230 research outputs found

    Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    Get PDF
    Both radio frequency interference from sources external to the synthetic aperture radar system and techniques to mitigate radio frequency interference can degrade the quality of the image products. Often it is the second order data products derived from the images that are of the most value for a synthetic aperture radar system. Preserving the quality of these data products, in the presence of radio frequency interference, is paramount to maintaining the utility of the sensor.This dissertation examines the effects of interference mitigation upon coherent data products of fine-resolution, high frequency synthetic aperture radars using stretch processing. Novel interference mitigation techniques are introduced that operate on single or multiple apertures of data that increase average coherence compared to existing techniques. A novel contrast metric is combined with existing image quality and average coherence metrics to compare multiple mitigation techniques. The characteristics of interference mitigation techniques that restore coherence are revealed.Electrical Engineerin

    Adaptive waveform design for SAR in a crowded spectrum

    Get PDF
    This thesis concerns the development of an adaptive waveform design scheme for synthetic aperture radar (SAR) to support its operation in the increasingly crowded radio frequency (RF) spectrum, focusing on mitigating the effects of external RF interference. The RF spectrum is a finite resource and the rapid expansion of the telecommunications industry has seen radar users face a significant restriction in the range of available operational frequencies. This crowded spectrum scenario leads to increased likelihood of RF interference either due to energy leakage from neighbouring spectral users or from unlicensed transmitters. SAR is a wide bandwidth radar imaging mode which exploits the motion of the radar platform to form an image using multiple one dimensional profiles of the scene of interest known as the range profile. Due to its wideband nature, SAR is particularly vulnerable to RF interference which causes image impairments and overall reduction in quality. Altering the approach for radar energy transmission across the RF spectrum is now imperative to continue effective operation. Adaptive waveforms have recently become feasible for implementation and offer the much needed flexibility in the choice and control over radar transmission. However, there is a critically small processing time frame between waveform reception and transmission, which necessitates the use of computationally efficient processing algorithms to use adaptivity effectively. This simulation-based study provides a first look at adaptive waveform design for SAR to mitigate the detrimental effects of RF interference on a pulse-to-pulse basis. Standard SAR systems rely on a fixed waveform processing format on reception which restricts its potential to reap the benefits of adaptive waveform design. Firstly, to support waveform design for SAR, system identification techniques are applied to construct an alternative receive processing method which allows flexibility in waveform type. This leads to the main contribution of the thesis which is the formation of an adaptive spectral waveform design scheme. A computationally efficient closed-form expression for the waveform spectrum that minimizes the error in the estimate of the SAR range profile on a pulse to pulse basis is derived. The range profile and the spectrum of the interference are estimated at each pulse. The interference estimate is then used to redesign the proceeding waveform for estimation of the range profile at the next radar platform position. The solution necessitates that the energy is spread across the spectrum such that it competes with the interferer. The scenario where the waveform admits gaps in the spectrum in order to mitigate the effects of the interference is also detailed and is the secondary major thesis contribution. A series of test SAR images demonstrate the efficacy of these techniques and yield reduced interference effects compared to the standard SAR waveform

    Radiometric Degradation Associated with Terrain Height Variations and Pulse Duration in Scan-On-Receive SAR Images

    Get PDF
    Scan-on-receive (SCORE) is a key digital beamforming (DBF) technique for future high-resolution wide-swath spaceborne synthetic aperture radar (SAR) systems. Compared to a conventional approach, it allows to improve the signal-to-noise ratio and the range ambiguity suppression. Nevertheless, it also exposes the system to new errors, associated with terrain height variations and pulse duration. This work investigates the mutual effect of these error sources on the SCORE SAR image. A novel, closed, mathematical expression is derived, respectively, for the impulse response function of the image formation process and for the radiometric loss affecting the image pixels. This makes it possible to predict and quantify the effect of terrain height variations and pulse duration as a function of system, processing, and geometric parameters. The numerical results, based on the end-to-end simulation of the SAR image formation process in different operational scenarios, highlight the relevance of this effect and of the derived analytical description, especially in view of the demanding radiometric quality requirements imposed on future SAR images

    Phase History Decomposition for Efficient Scatterer Classification in SAR Imagery

    Get PDF
    A new theory and algorithm for scatterer classification in SAR imagery is presented. The automated classification process is operationally efficient compared to existing image segmentation methods requiring human supervision. The algorithm reconstructs coarse resolution subimages from subdomains of the SAR phase history. It analyzes local peaks in the subimages to determine locations and geometric shapes of scatterers in the scene. Scatterer locations are indicated by the presence of a stable peak in all subimages for a given subaperture, while scatterer shapes are indicated by changes in pixel intensity. A new multi-peak model is developed from physical models of electromagnetic scattering to predict how pixel intensities behave for different scatterer shapes. The algorithm uses a least squares classifier to match observed pixel behavior to the model. Classification accuracy improves with increasing fractional bandwidth and is subject to the high-frequency and wide-aperture approximations of the multi-peak model. For superior computational efficiency, an integrated fast SAR imaging technique is developed to combine the coarse resolution subimages into a final SAR image having fine resolution. Finally, classification results are overlaid on the SAR image so that analysts can deduce the significance of the scatterer shape information within the image context

    Compressive Sensing and Its Applications in Automotive Radar Systems

    Get PDF
    Die Entwicklung in Richtung zu autonomem Fahren verspricht, kĂŒnftig einen sicheren Verkehr ohne tödliche UnfĂ€lle zu ermöglichen, indem menschliche Fahrer vollstĂ€ndig ersetzt werden. Dadurch entfĂ€llt der Faktor des menschlichen Fehlers, der aus MĂŒdigkeit, Unachtsamkeit oder Alkoholeinfluss resultiert. Um jedoch eine breite Akzeptanz fĂŒr autonome Fahrzeuge zu erreichen und es somit eines Tages vollstĂ€ndig umzusetzen, sind noch eine Vielzahl von Herausforderungen zu lösen. Da in einem autonomen Fahrzeug kein menschlicher Fahrer mehr in NotfĂ€llen eingreifen kann, mĂŒssen sich autonome Fahrzeuge auf leistungsfĂ€hige und robuste Sensorsysteme verlassen können, um in kritischen Situationen auch unter widrigen Bedingungen angemessen reagieren zu können. Daher ist die Entwicklung von Sensorsystemen erforderlich, die fĂŒr FunktionalitĂ€ten jenseits der aktuellen advanced driver assistance systems eingesetzt werden können. Dies resultiert in neuen Anforderungen, die erfĂŒllt werden mĂŒssen, um sichere und zuverlĂ€ssige autonome Fahrzeuge zu realisieren, die weder Fahrzeuginsassen noch Passanten gefĂ€hrden. Radarsysteme gehören zu den SchlĂŒsselkomponenten unter der Vielzahl der verfĂŒgbaren Sensorsysteme, da sie im Gegensatz zu visuellen Sensoren von widrigen Wetter- und Umgebungsbedingungen kaum beeintrĂ€chtigt werden. DarĂŒber hinaus liefern Radarsysteme zusĂ€tzliche Umgebungsinformationen wie Abstand, Winkel und relative Geschwindigkeit zwischen Sensor und reflektierenden Zielen. Die vorliegende Dissertation deckt im Wesentlichen zwei Hauptaspekte der Forschung und Entwicklung auf dem Gebiet der Radarsysteme im Automobilbereich ab. Ein Aspekt ist die Steigerung der Effizienz und Robustheit der Signalerfassung und -verarbeitung fĂŒr die Radarperzeption. Der andere Aspekt ist die Beschleunigung der Validierung und Verifizierung von automated cyber-physical systems, die parallel zum Automatisierungsgrad auch eine höhere KomplexitĂ€t aufweisen. Nach der Analyse zahlreicher möglicher Compressive Sensing Methoden, die im Bereich Fahrzeugradarsysteme angewendet werden können, wird ein rauschmoduliertes gepulstes Radarsystem vorgestellt, das kommerzielle Fahrzeugradarsysteme in seiner Robustheit gegenĂŒber Rauschen ĂŒbertrifft. Die Nachteile anderer gepulster Radarsysteme hinsichtlich des Signalerfassungsaufwands und der Laufzeit werden durch die Verwendung eines Compressive Sensing-Signalerfassungs- und Rekonstruktionsverfahrens in Kombination mit einer Rauschmodulation deutlich verringert. Mit Compressive Sensing konnte der Aufwand fĂŒr die Signalerfassung um 70% reduziert werden, wĂ€hrend gleichzeitig die Robustheit der Radarwahrnehmung auch fĂŒr signal-to-noise-ratio-Pegel nahe oder unter Null erreicht wird. Mit einem validierten Radarsensormodell wurde das Rauschradarsystem emuliert und mit einem kommerziellen Fahrzeugradarsystem verglichen. Datengetriebene Wettermodelle wurden entwickelt und wĂ€hrend der Simulation angewendet, um die Radarleistung unter widrigen Bedingungen zu bewerten. WĂ€hrend eine BesprĂŒhung mit Wasser die RadomdĂ€mpfung um 10 dB erhöht und Spritzwasser sogar um 20 dB, ergibt sich die eigentliche Begrenzung aus der Rauschzahl und Empfindlichkeit des EmpfĂ€ngers. Es konnte bewiesen werden, dass das vorgeschlagene Compressive Sensing Rauschradarsystem mit einer zusĂ€tzlichen SignaldĂ€mpfung von bis zu 60 dB umgehen kann und damit eine hohe Robustheit in ungĂŒnstigen Umwelt- und Wetterbedingungen aufweist. Neben der Robustheit wird auch die Interferenz berĂŒcksichtigt. Zum einen wird die erhöhte Störfestigkeit des Störradarsystems nachgewiesen. Auf der anderen Seite werden die Auswirkungen auf bestehende Fahrzeugradarsysteme bewertet und Strategien zur Minderung der Auswirkungen vorgestellt. Die Struktur der Arbeit ist folgende. Nach der EinfĂŒhrung der Grundlagen und Methoden fĂŒr Fahrzeugradarsysteme werden die Theorie und Metriken hinter Compressive Sensing gezeigt. DarĂŒber hinaus werden weitere Aspekte wie Umgebungsbedingungen, unterschiedliche Radararchitekturen und Interferenz erlĂ€utert. Der Stand der Technik gibt einen Überblick ĂŒber Compressive Sensing-AnsĂ€tze und Implementierungen mit einem Fokus auf Radar. DarĂŒber hinaus werden Aspekte von Fahrzeug- und Rauschradarsystemen behandelt. Der Hauptteil beginnt mit der Vorstellung verschiedener AnsĂ€tze zur Nutzung von Compressive Sensing fĂŒr Fahrzeugradarsysteme, die in der Lage sind, die Erfassung und Wahrnehmung von Radarsignalen zu verbessern oder zu erweitern. Anschließend wird der Fokus auf ein Rauschradarsystem gelegt, das mit Compressive Sensing eine effiziente Signalerfassung und -rekonstruktion ermöglicht. Es wurde mit verschiedenen Compressive Sensing-Metriken analysiert und in einer Proof-of-Concept-Simulation bewertet. Mit einer Emulation des Rauschradarsystems wurde das Potential der Compressive Sensing Signalerfassung und -verarbeitung in einem realistischeren Szenario demonstriert. Die Entwicklung und Validierung des zugrunde liegenden Sensormodells wird ebenso dokumentiert wie die Entwicklung der datengetriebenen Wettermodelle. Nach der Betrachtung von Interferenz und der Koexistenz des Rauschradars mit kommerziellen Radarsystemen schließt ein letztes Kapitel mit Schlussfolgerungen und einem Ausblick die Arbeit ab.Developments towards autonomous driving promise to lead to safer traffic, where fatal accidents can be avoided after making human drivers obsolete and hence removing the factor of human error. However, to ensure the acceptance of automated driving and make it a reality one day, still a huge amount of challenges need to be solved. With having no human supervisors, automated vehicles have to rely on capable and robust sensor systems to ensure adequate reactions in critical situations, even during adverse conditions. Therefore, the development of sensor systems is required that can be applied for functionalities beyond current advanced driver assistance systems. New requirements need to be met in order to realize safe and reliable automated vehicles that do not harm passersby. Radar systems belong to the key components among the variety of sensor systems. Other than visual sensors, radar is less vulnerable towards adverse weather and environment conditions. In addition, radar provides complementary environment information such as target distance, angular position or relative velocity, too. The thesis ad hand covers basically two main aspects of research and development in the field of automotive radar systems. One aspect is to increase efficiency and robustness in signal acquisition and processing for radar perception. The other aspect is to accelerate validation and verification of automated cyber-physical systems that feature more complexity along with the level of automation. After analyzing a variety of possible Compressive Sensing methods for automotive radar systems, a noise modulated pulsed radar system is suggested in the thesis at hand, which outperforms commercial automotive radar systems in its robustness towards noise. Compared to other pulsed radar systems, their drawbacks regarding signal acquisition effort and computation run time are resolved by using noise modulation for implementing a Compressive Sensing signal acquisition and reconstruction method. Using Compressive Sensing, the effort in signal acquisition was reduced by 70%, while obtaining a radar perception robustness even for signal-to-noise-ratio levels close to or below zero. With a validated radar sensor model the noise radar was emulated and compared to a commercial automotive radar system. Data-driven weather models were developed and applied during simulation to evaluate radar performance in adverse conditions. While water sprinkles increase radome attenuation by 10 dB and splash water even by 20 dB, the actual limitation comes from noise figure and sensitivity of the receiver. The additional signal attenuation that can be handled by the proposed compressive sensing noise radar system proved to be even up to 60 dB, which ensures a high robustness of the receiver during adverse weather and environment conditions. Besides robustness, interference is also considered. On the one hand the increased robustness towards interference of the noise radar system is demonstrated. On the other hand, the impact on existing automotive radar systems is evaluated and strategies to mitigate the impact are presented. The structure of the thesis is the following. After introducing basic principles and methods for automotive radar systems, the theory and metrics of Compressive Sensing is presented. Furthermore some particular aspects are highlighted such as environmental conditions, different radar architectures and interference. The state of the art provides an overview on Compressive Sensing approaches and implementations with focus on radar. In addition, it covers automotive radar and noise radar related aspects. The main part starts with presenting different approaches on making use of Compressive Sensing for automotive radar systems, that are capable of either improving or extending radar signal acquisition and perception. Afterwards the focus is put on a noise radar system that uses Compressive Sensing for an efficient signal acquisition and reconstruction. It was analyzed using different Compressive Sensing metrics and evaluated in a proof-of-concept simulation. With an emulation of the noise radar system the feasibility of the Compressive Sensing signal acquisition and processing was demonstrated in a more realistic scenario. The development and validation of the underlying sensor model is documented as well as the development of the data-driven weather models. After considering interference and co-existence with commercial radar systems, a final chapter with conclusions and an outlook completes the work

    Interferometric Synthetic Aperture Sonar Signal Processing for Autonomous Underwater Vehicles Operating Shallow Water

    Get PDF
    The goal of the research was to develop best practices for image signal processing method for InSAS systems for bathymetric height determination. Improvements over existing techniques comes from the fusion of Chirp-Scaling a phase preserving beamforming techniques to form a SAS image, an interferometric Vernier method to unwrap the phase; and confirming the direction of arrival with the MUltiple SIgnal Channel (MUSIC) estimation technique. The fusion of Chirp-Scaling, Vernier, and MUSIC lead to the stability in the bathymetric height measurement, and improvements in resolution. This method is computationally faster, and used less memory then existing techniques

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    Waveform-Diverse Stretch Processing

    Get PDF
    Stretch processing with the use of a wideband LFM transmit waveform is a commonly used technique, and its popularity is in large part due to the large time-bandwidth product that provides fine range resolution capabilities for applications that require it. It allows pulse compression of echoes at a much lower sampling bandwidth without sacrificing any range resolution. Previously, this technique has been restrictive in terms of waveform diversity because the literature shows that the LFM is the only type of waveform that will result in a tone after stretch processing. However, there are also many examples in the literature that demonstrate an ability to compensate for distortions from an ideal LFM waveform structure caused by various hardware components in the transmitter and receiver. This idea of compensating for variations is borrowed here, and the use of nonlinear FM (NLFM) waveforms is proposed to facilitate more variety in wideband waveforms that are usable with stretch processing. A compensation transform that permits the use of these proposed NLFM waveforms replaces the final fast Fourier transform (FFT) stage of the stretch processing configuration, but the rest of the RF receive chain remains the same. This modification to the receive processing structure makes possible the use of waveform diversity for legacy radar systems that already employ stretch processing. Similarly, using the same concept of compensating for distortions to the LFM structure along with the notion that a Fourier transform is essentially the matched filter bank for an LFM waveform mixed with an LFM reference, a least-squares based mismatched filtering (MMF) scheme is proposed. This MMF could likewise be used to replace thefinal FFT stage, and can also facilitate the application of NLFM waveforms to legacy radar systems. The efficacy of these filtering approaches (compensation transform and least-squares based MMF) are demonstrated in simulation and experimentally using open-air measurements and are applied to different scenarios of NLFM waveform to assess the results and provide a means of comparison between the two techniques
    • 

    corecore