20



APPENDIX

MATLAB SOURCE CODE FOR MHPDM

The following computer program is the source code for the implementation of MHPDM

(Histogram Preserving Data Mapping) in matlab.

% This function does a JPEG compression on a grayscale or RGB image
% Note that the Huffman compression is not JPEG standard (see PDF)
% Huffman code by Karl Skretting is used.

%

%%%%%%

% -Modified from JPEG code by Arno Swart, swart@math.uu.nl

%%%%%

function [msqe,compr]=jpg(file,scale)
% Add path to Huffman coder.
addpath('./huffman’);

im = imread(file);

im = im2double(rgb2gray(im));
original=im;

figure(1);

imshow(im);

width = size(im,2);

height = size(im,1);
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xblocks = width/§;

yblocks = height/8;
color=false;
numbits=width*height*8;
lumtable = lumquant(scale);

im = round(im*255);

% Y component uses luminance quantisation

dctcoef = jpgtrans(im,width,height,xblocks,yblocks,lumtable);
bitcount=huffcount(dctcoef,xblocks,yblocks);
disp(sprintf('Total bitcount %d',bitcount));

compr = 100-100*bitcount/numbits;
disp(sprintf('Compression: %f',compr));

msqe = sum(sum((original-im).*2))/(width*height);

%Find DCT of ‘f
function F = dct(f)

F=dct2(f);

%PFind inverse DCT of ‘F’
function f = invdct(F)

fidct2(F);
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function gtable = lumquant(scale)

gtable=[ 16, 11, 10, 16, 24, 40, 51, 61;
12, 12, 14, 19, 26, 58, 60, 55;
14, 13, 16, 24, 40, 57, 69, 56;
14, 17, 22, 29, 51, 87, 80, 62;
18, 22, 37, 56, 68, 109, 103, 77,
24, 35, 55, 64, 81,104,113, 92;
49, 64, 78, 87,103,121, 120, 101;
72, 92, 95, 98,112,100, 103, 99];

qtable = round(qtable./scale);

gtable(gtable<l) = 1;

qtable(qtable>255) = 255;

%

% Standard JPG chrominance quantisation table

%

function gtable = chrquant(scale)

qtable=[ 17, 18, 24, 47, 99, 99, 99, 99;

18, 21, 26, 66, 99, 99, 99, 99;
24,26, 56, 99, 99, 99, 99, 99;
47, 66, 99, 99, 99, 99, 99, 99;
99, 99, 99, 99, 99, 99, 99, 99;

99, 99, 99, 99, 99, 99, 99, 99;
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99, 99, 99, 99, 99, 99, 99, 99;
99, 99, 99, 99, 99, 99, 99, 99];
qtable = round(qtable./scale);
qtable(qtable<1) = 1;
qtable(qtable>255) = 255;
%
% Do zigzag ordering on matrix X, return vector x
%
function x = zigzag(x)
zigzag=[ 0, 1, 5, 6,14, 15,27, 28,
2, 4, 7,13, 16, 26, 29, 42,
3, 8,12, 17, 25,30, 41, 43,
9,11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34,37, 47, 50, 56, 59, 61,

35, 36, 48, 49, 57, 58, 62, 63]+1;

% convert matrices to column
zigzag = zigzag(:);
x =x(2);

% do zigzag ordering

x(zigzag) = Xx;
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%
% Do 'inverse' zigzag ordering on vector X, return matrix x
%
function x = dezigzag(x)
zigzag=[ 0, 1, 5, 6,14, 15,27, 28,
2, 4, 7,13, 16, 26, 29, 42,
3, 8,12,17, 25,30, 41, 43,
9,11, 18, 24, 31, 40, 44, 53,
10, 19, 23, 32, 39, 45, 52, 54,
20, 22, 33, 38, 46, 51, 55, 60,
21, 34,37,47, 50, 56, 59, 61,
35, 36, 48, 49, 57, 58, 62, 63]+1;
% work on columns
zigzag = zigzag(:);
x = reshape(x(zigzag),8,8);
%
% Do a zero RLE on acoef, return arrays zerocounts and nonzeros.
%
function [zerocounts,nonzeros]=zerorle(acoef);
% Easiest is to first determine the nr of zeros at the end.
k=31;
while acoef(k)==0

k=k-1;



if k==0;
zerocounts(1)=0;
nonzeros(1)=0;
break;
end
end
curzerocount=0;
I=1;
fori=1:k
if(acoef(i)==0)
curzerocount=curzerocount+1;
% Exception: 16 zeros
if curzerocount==16;
zerocounts(1)=15;
nonzeros(1)=0;
curzerocount=0;
I=1+1;
end
else
zerocounts(l)=curzerocount;
nonzeros(l)=acoef(i);
I=1+1;

curzerocount=0;
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end
end
zerocounts(1)=0;

nonzeros(1)=0;

function dctcoef = jpgtrans(im,xsize,ysize,xblocks,yblocks,qtable)
prevdc=0;
chcoef=1;
disp(sprintf{'total number of 8*8 squares %d',xblocks*yblocks));
%JPG scan order is columns first
for j=1:xblocks
for i=1:yblocks
% Extract 8x8 block
imblock {i,j} = im((i-1)*8+1:(1*8),(j-1)*8+1:(j*8));
% Shift 128 down
imblock{i,j} = imblock{i,j} - 128;
% Do a DCT

dctcoef{i,j} = dct(imblock{i,j});

%organise coefficients with identical frequency into channels
for ch=1:64
switch ch

case {1,2,3,4,5,6,7}



channel(ch,chcoef)=dctcoef{i,j} (1, mod(ch,8));
case 8
channel(ch,chcoef)=dctcoef{i,j}(1,8);
case {9,10,11,12,13,14,15}
channel(ch,chcoef)=dctcoef{i,j }(2, mod(ch,8));
case 16
channel(ch,chcoef)=dctcoef{i,j } (2,8);
case {17,18,19,20,21,22,23}
channel(ch,chcoef)=dctcoef{i,j } (3, mod(ch,8));
case 24
channel(ch,chcoef)=dctcoef{i,j}(3,8);
case {25,26,27,28,29,30,31}
channel(ch,chcoef)=dctcoef{i,j } (4, mod(ch,8) );
case 32
channel(ch,chcoef)=dctcoef{i,j}(4,8);
case {33,34,35,36,37,38,39}
channel(ch,chcoef)=dctcoef{i,j } (5, mod(ch,8) );
case 40
channel(ch,chcoef)=dctcoef{i,j}(5,8);
case {41,42,43,44,45,46,47}
channel(ch,chcoef)=dctcoef{i,j } (6, mod(ch,8) );
case 48

channel(ch,chcoef)=dctcoef{i,j }(6,8);
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case {49,50,51,52,53,54,55}
channel(ch,chcoef)=dctcoef{i,j } (7, mod(ch,8) );
case 56
channel(ch,chcoef)=dctcoef{i,j}(7,8);
case {57,58,59,60,61,62,63}
channel(ch,chcoef)=dctcoef{i,j } (8, mod(ch,8) );
case 64
channel(ch,chcoef)=dctcoef{i,j}(8,8);
otherwise
disp('wrong ch');
end
end
chcoef=chcoef+1;
end
end
for j=1:xblocks
for i=1:yblocks
% Quantize
dctcoef{i,j} = round(dctcoef{i,j}./qtable);
% Differential code the DC
temp = dctcoef{i,j}(1,1);
dctcoef{i,j}(1,1) = dctcoef{i,j}(1,1) - prevdc;

prevdc=temp;
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% Zigzag
dctcoef{i,j} = zigzag(dctcoef{i,j});
end
end

%

% Inverse JPEG procedure

%

function img = jpginvtrans(dctcoef,xsize,ysize,xblocks,yblocks,qtable)
prevdc=0;
for j=1:yblocks

for i=1:xblocks

% De-zigzag
dctcoef{i,j} = dezigzag(dctcoef{i,j});
%Un-differential code the DC
dctcoef{1,j}(1,1) = dctcoef{i,j}(1,1) + prevdc;
prevdc=dctcoef{i,j}(1,1);
% De-Quantize
dctcoef{i,j} = dctcoef{i,j}.*qtable;
% Do an inverse DCT
imblock{i,j} = invdct(dctcoef{i,j});
% Shift 128 up

imblock{i,j} = imblock{i,j} + 128;
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%Rebuild the image
img((i-1)*8+1:1*8,(j-1)*8+1:j*8) = imblock {i,j };
end

end

%
% Count the nr. bits that a Huffman coding would take.
%
function bitcount=huffcount(dctcoef,xblocks,yblocks)
I=1;
bitcount=0;
for j=1:yblocks
for i=1:xblocks
% The dccoef's are treated separately.
dccoef(l)=dctcoef{i,j}(1);
1=1+1;
% Get the ac coef's
accoef = dctcoef{i,j }(2:32);
[zerocounts,nonzeros]=zerorle(accoef);
bitcount=bitcount+sum(hufflen(zerocounts));
bitcount=bitcount+sum(hufflen(nonzeros));

end



end

bitcount=bitcount+sum(hufflen(dccoef));

%Hide binary message in channels 1 to 21 of the image
%Using the HPDM algorithm, receive the relative
%entropy values between the original and embedded

%channels and plot them against the channel numbers.

function hpdm0422 plot (channel)

[ro(1),re(1),rs(1)]=mapping0422(channel(2,:));
[r0(2),re(2),rs(2)]=mapping0422(channel(9,:));
[ro(3),re(3),rs(3)]=mapping0422(channel(17,:));
[ro(4),re(4),rs(4)]=mapping0422(channel(10,:));
[r0(5),re(5),rs(5)]=mapping0422(channel(3,:));
[r0(6),re(6),rs(6)]=mapping0422(channel(4,:));
[ro(7),re(7),rs(7)}=mapping0422(channel(11,:));
[ro(8),re(8),rs(8)]=mapping0422(channel(18,:));
[r0(9),re(9),rs(9)]=mapping0422(channel(25,:));
[ro(10),re(10),rs(10)]=mapping0422(channel(33,:));
[ro(11),re(11),rs(11)]=mapping0422(channel(26,:));
[ro(12),re(12),rs(12)]=mapping0422(channel(19,:));

[ro(13),re(13),rs(13)]=mapping0422(channel(12,:));
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[ro(14),re(14),rs(14)]=mapping0422(channel(5,:));

[ro(15),re(15),rs(15)]=mapping0422(channel(6,:));

[ro(16),re(16),rs(16)]=mapping0422(channel(13,:));

[ro(17),re(17),rs(17)]=mapping0422(channel(20,:));

[ro(18),re(18),rs(18)]=mapping0422(channel(27,:));

[ro(19),re(19),rs(19)]=mapping0422(channel(34,:));

[ro(20),re(20),rs(20)]=mapping0422(channel(41,:));

[ro(21),re(21),rs(21)}=mapping0422(channel(49,:));

figure(1);

title("hpdm");

i=1:21;

%plot (i,1(1),bo-");

%plot(i,ro,’b-',i,re,'g-",i,1s,'r-");

plot(i,rs,'r-');

title('Relative entropy between original and embedded subchannel using
HPDM (results for "lenna.tiff")');

xlabel('subchannel number');

ylabel('relative entropy’);

axis([0,25,0,0.12]);
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%

% This function implements Egger's Histogram Preserving Data Mapping
% algorithm(HPDM) as described in [1]

%

function [resultodd,resulteven,result]=mapping0422(x)

%calculates the dynamic range of the input data
dyran=round(max(x)-min(x)+1);

%histogram of original subchannel

[num]1,pos1J=hist(x,dyran);

length(pos1);

if(rem(length(x),2)==0)
i=1:length(x)/2;
j=length(x)/2+1:length(x);
else
i=1:length(x)/2-0.5;
j=length(x/2)+0.5 : length(x);
end
%s is the binary message to be embedded into the original subchannel.IT %contains
equal number of zeros and ones.
s(1)=0;

s()=1;



is1=find(s==1);
1s0=find(s==0);
if rem(dyran,2)==
numodd=1:2:dyran-1;
numeven=2:2:dyran;
else
numodd=1:2:dyran;
numeven=2:2:dyran-1;
end
% x2 is the DCT coefficients in which a '1" is to be embedded
x2=x(is1);
[num12,pos12]= hist(x2,round(max(x2)-min(x2)+1));
1=1;
for j=1:1:length(num12)
for a=num12(j)-1:-1:0
xn12(i)=pos12(j);
i=i+1;
end
end
an2 = rand(1,sum(num12));
j=1:length(x2);
xn22(j)= xnl12(j)-an2(j);

n22=[0,0nes(1,length(x2))];



n22=cumsum(n22)./sum(n22);

xn22=sort(xn22);

xn22=[xn22(1)-1,xn22];
% split the histogram into odd and even bin positions
numleven=numl(numeven);
numleven(1)=1;
posleven=posl(numeven);
stepyeven=(cumsum(num1even)./sum(numleven));
%Canculate the thresholds, Teven for mapping onto the even histogram by
%interpolation
Teven=interp1q(n22(:),xn22(:),stepyeven(:));

% messase embedding

for i=1:length(xn22)

if xn22(i)<= Teven(1)

y2(i1)=posleven(l);
else
if xn22(1)>Teven(end)
y2(i)= posleven(end);
else

for j=2:length(Teven)
if xn22(i) > Teven(j-1) && xn22(i) <= Teven(j)
y2(i)= posleven(j);

end
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end
end
end

end
%even histogram after embedding
[numy?2,posy2] = hist(y2,posleven);
% x1 is the DCT coefficients in which a '0' is to be embedded
x1=x(is0);
[num11,pos11]= hist(x1,round(max(x1)-min(x1)+1));
1=1;
for j=1:1:length(num11)

for a=num11(j)-1:-1:0

xnl1(1)=posl11(j);
i=1+1;

end
end
anl = rand(1,sum(numl1));
j=1:length(x1);
xn21()= xnl1()-anl(j);
n21=[0,ones(1,length(x1))];
n21=cumsum(n21)./sum(n21);
xn21=sort(xn21);

xn21=[xn21(1)-1,xn21];
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num!lodd=numl(numodd);

poslodd=posl(numodd);
stepyodd=(cumsum(num1o0dd)./sum(num1odd));

%Canculate the thresholds, Todd for mapping onto the odd histogram by
%interpolation

Todd=interp1q(n21(:),xn21(:),stepyodd(:));

% message embedding

for i=1:length(xn21)

if xn21(i)<= Todd(1)

yl(i)=poslodd(1);
else
if xn21(i)>Todd(end)
y1(i)= poslodd(end);
else
for j=2:length(Todd)
if xn21(i) > Todd(j-1) && xn21(i) <= Todd(j)
y1(i)= poslodd();
end
end
end

end

end
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%odd histogram after embedding
[numy1,posyl] = hist(y1l,poslodd);
% The combined odd and even coefficients
y=[y2,y1];
length(y);
%the combined odd and even histogram after embedding the message
[numy,posy] = hist(y,posl);
%calculates pdf of original and embedded suchannels
pdfx=num1/sum(numl);
pdfy=numy/sum(numy);
my_plot_y=[pdfx;pdfy]’;
my_plot h=stem(posl,my plot y,"");
set(my_plot_h(1),'MarkerFaceColor','blue')
set(my_plot_h(2),'MarkerFaceColor','red','Marker','square')
%relative entropy calculation between the original histogram and the
%histogram after emedding

P1=numlodd/sum(num!odd);

Ql=numyl/length(yl);

Px1 =PIl + eps;

Qx1 =Q1 + eps;

resultodd=sum( Px1.*( (log2(Px1./Qx1))) )

%



P2=num]leven/sum(numleven);
Q2=numy?2/length(y2);

Px2 =P2 + eps;

Qx2 =Q2 + eps;

%

resulteven=sum( Px2.*( (log2(Px2./Qx2))) )

%

Px3=num1/sum(num1);
Qx3=numy/sum(numy);
Px3 =Px3 + eps;

Qx3 = Qx3 + eps;

%

result=sum( Px3.*( (log2(Px3./Qx3))) )

%
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