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Abstract

This thesis concerns the development of an adaptive waveform design scheme for syn-

thetic aperture radar (SAR) to support its operation in the increasingly crowded radio

frequency (RF) spectrum, focusing on mitigating the effects of external RF interference.

The RF spectrum is a finite resource and the rapid expansion of the telecommunications

industry has seen radar users face a significant restriction in the range of available

operational frequencies. This crowded spectrum scenario leads to increased likelihood

of RF interference either due to energy leakage from neighbouring spectral users or

from unlicensed transmitters.

SAR is a wide bandwidth radar imaging mode which exploits the motion of the radar

platform to form an image using multiple one dimensional profiles of the scene of interest

known as the range profile. Due to its wideband nature, SAR is particularly vulnerable

to RF interference which causes image impairments and overall reduction in quality.

Altering the approach for radar energy transmission across the RF spectrum is now

imperative to continue effective operation.

Adaptive waveforms have recently become feasible for implementation and offer the

much needed flexibility in the choice and control over radar transmission. However,

there is a critically small processing time frame between waveform reception and trans-

mission, which necessitates the use of computationally efficient processing algorithms

to use adaptivity effectively.

This simulation-based study provides a first look at adaptive waveform design for SAR

to mitigate the detrimental effects of RF interference on a pulse-to-pulse basis. Standard

SAR systems rely on a fixed waveform processing format on reception which restricts its

potential to reap the benefits of adaptive waveform design. Firstly, to support waveform

design for SAR, system identification techniques are applied to construct an alternative

receive processing method which allows flexibility in waveform type. This leads to the

main contribution of the thesis which is the formation of an adaptive spectral waveform

design scheme.



A computationally efficient closed-form expression for the waveform spectrum that min-

imizes the error in the estimate of the SAR range profile on a pulse to pulse basis is

derived. The range profile and the spectrum of the interference are estimated at each

pulse. The interference estimate is then used to redesign the proceeding waveform for

estimation of the range profile at the next radar platform position. The solution ne-

cessitates that the energy is spread across the spectrum such that it competes with the

interferer. The scenario where the waveform admits gaps in the spectrum in order to

mitigate the effects of the interference is also detailed and is the secondary major thesis

contribution. A series of test SAR images demonstrate the efficacy of these techniques

and yield reduced interference effects compared to the standard SAR waveform.

iii



Lay Abstract

Synthetic aperture radar (SAR) is an imaging technology which provides high resolu-

tion images of the Earth surface. SAR operates at a distance using the radio frequency

(RF) spectrum to transmit signals. These signals reflect off the Earth’s surface and

the returned signals are used to form an image. However, the RF spectrum is a finite

resource and is also used heavily by the communications industry to supply internet

and phone coverage, among numerous other applications. When more than one RF

technology uses a similar region of the spectrum, the interactions between these sig-

nals causes interference. Signal interference can significantly reduce the resultant SAR

image quality . In this “crowded RF spectrum, in part due to the rapidly developing

communications industry, interference is now an ever-present threat.

The signal which the radar transmits has, until recently, been pre-determined. Ad-

vancements in physical radar components now provide potential for the signal to be

designed according to its environment while “on-the-fly. With the appropriate instruc-

tions to the radar, it could operate adaptively by changing the transmission according

to the RF interference.

This thesis provides a possible solution to aid the operation of SAR in the crowded

spectrum by both defining new signals for transmission and a new means to process

them according to the RF interference. This reduces the impact of interference on the

final SAR image, restoring quality to the images.
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Chapter 1

Introduction

1.1 Problem Description and Motivation

Synthetic Aperture Radar (SAR) is an imaging mode which can provide 2D(dimensional)

or 3D images in the form of a reflectivity map [6]. Airborne SAR systems are used in

either military or commercial applications and are operational day or night to provide

images of the surface at a sub-metre, and more recently, sub-centimetre level. These

high resolution images are obtained by using a waveform with high bandwidth and suf-

ficient energy to discern between stronger and weaker reflectors on the surface. Since

conception of the SAR system, the SAR waveform and its receive processing format has

seen little change. The receive-processing, known as “deramp processing”, has benefits

including lower requirements on the analogue to digital converter (ADC). Addition-

ally, deramp offers a limited level of noise suppression [7, 8], but is heavily dependent

on a spectrally contiguous and flat waveform - known as the linear chirp. As a high-

bandwidth mode, SAR relies on these large contiguous blocks of the radio frequency

(RF) spectrum to obtain fine resolution images. However, the RF spectrum is effec-

tively a finite resource [9,10] - the rapid expansion of the telecommunications industry

continuous to encroach towards areas of the spectrum reserved for radar, causing the

need for radars to reduce transmission in areas of the spectrum. This crowded spec-

trum problem has lead to increased likelihood of interference from other surrounding

RF users, particularly for wideband emitters. This ultimately has a negative impact on

performance.

Radio frequency interference (RFI) can originate from spectral leakage from neighbour-

ing users, unlicensed transmitters that attempt to operate in the same bandwidth as

the radar or by deliberate electronic attack.The quality of a SAR image can be heavily

degraded by interference. Interference in SAR has been shown to cause aberrations in

the image including; false targets, blurring, creation of bright lines and reduction of the

power dynamic range, meaning there is less sensitivity to discriminate between stronger
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and weaker targets [3, 5, 11, 12]. In cases of very high interference, no image features

are provided at all. While the 2D aspect of the imaging process allows some reduction

of the impact of noise (through coherent gain), this is not possible if the source of the

interference is of similar magnitude as the returns.

The ultra high frequency (UHF) and VHF bands are highly spectrally congested as this

is the largely occupied by television, radio and other communications systems. SAR

operation in this spectral region has many desirable applications, such as foliage pen-

etration and sub-terrain visibility [13]. However, RF interference is a major problem

as due to occupation by a large number of high power transmitters. For applications

such as foliage penetration SAR, these frequencies must be removed in order to allow

detection of objects under the foliage. This issue in UHF/VHF SAR led to the first

attempts to mitigate interference in SAR via filtering approaches, at the cost of los-

ing some sensitivity and resolution. As spectral congestion has become increasingly

widespread, this issue of RF interference is now also pertinent to X-band and other

higher frequency bands of SAR.

Low frequency SAR combined with ultra-high bandwidths have many desirable ap-

plications, such as being particularly suited to foliage penetration and allowing some

sub-terrain visibility. These bands were originally in widespread use by television and

radio services. The high power transmission in addition often exceeds the receiver noise,

limiting system sensitivity. As spectral congestion has become increasingly widespread,

this issue of RF interference is now also pertinent to X-band and other higher frequency

bands of SAR.

It is clear that in the future SAR operation may be increasingly vulnerable and must

consider a more flexible occupation of the spectrum - rather than the linear chirp with

deramp processing which is prevalent in current SARs. Waveform agility, the ability

to change waveform transmission on-the-fly [14], has become practically feasible due to

the recent advancements in transmitter technology, allowing flexibility in the choice and

control of transmit waveform facilitated using field-programmable gate arrays (FPGAs).

Additionally, hardware advances allow faster rate ADCs which can support sampling

a full bandwidth on receive, and reduces the reliance on deramp processing. In order

to fully exploit this potential, computationally efficient waveform-design algorithms are

required for the waveform to optimise its spectral occupation according to its environ-
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ment in a responsive manner. A means to address RFI in SAR could lie in proper

application of adaptive waveform design techniques.

1.2 Thesis Aims

This thesis aims to address the problem of RF interference (RFI) in SAR by adaptively

designing appropriate waveforms in the spectral domain. Waveform design is a rapidly

emerging field of radar spanning interest across detection [15–17], tracking [18–22] and

target recognition [17, 23, 24] applications. The majority of the cutting-edge waveform

design techniques are based on heavily computationally expensive iterative methods

that are not always guaranteed to converge to a solution [25–28] - this poses a criti-

cal issue for on-the fly waveform design. Furthermore, there are a lack of techniques

available for near-future or current radar hardware available: many waveform design

techniques are designed irrespective of hardware constraints or computational burden.

Another consideration which this thesis aims to address is that there is often little

mention of how waveform-design procedures obtain a profile of the surrounding RFI

spectrum and is usually assumed to be known [29, 30], static or given by a radio fre-

quency environment map [25–27].

With regard to these concerns, this thesis attempts to provide an adaptive waveform

design solution for SAR in the crowded spectrum which:

1. Reduces the impact of RFI on the resultant SAR image

2. Facilitates adaptivity by finding a computationally low cost solution, allowing

regular re-design of the waveform on-the-fly

3. Is feasibly implementable into current electronically scanned radars

4. Is capable of estimating the interference

A first-look at a possible adaptive waveform design solution is addressed in the fol-

lowing work and the scope is thereby restricted to focusing on the underlying theory

and demonstrating these techniques via simulation. As the techniques discussed are

adaptive, obtaining real data would rely on an existing radar with waveform agility and

built with the algorithms that follow herein. While the aim is to provide a solution that
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could be built with current technologies, it would not be feasible to build this radar on

the timescale of this study.

1.3 Organization

This thesis spans across two distinct and well-studied research fields of waveform design

and interference mitigation for SAR - this thesis serves an initial bridge between these

two fields.

• Chapter 2: Presents a literature review which firstly introduces the concept of

cognitive radar and adaptive waveform design. To set-up the following review

on the scope of waveform design literature, a short summary of the fundamen-

tals of radar waveform design and SAR waveforms is included. A review of the

salient works in waveform design is also included, which discusses the key ideas

in waveform design and its challenges. The final section presents an overview of

the existing techniques for RFI in SAR.

• Chapter 3: This chapter both contains the necessary background for SAR range

profile estimation for this thesis but also presents a novel application of system

identification methods for range-profile estimation in SAR. The discrete time-

domain system model used throughout the thesis is presented here. The existing

methods of range-profile estimation for SAR are discussed along with an compar-

ative analysis of a recent study [31] on the communications-based technique of

Orthogonal-frequency division multiplexing (OFDM) for SAR. There are inter-

esting similarities between the proposed SAR system identification method and

OFDM-SAR - comparisons via simulation are also demonstrated here.

• Chapter 4: An adaptive waveform scheme for RFI mitigation for SAR is pre-

sented here. The system identification method proposed in Chapter 3 is extended

for the case of correlated interference to include RFI estimation. A spectral wave-

form optimization technique and a possible waveform synthesis approach is then

given. Simulated SAR images are shown to demonstrate the outcome of the tech-

nique. The solution of the waveform design attempts to “fight” the interference

to occupy the spectrum.
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• Chapter 5: Expanding on the adaptive scheme proposed in Chapter 4, this sec-

tion explores the case where the design solution is modified to include gaps in the

spectrum; the system must decide which areas of the spectrum to occupy via a

“fight or flight” mode and surrender occupation of regions of the spectrum in the

interest of improving overall performance. The system identification and wave-

form optimization processes are modified accordingly. An analysis on the impact

on performance using this technique compared to the prior is given. Existing

methods for returning the lost spectral information are also applied.

• Chapter 6: A summary of the thesis outcomes and the possible areas for future

work are discussed.

1.4 Thesis Contributions

The main contributions to knowledge in this thesis are:

• System Identification for SAR: Design of an alternative receive-processing

algorithm for range-profile estimation replacing the traditional pulse-compression

step using frequency-domain system identification techniques. A comparison to

the frequency-domain system identification and OFDM-SAR is also a novel con-

tribution.

• Adaptive Waveform Design Scheme: A novel formulation to optimize the

estimation of the range profile on a pulse-by-pulse adaptive manner by changing

the spectral content of the waveform. The solution form dictates a spectrum-

competitive approach is optimal, and thereby attempts to “fight” for occupation

of the spectrum.

• Spectral “Fight or Flight” Analysis: Modification of the novel adaptive

optimization scheme to yield gaps in the spectrum in interest of enhancing the

overall performance.
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Chapter 2

Literature Review

2.1 Waveform Fundamentals

To understand the potential in waveform design and how it can be applied, the basic

properties of radar waveforms should first be discussed. A brief introduction and review

of the basic types of radar waveforms and their properties are presented in the following

section. Waveform design is widely researched and a large number of waveforms are

possible but the focus here is on waveforms for SAR. In SAR, one of the primary metrics

of concern is the range resolution. It determines the limit on the smallest distinction

between identical scatterers which can be resolved with the radar line of sight and

often sets the basis for system requirements. As well as affecting range resolution,

the choice of waveform directly impacts several performance metrics such as signal to

noise ratio (SNR), Doppler resolution, range and Doppler sidelobes and range-Doppler

coupling. The waveform properties which influence these metrics are the pulse duration

τ , bandwidth, amplitude and the phase or frequency modulation applied.

2.1.1 Waveform Properties

The general expression for modeling a radar waveform is as follows

x(t) = a(t)exp(2πjf0t+ φ) (2.1)

where f0 is the carrier frequency of the radar, a is the amplitude of carrier envelope

and φ is any phase modulation that is added onto the carrier of the wave [1]. Beyond

altering the carrier frequency and the duration of the pulse, the key parameters for

radar waveform design are the carrier envelope a and φ. These are the significant

degrees of freedom available for radar waveform design via modulation. Classically, in a

fixed waveform type scenario, waveform design may rely on pulse duration or inter-pulse

metrics such as pulse repetition frequency. In the adaptive waveform design framework,
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the interest lies in the design of the pulse itself with respect to its amplitude and phase

properties.

While it is apt to tailor an individual waveform to a specific task or radar hardware

capability, there are three properties which are desirable for the general current radar

system: 1) constant modulus amplitude envelope,e.g. (‖a(t)‖ = 1), 2) continuous phase,

3) spectral containment of the waveform

1. A constant modulus amplitude is beneficial for two reasons. Firstly it avoids

causing non-linear distortion at the transmitter which causes deviation from the

desired waveform output. Secondly it makes full use of the amplitude at each

time instant, maximizing the available power - i.e. increased power efficiency.

Constant amplitude is much easier from a hardware standpoint for the class-C

type amplifiers which are generally found in current radar systems [32]. Future

radar systems may have amplifiers with the capability to modulate the amplitude

envelope. This would offer further freedom in waveform design, but would be

at the cost of reduced power-efficiency across the pulse. It is worth noting that

many radar applications have a direct link between maximizing power for optimal

performance, particularly in detection problems.

2. Electronically scanned radars rely on phase differences to steer the beam. Phase

modulation which increases continually, allows the creation of a beam over the

duration of a pulse transmission. This corresponds to the instantaneous frequency

varying linearly upwards or downwards over time.

3. Spectral containment minimizes the spectral shaping that occurs at the trans-

mitter that can result in unwanted amplitude modulation effects which can then

lead to distortion and further problems encountered by directly amplitude mod-

ulation. [32]

2.1.2 Waveforms Types

Transmitting a single frequency sinusoidal radar signal without any amplitude modu-

lation only has one degree of freedom available - pulse duration. A simple sinusoidal

signal has an inherent performance trade off between energy and resolution via pulse

duration control. A long pulse length is required to provide enough energy on target,
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however shorter pulse lengths provide higher resolution. A high resolution waveform

with a specified transmitted energy cannot be obtained. The answer to this problem lies

in a process known as “pulse compression”: modulating the phase over time to allow

the signal to spread its energy over a band of frequencies. By modulating the frequency

the waveform energy and range resolution are able to be controlled separately. The

resolution in a pulse compressed waveform can be obtained with a pulse longer than

that of the pure tone signal. This allows energy criteria to be met. Waveform design

is one part of the solution. Correct receiver processing is also necessary to achieve the

desired outcome and any associated performance gains (see Chapter 3). Dating back to

the 1940’s, pulse compression could be considered the original breakthrough in wave-

form diversity. The introduction of pulse compression allowed a significant increase of

control over the transmitted waveform and performance gain.

2.1.2.1 Linear Frequency Modulation

The standard method of obtaining pulse compressed waveforms is by linearly increasing

the instantaneous frequency over time - known as a “linearly frequency modulated”

(LFM) or “chirped waveform”. The constant rate of increase in frequency over time,

allows for straightforward implementation in hardware due to its constant modulus

amplitude and increasing phase sweep. It also has in-built advantages for processing

on receive in terms of reducing the requirements for the analogue to digital converter

(ADC) [8]. By modulating an additional frequency term with changes in time onto

the centre frequency, chirps provide a method of increasing waveform bandwidth for a

given pulse length without reducing the total energy transmitted. For a defined chirp

period τc, the waveform instantaeous frequency increases across the bandwidth value

from carrier frequency f0−∆f
2 to f0 +∆f

2 . This “sweep” in frequency is defined by the

chirp rate α = Bc
τc

. The phase of a linear chirp waveform is therefore defined as follows

φ(t) = π
Bc
τc
t2 (2.2)

where t denotes the time axis and Bc denotes the signal bandwidth. Where the instan-

taneous frequency is the time derivative of the phase:

Fi(t) =
dφ(t)

dt
= φ̇(t) =

1

2π

Bc
τc
t (2.3)
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The change in the frequency at each time step is a constant linear change; the frequency

increases linearly across the bandwidth B over the pulse length τ . For low bandwidth-

time products the spectrum is not well defined. The higher the product the more

rectangular the spectrum becomes. An example of lower and higher bandwidth products

is shown in Figure 2.1 which demonstrates that for larger time-bandwidth products,

the spectrum is more rectangular. As the increase in frequency over time is linear,

the energy in the waveform is spread evenly across the spectrum. This creates a flat

spectrum as the change in frequency over time is constant.

(a) Bτ = 10 (b) Bτ = 100

Figure 2.1: LFM spectrum from two waveforms with low bandwidth time product (a
and high product b) which has a more defined rectangular shape [1].

The matched filter is the standard approach to obtaining the radar range information.

This is achieved by correlating the known transmitted signal with the received signal.

The spectral shape of the LFM is approximately rectangular, such that its time (range)

domain representation is a sinc-shape and necessarily has large sidelobes. Sidelobes are

problematic, particularly in the situation where there are two targets that are located

closely in range - the sidelobes from the stronger reflector can mask the response from

the weaker, causing a failure to detect targets. To counter the effect of high range-

sidelobes, applying a window function before application of a DFT is used on receive

to reduce spectral leakage effects. This reduces the height of the sidelobes, but causes

a mis-match in the filter, reducing the output SNR. A measure of the sidelobes caused

from matched filtering a signal can be calculated by using the autocorrelation of the
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Figure 2.2: Left-to-right: the change in frequency, PSD and autocorrelation results
for LFM and NLFM waveforms of the same energy, bandwidth and pulse
length

function, which is the inverse Fourier transform of the power spectral density

A(t) = F−1[Ω(f)|2] (2.4)

where F−1 is the inverse Fourier transform and Ω is the frequency domain radar sig-

nal. If it is possible to change the spectrum of the pulse-compressed waveform, the

autocorrelation result can also be modified.

2.1.2.2 Non-Linear Frequency Modulation

The LFM signal has a constant rate of change α but a non-linear frequency modulated

(NLFM) signal is defined by a variable bandwidth-time sweep rate. By altering the

rate of change in frequency over time, this provides a method to change the resultant

spectrum, the autocorrelation properties and therefore, the sidelobe level. Due to the

direct link between the waveform autocorrelation and the power-spectral density(PSD),

NLFM waveforms are often designed according to a desired PSD. For example, instead

of applying a window function as done in receive processing for the LFM, the NLFM

spectrum can be shaped like a window function to obtain a reduction in sidelobes while

maintaining maximum SNR [1]. On choosing the spectrum of an NLFM signal for

waveform design, a question is raised: how to translate this PSD into a time-domain

signal with constantly increasing phase and constant amplitude? Waveform synthesis
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of NLFM waveforms is generally performed either by the stationary phase approxi-

mation [33] (SPA) or via various empirical methods involving look-up tables [1]. The

stationary phase approximation allows a relationship to be formed between the phase

in the time domain and the signal energy in the frequency domains for oscillatory sig-

nals. It originates from intractable integrals often encountered in oscillatory signals and

exploits properties of the phase to approximate the integral. A comparative example

between the LFM and NLFM waveforms for change in frequency, PSD and autocor-

relation is shown in Figure 2.2. For this example the NLFM has been designed using

SPA tailored to fit the shape of a Hann window.

2.1.2.3 Orthogonal Frequency Division Multiplexing

Orthogonal frequency division multiplexing (OFDM), widely used in digital communi-

cations applications, creates a multi-frequency signal which simultaneously transmits

multiple sub-carriers to create a wideband signal. OFDM has recently attracted at-

tention for SAR systems due to its potential ability to achieve ultra-high resolution

images without the high range sidelobe effects [31, 34, 35] that are observed in stan-

dard pulse-compressed waveforms. Radar-centric studies for OFDM have suggested

that it may offer enhanced range and Doppler estimation compared to standard radar

signals [36,37]. However, while this framework offers advantages including control over

the spectral power, it is a variable amplitude signal in time and not readily synthesized

in radar hardware. The OFDM hardware framework allows simultaneous transmission

of sub-carriers, each representing a different frequency. Lower range sidelobes are then

possible as they are processed separately on receive [38]. The orthogonality of the

sub-carriers reduces any potential cross-talk in communications systems. If there are

N OFDM sub-carriers S is the vector of complex weights to be transmitted across a

bandwidth B, S = [S0, S1, . . . , SN−1]T such that
∑N−1

k=0 |Sk|2 = N . In discrete time,

the OFDM signal is given as

s(t) =
1√
N

N−1∑
k=0

Sk exp{j2πk∆ft} t ∈ [0, T + TGI ] (2.5)

where T is the signal duration, ∆f = Bc
N = 1

T is the spacing between each of the

sub-carriers and TGI is the length of the guard interval known in OFDM as the cyclic

prefix. Note that the waveform synthesis then directly allows design in the frequency
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domain via the subcarrier weights S. For communications applications, the motiva-

tion for OFDM lies in reducing the cross-talk between sub-carriers which is introduced

by unwanted artifacts within the transmission medium. The fundamental goal of the

system is different to radar. In communications, the system needs to accurately recon-

struct the transmitted signal from the received signal, however in co-located radar, the

transmitted signal is known, and the aim is to accurately reconstruct the transmission

medium - which is the surrounding airspace in air-to-air applications or an image of the

surface in SAR or air-to-surface modes.

The transmission mode is also different. In some communications systems, such as

Wi-Fi, the transmission is continuous, but in pulsed radar and SAR there are relatively

large intervals between each transmission period. The guard interval in communications

systems is built to be at least the same characteristic length of the transmission medium.

In a SAR scenario, the scene size or resultant impulse response caused by the intersection

of the radar beam on the surface is considered to be the characteristic delay of the

system - the time difference between the first returned signal and the last returned

signal. In communications, any delay effects caused by the transmission medium in

time (an impulse response) are much less than the duration of the signal itself. OFDM

employs a repetition of the signal that is the same characteristic time as the impulse

response of the transmission medium which is then added to the start of the pulse

and is known as a “cyclic prefix”. This is then discarded on receive to remove any

effects of interference between neighbouring signals caused by an impulse response in

the transmission medium. In SAR, the cyclic prefix element which corresponds to

the length of the scene size, is much larger than in communications applications as

represented in Figure 2.3. Despite these differences there has been promising work

focused on how OFDM transmit signal and impulse response times can work under

SAR configuration [31, 34]. We focus our interest on one study in particular which

provides an algorithm for range profile estimation using OFDM signals for the purposes

of removing range-sidelobe effects as seen in the matched filter estimation and further

this investigation in Chapter 3.
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2.2 Cognitive Radar and Waveform Adaptivity

The airborne radar environment can be dynamic and somewhat unpredictable; targets

can enter the surroundings without warning, interference may be present from other

radio frequency emitters and there is the possibility of threats from electronic counter-

measures. In spite of potentially volatile surroundings, traditionally radars have had

limited capability to adapt to these changes and rely on manual switches in radar mode

initiated by the operator. Even still, radar mode change offers little flexibility. Radar

waveform transmitters have classically relied on a small selection of fixed waveforms

that lack online support for adapting to the changes in the environment. Options for

adaptation are limited to manually switching between waveforms - for example switching

between pre-programmed modes such as search and tracking mode.

Cognitive radar and adaptive waveform systems have become of recent interest due to

advancements in both transmitter technology and processor power making “on-the-fly”

design of transmit waveforms feasible [14]. This provides the potential for waveforms

to be specifically tailored to the surrounding RF environment and the requirements of

the radar mode. At the heart of the cognitive radar concept is the ability of the radar

system to learn from interacting with its environment and applying this knowledge to
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new situations. Cognition itself can be defined as a collection of capabilities; perceiving,

reasoning and remembering. These are applied to the radar system through sensing of

the environment via the transmitter, adaptive algorithms and the concept of memory

using databases. The notion of radar system capable of adapting to the surrounding

environment was initially proposed in 2006 [39]. In the following years, research covered

the various aspects of intelligent radar systems, which can generally be classified within

one of following three areas:

1. Adaptive waveform design: focuses on retrieving maximum information from the

environment by designing and transmitting waveforms based on knowledge of the

scene surrounding the radar

2. Sensor management: responsible for the scheduling of waveform design and infor-

mation handling over time

3. Cognitive radar: involves a full closed-loop cycle from receiving the waveform to

information processing and retransmitting. Cognitive radar includes the waveform

design and sensor management.

Waveform design is not an entirely new topic, but receiver advancements have tradition-

ally been the focus of radar research with the development of digital signal processing

allowing adaptive processing [14]. It has been suggested that with computationally

heavy new receive processing methods, such as space-time-adaptive processing, adding

waveform design to the computational load worsens the problem, unless the waveforms

can be designed in a computationally simple manner. However, the full potential of

waveform design is now becoming realized, in part due to the interest in cognitive radar

systems. The cognitive radar concept presents closed loop waveform scheduling, which

is often referred to as the perception-action cycle shown in Figure 2.4; the radar per-

ceives its environment via waveform reception, and using this feedback acts accordingly

via adapting its transmission [39, 40]. Therefore, in one processing period, the radar

system is required to receive and process the return; update any relevant metrics and

design and transmit the next waveform, all based on the knowledge obtained from the

prior processing period. This raises one of the biggest problems for adaptive radar,

limitation of processing time. There is a strict time limit between receiving a pulse,

and the transmission of the next - often on the magnitude of around 100ms or less [41].
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It is then imperative that waveform design for a closed loop system is computationally

efficient.

One approach to this problem is designing a waveform library off-line. The waveform

scheduler is then required to calculate a relevant metric, known as a measure of effec-

tiveness(MOE) and choose from a finite selection of waveforms. This of course decreases

the ability of the system to tailor the waveform and thereby may incur varying degrees

of performance loss. Ideally the waveform transmitted at the end of each processing

cycle is designed to be fully optimized according to the most recent information update.

Another approach to reducing computational load is to decide whether or not to redesign

the waveform at each pulse. This can be done by considering application specific,

information theoretic measures to determine information gain/loss from re-designing

the waveform or simply transmitting the same one. In some applications, it is suitable

to reduce the rate at which redesign occurs, allowing the processor longer to compute

the optimal waveform. Unfortunately, particularly in tracking scenarios where the rate

of information change can be high, the calculation of information theoretic metrics can

themselves be challenging to compute. The best course of action is to, where possible,

design computationally efficient algorithms for computation of waveforms.

Figure 2.4: The cognitive radar “perception-action cycle” relating to the transmitted
and received signal
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2.3 Waveform Design

The renewed interest in waveform design has largely originated from three key prob-

lems: 1) interference from surrounding RF users - either through intentional jamming

or unintentional means, such as due to spectral leakage, 2) the wish to optimize perfor-

mance for a particular task, for example to maximize detection of targets in clutter, 3)

the increasingly crowded spectrum resulting in radar systems needing to share areas of

the spectrum that were previously reserved exclusively for radar.

With the progress of technology, all of these problems are intensifying. With more RF

spectral users, interference is becoming more widespread, either due to energy leak-

age from neighbouring RF users or with increased capability of intentional jamming

systems. Demands for higher specification radar are ever increasing with regards to

superior mode operation, including enhanced detection, target classification and higher

resolution SAR. These place pressure on all aspects of the radar system. Higher radar

bandwidth allows higher resolution and enhances the ability for target classification

and finer SAR resolution. Higher power provides better signal to noise and there-

fore enhanced detection [1]. Waveform design provides a means to leverage the best

performance out of the available fundamental restrictions of the radar system. This

shifts demand exclusively from increasing the specifications of the hardware potentially

making the whole system more cost-effective.

While the ability to adapt to waveforms on the fly is a recent topic of research, wave-

form design has earlier origins. Inspired by a theory of information gain in the field

of communications [42], the earliest work on radar waveform design was in 1953. It

provided a definitive link between maximizing signal to noise and maximum informa-

tion gain for target detection [43]. An important concept in waveform design is that an

optimal waveform for one task or scenario is not necessarily optimal for all cases. Wave-

form design at its outset was most commonly treated as an optimization problem for a

specific task. More recently waveform design trends have become spectrum-conscious;

either from the perspective that the a waveform should occupy specific spectral regions

for spectral coexistence or from a performance perspective where optimizing the wave-

form spectrum yields enhanced performance metrics. Then most recently, the cases

where the waveform is spectrally limited but optimized for performance is sought. The

following section will discuss the performance metrics which have driven research into
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waveform design, and the next will detail the research carried out into spectral-based

waveform design.

2.3.1 Performance-Driven Waveform Design

Waveform design has no one size fits all waveform - in that each has to be optimized

for a specific task. However to quantify the “success” of the design, relevant metrics

are required. The application of information theory to radar waveform design theory

inspired further design efforts on how to improve the system performance by modifying

the transmit waveform. In particular, an early application of waveform design to the

problem of clutter suppression in target detection scenarios attracted research atten-

tion [44, 45] to attempt to increase the signal-to-clutter-and-noise ratio (SCNR). The

spectral content of waveform design is of particular interest in clutter problems. As the

clutter is signal dependent it is particularly difficult to separate from the target data in

the time domain. Expanding on the work on waveform design for target detection in

clutter and/or RF jamming, Kay [29] presented work on spectral design of the signal

which optimized the SCNR and found the solution adheres to a “water-filling” criterion

- such that the spectral energy is “filled in” across the spectrum to regions without a

strong interference and/or clutter response. The concept of water-filling is prevalent in

communications applications. It treats the problem of channel corruption, for example

by strong interference, by considering where to allocate signal energy within its sub-

channels. The water-filling method places energy in subchannels with higher SNR to

maximize the overall channel condition. In this example, the water-filling is driven by

an maximising the SCNR, as per the following relationship

ε(F ) = max

(
Pn(F )
λ − Pn(F )

Ph(F )
, 0

)
(2.6)

where Pn is the PSD of the noise and interference and Ph is the PSD of the channel

response (i.e. target and clutter interaction with the radar signal). and the “water-

level” or energy contraint, is set by the value λ. The water-level and max operation

enforce the water-filling nature of this method, as the optimal ESD will be zero for

frequencies
Pn(F )

λ
− Pn(F ) < 0 (2.7)
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Power values greater than 1
λ at a given frequency component F will not have energy

distributed across it such that the water-filling avoids these energies. As a result,

the signal energy avoids frequencies with large noise, jamming or clutter power. An

illustrative description of this case of water-filling is shown in Figure 2.5a and a resultant

ESD produced using this method is shown in Figure 2.5b.

(a) Demonstration of water-filling with a fixed

energy constraint (top) , the point below

which energy is “filled in”, resulting in an

energy spectral density (ESD) with the same

resultant area as the water-filling (bottom).

[29]

(b) Simulated output of the water-filling effect

demonstrated in Kay’s work on optimal tar-

get detection where the waveform energy

now is filled in where the jammer energy

is lowest. [29]

While earlier approaches provided a theoretical basis into waveform design, the solu-

tions often lacked the means to physically implement these waveforms. Using constant

modulus amplitude and phase modulation, a more recent approach was able to fulfill

the maximum SCNR criterion in [16], allowing an implementable solution. While the

design of the waveform is often studied on its own assuming a matched filter on receive,

both the optimal waveform and the receiver processing pair are studied for the clutter

problem in [46].

The general detection problem is studied in the pivotal work linking waveform design

and information theory by Bell [47] which is based on the original work linking max-

imum information and SCNR [43]. It found that optimal information extraction can

be obtained when the energy is distributed among the target scattering frequencies.
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This solution maximises the mutual information between the target measurement and

the received radar waveform. As also found in the SCNR optimization route [29], the

solution using mutual information also suggests a water filing approach. However, the

author notes that water-filling may not be the optimal solution in a target recognition

or information extraction problem. Spreading the energy out equally among the scat-

tering frequency modes may not be the optimal solution as some target modes may

contribute more to the overall information metric.

A series of studies apply the mutual information (MI) metric across various waveform

design scenarios [17, 23, 48–51]. The SNR and MI metrics were used to calculate the

optimal waveforms in target detection for both a known target and stochastic tar-

get [49]. In the MI waveform design field, a known target refers to a model driven by

a deterministic target impulse response that is used to allow design of the subsequent

waveform/receiver pairs, while a stochastic target is modelled with a random target re-

sponse [47]. While target detection is more accurately described as a stochastic process,

this deterministic assumption was the original basis for waveform design based on MI

with later works expanding to more accurately describe and solve the problem using

stochastic target models [49].

MI is used to design an optimal waveform for multiple extended targets in [50]. As

suggested by Bell in [47], target recognition requires a different treatment to detection.

Typically target recognition depends on some amount of prior knowledge to discern how

to spread the spectral energy across the target scattering frequencies. A target recog-

nition problem is addressed in [23] where MI is applied in conjunction with sequential

hypothesis testing to operate optimally within a cognitive framework using prior infor-

mation. In [15] both enhanced detection and target discrimination is treated by either

maximising for the probability of detection or probability of identification respectively.

In the field of information theory, it has been shown that the MI of a Gaussian impulse

response is the same as its minimum mean square error (MMSE) [52]. Both MI and

MMSE are applicable in target recognition where the interest is not in a single target

response range measurement, but in discriminating specific target features. Another

emerging application of information theory for waveform design in radar is in the context

of multiple-input multiple-output (MIMO) systems. This refers to a set up with multiple

transmit and receive antennas which creates many different uncorrelated signals - the
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received signal is then a superposition of many independent received signals. MIMO is

often used to exploit the spatial diversity between targets. MMSE was first used as a

metric for waveform design was first used in the context of MIMO, but also shown to

be applicable for single transmit and receive antenna radars in [51]. The solution under

both MMSE and MI criterion is shown to employ water-filling over the spatial modes

of the radar scene - such that higher power is allocated to stronger targets. Other

applications of MI in waveform design are used in a tracking context - such as in [53]

where MI is exploited to design waveforms for tracking for a low-grazing angle. More

recently it has been applied to waveform design for MIMO to support state estimation

for a particle filter [54].

Another popular means of performance driven waveform design is motivated by obtain-

ing good autocorrelation properties - usually assessed by the integrated sidelobe level

(ISL) or peak sidelobe level (PSL). Minimising ISL can be treated as a non-application

specific process as lower sidelobes are desirable across radar modes and is therefore a

well studied problem. There is an extensive body of research applied to optimizing for

good autocorrelation properties under the constant amplitude constraint - restricting

modulation to phase only. [55,56]

Minimising a cost function to obtain the optimal ISL is problematic in that there are

many possible ways in which the waveform can spread its energy which can lead to

multiple local minima. Some approaches to this are to use stochastic optimization

algorithms to exhaustively search for the optimal solution [57]. Alternatively, local

minimisation using the gradient descent method can be used by choosing waveforms

that are close to that of the desired solution. In [58], the authors move away from

computationally intensive stochastic and gradient based methods used in prior studies,

to introduce a series of cyclic algorithms which reduce the computational burden in

seeking constant amplitude waveforms with low ISL.

2.3.2 Spectral Waveform Design

One of the driving factors in waveform design is the need to operate in a spectrally

crowded area. It is then not surprising that a large contingent of the waveform design

literature is based on spectrum centric design. Frequency based waveform design is

useful not only for spectrally limited regions within the bandwidth, but additionally for
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directly controlling the waveform autocorrelation via its power spectral density.

While initial works in waveform design were based around optimization for a specific

task and/or performance metric, more recently the research community have largely

focused on the spectral crowding problem. These solutions address suitable placement

of signal energy across the bandwidth of the radar in the frequency domain. Radar

waveform design where limits are imposed in given bands of the spectrum to avoid in-

terfering with surrounding users, is of particular interest. The spectral waveform design

literature generally has one of the following approaches: 1) adding small modifications

to the standard LFM waveform to place nulls in the spectrum, 2) designing a waveform

with forbidden bands where the spectrum cannot place energy or 3) optimizing a wave-

form with forbidden regions while also attempting to optimize for another performance

metric. The common point across all of the following techniques is that they perform

”spectral thinning” - placing gaps in the spectrum.

Designing the waveform solution purely in the frequency domain has the inevitable issue

of implementation to a physically realizable time-domain signal. Designed waveforms

with spectral densities which specify regions to avoid, require synthesis to discrete time

constant modulus signals. Using the PSD of the signal which is band-limited and using

the inverse Fourier transform will provide a time-domain sequence, but the constant

modulus criteria may not be fulfilled. A section of research work aims to address this

problem by starting the design with consideration of the end waveform type that the

radar will use. Stepped frequency (SF) phase coding is a method of waveform formation

which, similar to LFM waveforms, increases in frequency over time. Different from LFM,

SF waveforms transmit a train of pulses, each with a different frequency, that increases

by a step at each pulse. The drawback of SF radar is that each pulse then has associated

frequency sidelobes which are vulnerable to interference. In [59] a method is presented

for SF radar which places nulls at the spectral location of external RF interference by

using small phase alterations which results in a small mismatch loss on receive.

As pulse compressed waveforms are common in radar systems’ hardware, it is beneficial

to consider options for this general pulse format. It is shown in [2] that applying

small phase offsets in the standard LFM pulse can produce deep spectral nulls. An

example of two spectral nulls created using this method is shown in 2.6: one notch

exists in the strongest region of the signal spectrum, other at the edge where the signal
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Figure 2.6: Two deep notches produced, by the technique in [2], one of which lies in
the outer-extreme of the radar bandwidth.

strength is tapering off. By only allowing very small offsets in phase, this preserves the

good autocorrelation and Doppler properties associated with the LFM waveform. This

method works best on the outer extremes of the bandwidth spectrum but suffers from

distortion when the offsets are applied in the main LFM band. Furthermore, the nulls

that are created for the main band can be less deep than those on the outer-extreme

of the bandwidth. This method shows promise for applications where neighbouring

RF users have spilled interference into the region of use, of the radar of interest, but

is likely not applicable for in-band interference without additional processing. Each

offset corresponds to a narrowband null, and wider band nulls can be created by a

combination of offsets. To create a large band gap in the middle of the band would result

in a large computational expense. A similar approach to [2] also designs a waveform

with small phase changes, but instead implements an iterative approach to deepen

the spectral nulls [60]. In [61], this method is expanded to allow multiple-frequency

notches.Per iteration, the complexity only scales in size linearly which results in a very

low complexity algorithm. The algorithm is very similar in nature to another kind

which uses alternate projections to allow constant-modulus waveforms with arbitrarily

chosen spectral shapes - however this method does not offer as much control on the

depth or placement of notches [46]. A large number of waveform design problems are

analytically intractable and then rely on iterative numerical optimization methods to

solve them. Computational cost at each iteration then becomes of critical importance.

It often becomes the case that performance is then traded off for lower computational

cost.
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While many waveform designers aim to place nulls as deep as possible into the spectrum,

one alternative approach is analyzing how shallow the notched spectrum can be to

reasonably co-exist with surrounding interferers [10, 17]. This is a similar problem to

the previous approach of spectrum thinning, but differs in that as frequency components

within the bandwidth of the signal are not omitted.

The selection of algorithms presented require a set of notches rather than a chosen

waveform spectra. [62] presents an iterative approach to sequentially alter the phase

of the waveform until a desired spectral shape is achieved. This allows input of an

arbitrary spectral shape and allows wideband notches.

Another iterative method based on phase-only modulation maintaining constant am-

plitude is presented in [63]. This approach allows the design of notches via user-chosen

stopbands, but unlike [61], also minimizes the autocorrelation sidelobes. Using the fast

Fourier transform (FFT) the complexity per iteration is kept relatively low. Two algo-

rithms are presented in this work [63]. The second improving on the first by applying

weights at the cost of more computational expense, but yielding lower autocorrelation

sidelobes than the unweighted version.

Issues with iterative methods not only concern the computational complexity of the

algorithm, but also its convergence behaviour. While iterative algorithms appear to

work in a specific scenario, there can often be little hard evidence to suggest why this

is, or whether it will converge. A study that revisits the well established problem of

”phase retrieval” [43], analyses the performance of iterative algorithms for waveform

optimization problems and also satisfies time domain synthesis of a given PSD under

finite energy and bandwidth constraints. [64]. Phase retrieval has been applied across

many fields including astronomy, crystallography and other signal processing applica-

tions. Given Fourier data and constraints, it seeks to find the Fourier phase function to

satisfy the constraints. Patton describes how the solution to these types of problems is

suitable in the radar waveform problem. Using the best fitting algorithm for the type

of problem, known as Gerchberg-Saxton (GSA), Patton explains the success of previ-

ous radar waveform optimization problems such as [64]. He also demonstrates that the

GSA algorithm has lower computational complexity and addresses the problem where

the time-domian sample number has to be equal to the frequency-domain number.
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Generally when the only constraints placed on the transmit waveform are finite energy

and bandwidth, the power spectral density is the only metric through which perfor-

mance is affected, as this is also directly related to the autocorrelation. Optimizing

waveform design solely for good autocorrelation properties has already been discussed

and is a difficult problem. The complexity of the problem only increases when adding

spectral gaps. Expanding on prior work on cyclic algorithms, stopband constraints are

added in [63]. Phase-based waveform design methods are currently at the stage where

they are simultaneously addressing stop-band constraints and autocorrelation proper-

ties all while attempting to be relatively feasible for implementation. The main struggle

is reducing computational burden.An iterative pattern search study has recently shown

promising results for high convergence speeds [65], compared with the cyclic algorithm

approach.

With each constraint impacting the other, the problem still remains a difficult one to

solve completely. The aim is to find a waveform which exhibits constant modulus am-

plitude, increasing phase while fitting a desired PSD with deep spectral notches. For a

chosen PSD there may not exist a solution where the sets intersect. A thread of research

analyses the feasibility of waveform optimization under multiple constraints. In these

works, the problem is defined as non-convex quadratic optimization in [25–27,56]. These

could be considered the current “state of the art” in radar waveform design. Analysis

of the possible intersections under various waveform degrees of freedom is carried out.

There are numerous studies under this framework; one which allows amplitude modu-

lation [25], one study optimizes for SINR while avoiding specific frequency bands and

constrains the total energy plus an additional performance related constraint. Finally,

it is demonstrated that the performance parameters are generally competing against

the each other.

A similarity constraint is added to allow some control performance related character-

istics such as range-Doppler resolution, signal modulus and peak sidelobe level. This

particular approach is set up and is re-expressed as a convex optimization problem

which then allows use of semi-definite programming. This results in a relatively compu-

tationally inexpensive algorithm which scales in polynomial time. Results showed that

a closer match to the desired PSD was obtained by trading off the similarity constraint

metric relating to sidelobe levels and range-Doppler resolution via the autocorrelation
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function.

Summary

The main challenge for waveform design in radar is the need to synthesize a physically

feasible waveform that is able to occupy the spectrum where appropriate, while also

optimizing its performance for the desired task. This is not a simple feat, and in

general the solutions either address one problem or the other. The set of solutions

which address both are computationally complex and designed for a static problem

that can be treated offline. Current state of the art solutions treat detection problems

with assumed knowledge of the surrounding spectral environment. There is a notable

absence of work for waveform design in SAR. This could be due to: 1) the inflexibility of

the current SAR processing to novel waveforms and 2) the detection problem is not the

same as the imaging problem, so spectral thinning worsens the performance as opposed

to improving it 3) historically SAR has treated interference mitigation issues on receive

which will be discussed in the following section.

2.4 RFI Suppression for SAR

Detrimental effects of interference in SAR are significant and can include: 1) decreased

signal to interference and noise (SINR) of echoes which reduces the dynamic range

of the image, causing reduced capability to image weaker reflectors (such as terrain),

2) Increased range sidelobes -also reduces dynamic range and can mask neighbouring

reflector response if it is weaker, 3) increased artifacts i.e. creation of false targets or

bright lines and blurring of the image, 4) decreased functionality of further SAR uses,

such as target detection and identification 5) phase distortion affecting post-processing

applications such as interferometry. Examples of RFI impact on SAR images from the

open literature are shown in Figure 2.7. Figure 2.7a taken from [4] is heavily distorted

with narrowband RFI masking the image features with the introduction of bright lines

compared with the non-corrupted image and 2.7c shows the effects of image blurring

and reduced image sensitivity.
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(a) (b)

(c) (d)

Figure 2.7: Example SAR images corrupted (left) and without RFI (right)

The SAR imaging mode has to some extent an inbuilt noise suppression ability via

its image formation process. This process combines many observations of the scene

from different platform locations which results in an improved overall SNR. While this

provides some level of interference suppression, if the RFI power is on a similar same

scale as the target response returns, significant degradation of the image can occur.

Another convenient tool which SAR processing has relied on is stretch processing on

receive [8] which allows additional noise suppression through bandwidth reduction on

receive [7]. However, this approach is heavily reliant on the LFM waveform. With the

advent of waveform design, it is desirable to move away from these strict requirements

on waveform estimation.

RFI mitigation can be regarded as a two stage process, initially by identifying the
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frequency content of the RFI then subsequently removing and correcting for the RFI.

Earlier methods for RFI suppression were based on its removal from the received signal

via filtering. Newer methods attempt to model RFI and remove it while attempting

to minimize the overall detriment to imaging metrics. Methods for RFI suppression

can generally be categorized according to the method of processing the signal as either

parametric or non-parametric. Parametric methods model RFI as a linear combination

of individual frequency components then attempt to reconstruct the RFI by estimating

the content of each component. The RFI is then subtracted from the raw received data.

Non-parametric methods exploit the statistical differences between the scene impulse

response response and the RFI then apply filtering in the frequency or time domain.

2.4.1 Filtering

RFI suppression via a linear notched filter is generally implemented in the frequency

domain by thresholding and removing the samples with more energy than the rest of the

received data. This works well for very narrow-band interferers and a small number of

emitters. However there are consequences from notching out parts of the received signal

when the number of frequencies removed increases. Negative effects caused by notching

include adding to the time-domain sidelobes, reducing the overall image intensity and

reduction of range resolution. The filter transients also cause reduced data record length

which increases the required data rate for a fixed scene length. In SAR images, the

notched data can cause reduction in image intensity, reduction of range resolution and

raising the time-sidelobes. A method based on least mean squares (LMS) presented in

[12] uses a single filter to perform both the interference suppression and the equalization

used to remedy the distortions caused by the notching function. A similar approach was

presented by [66]. Both of these methods make the assumption that the transmitted

waveform and interference signal are known.

An alternative method to the fixed linear notch technique is use of adaptive filters to

iteratively separate the desired radar signal from the unwanted RFI. Adaptive filters

are desirable over fixed filters in that they can alter their own tap weights automatically

using the input data. These methods have been applied to interference suppression prob-

lems without requiring specific parameters on the signal of interest. These algorithms

rely on the assumption that the interference can be constructed from a summation of

28



Literature Review

sinusoids. This is a very common assumption for interference suppression algorithms

and is the basis for the collection of parametric-type algorithms. [3, 7, 67–70]

Figure 2.8: Least Mean Square (LMS) filter where the input is the radar signal com-

bined with interference, the filter output is the estimated RFI signal and

the error output is the desired radar signal

There are various methods to implement these adaptive filters for the RFI suppression

problem. The most popular of which is the LMS adaptive filter which has been widely

covered in the literature - both within and outside the radar context [11, 66, 71–74].

The LMS adaptive filter requires a primary input and obtains its reference signal by

delaying the primary signal.

The adaptive LMS method requires a primary input signal, in the RFI context, this is

the combined returned radar signal and the RFI signal. A time delay is then applied

to the input signal to provide a reference input to the adaptive filter. The adaptive

filter operates by iteratively altering the filter weights vector Wi to minimize the mean-

square-error between the filter output and the primary input signal as shown in (2.9).

A system diagram of this method is shown in Figure 2.8. The output of the adaptive

filter is the estimate of the RFI. The estimate is constructed from the inner product of

the adaptive filter weights Wi and the reference signal vector Xi

y(i) = Wi.X
T
i (2.8)

Finally, the error signal between the primary input and the output of the adaptive filter

is the cleaned radar signal.

e(i) = d(i)− y(i) (2.9)
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Another LMS based approach is demonstrated by Abend and McCorkle [71] where an

over-determined system produces a FIR filter with tap number that is independent of

the number of interfering signals. This is also combined with an iterative technique

to reduce the range sidelobes caused by the filter’s impulse response. However, the

filtering causes edge effects which results in reduced data record length. These adaptive

LMS algorithms have the capability to remove a large number of interferers simultane-

ously as there is no dependence on number of sinusoidal frequencies. The major issue

encountered by filtering methods for RFI are the resultant sidelobes. As such filtering

methods should be paired with a suitable method to deal with the raised sidelobe lev-

els. Included in the autoregressive approach to modeling and removing interference is

a sidelobe reduction method [71]. This partially alleviates the impact of the sidelobes

but with additional computational cost.

One study on the LMS adaptive filter concluded that it can significantly suppress RF

interference, but further techniques are required to mitigate the increased sidelobes [11].

Representative examples are shown in Figure 2.9. The results demonstrate that there

is significant improvment on the compressed and uncompressed contaminated signal,

but comparing the compressed ideal and cleaned signal (d and f), there is a notable

increase in sidelobes. Furthering this technique an integrated LMS and range-Doppler

algorithm with in-built sidelobe reduction was proposed to complement the adaptive

LMS technique [73] at a lower computational cost than previously attempted in [71].

Stages of the resultant outputs from this algorithm in [73] are shown in 2.10, from

the original RFI contaminated signal, to the interference cleaned signal and finally the

sidelobe suppressed output.

These methods all operate by using the time variations in the input signal. A different

approach is to apply the adaptive LMS algorithm in the frequency domain, as demon-

strated in [75]. To compensate for numerical instability which can be problematic in

adaptive algorithms, an amplitude normalization step is also included.

2.4.2 Parametric Methods

Interference suppression is carried out in the following methods by modeling RFI as

a superposition of pure tone signals and then attempting to estimate the individual

RFI parameters for frequency, phase and amplitude. These components are then sub-
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Figure 2.9: Time domain compressed and uncompressed signals, without RFI, with
RFI and cleaned using an adaptive LMS filter. Top: Uncompressed signals
shown without RFI, with RFI and post LMS clean-up. Bottom: Range-
compressed signals.

tracted from the corrupted wideband radar signal. These methods generally exhibit

lower signal distortion than some filtering techniques and can provide good interference

suppression. Methods for estimating the RFI generally depend on “sniff” pulses where

the radar listens beforehand to obtain data on the interference. Directly estimating

and subtracting the RFI is an approach used in a series of works in what is known

as “estimate and subtract” methods [7, 69]. Along with the assumption that RFI is a

sum of sinusoidal frequencies, the observed wideband radar signal return plus thermal

noise is assumed to be Gaussian white-noise - thereby relying on the approximately

flat spectral nature of the LFM. The least-squares estimate of the RFI parameters in-

cluding frequencies, amplitudes and phase can be expressed as the maximum likelihood

estimate [69]. Directly calculating the maximum likelihood (ML) has two main draw-

backs:target signals causing errors or bias in RFI estimation and high computational

cost. For RFI with multiple individual sinusoids the problem becomes non-linear and

analytically intractable, and then relies on an iteratively improving an initial guess at

the interference parameters of amplitude, frequency and phase.

Methods exist which instead calculate the approximate ML estimates and use iterative

optimization to estimate and subtract RFI. In [7] an alternative parametric ML (PML)

algorithm is applied for RFI estimation, which has lower computational cost than direct

ML, if the number of RFI tones is small. The more sinusoidal tones estimated, the more
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Figure 2.10: Stages of interference processing using LMS filter with sidelobe supres-
sion: a) RFI contaminated signal, b) LMS filter output c) Sidelobe su-
pression.
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iterations PML requires.

Another least-squares approach integrated with the LFM signal is [70]. To reduce the

effects of estimation bias due to targets, prior knowledge is used in combination with the

estimate and subtract approach [3]. Estimates of the wideband targets are subtracted

from the received signal before interference estimation and then subtraction is allowed.

The estimates of the targets are obtained based on the assumption that target responses

will not change substantially from pulse to pulse. The received real part of the signal

can be modelled as

x(tn) = s(tn) + η(tn) +
L∑
i=1

Ai sin(ωitn + φi) n = 0, · · · , N − 1 (2.10)

where N is the number of time-domain samples, s is the target return, η is the random

background noise signal and finally the interference signal is represented by L sinusoids

with amplitudes Ai, phases φi and normalized frequencies ωi = 2πfiT where T is

the sampling period and fi is the continuous-time frequency. In addition to using

prior knowledge of targets, the algorithm assumptions also include that the interference

bandwidth is small compared to that of the radar (i.e. NBI) and that target signals are

wideband, so therefore narrow peaks in time.

The interference signal is then separated into distinct groups of sinusidal components;

for L1, it is assumed that the frequencies ωi are not modulated from pulse to pulse

and are therefore considered to be both known and fixed across the period of data

collection. The other groups L2 and L3 have no assumption that they are fixed or have

associated prior knowledge so are estimated on a pulse-to-pulse basis. The L2 group

frequencies are assigned to those in the commercial FM band, while L3 is the group of

all remaining unknown frequencies. A system-flow diagram for this procedure are the

subsequent processing is shown in Figure 2.11.

Initially, using the prior target knowledge, estimates of the targets are removed from the

received signal. Then, the interference removal is comprised of two stages, the known-

frequency estimation and subtraction, then the unknown-frequency removal and sub-

traction. The “known frequencies” in group L1 are obtained from an RFI measurement.

From this, sinusoids are generates at these observed frequencies and orthonormal basis

vectors are computed. Interfering signals are extracted using orthogonal projection.
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Figure 2.11: Example systems flow chart for parametric interferefernce estimate and
subtract method demonstrated in [3].

The components with the most energy are used to form an estimate of the interference

signal from group L1. Group L2 uses a frequency-transform based technique, rather

than using orthogonal projection. This method estimates the amplitude, frequency and

phase of the largest FM sinuoids, then in the frequency domain this contribution is

removed from the signal and the next highest energy contributing signal is removed.

This iteration is continued until a pre-determined number of sinusoidal contributors

has been removed by this process. Once interference removal has been completed, the

algorithm then updates the target estimates for the next received pulse.

Compared to filtering methods, this algorithm presents lower sidelobes via both a spec-

trally efficient estimate and subtract algorithm, paired with iterative signal removal

reducing sidelobes even further. The CLEAN algorithm is a similar approach and iter-

atively removes interference from the peak amplitudes of an oversampled FFT. It also

sees the same negative effects of estimation bias and high computational expense [76].

These methods are shown to perform well, if the modeling assumptions are correct.

Overall, parametric based methods rely heavily on the quality of observed data and

that the spectrum consists of a known number of sinusoids in white noise.

2.4.3 Non-Parametric Methods

Non-parametric interference suppression methods are classified as those which use spec-

tral estimation methods to distinguish RFI from return signals and then filter out the

noise. As previously highlighted, one of the key stages in interference mitigation is

the identification of the RFI. RFI detection is particularly important in parametric

models in order to avoid model mismatch. Recent work has proposed that enhanced
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characterization of RFI, in combination with the standard notch filtering approach, al-

lows a significant reduction in interference removal [77]. Meyer [77] provides a method

to analyse the returned signal in the frequency domain and then notches are placed

over the contaminated frequency components. This approach like other non-parametric

methods, does not rely on modeling the RFI, so does not suffer from estimation bias.

However, like the original filtering methods, it does incur higher sidelobes time-domain.

A similar notching based approach is presented in [78].

The statistical differences between the radar echoes and the RFI is a basis for many

of the proceeding non-parametric methods [4, 5, 79–82] Three of the dominant non-

parametric methods in the literature feature the use of what is known as the “Eigen-

subspace method”, ”“Complex Empirical Mode Decomposition” (CEMD) and ”Inde-

pendent Component Analysis” (ICA) which are detailed below.

An example of an eigensubspace technique for interference supression is presented in [4].

A block diagram of the algorithm application is shown in 2.12.Initially, the algorithm

must detect whether or not there is NBI present, this is done by assessing the magnitude

of change in the frequency domain across range samples, a large change denotes the

presence of RFI. The received signal data x of length M × 1 can then be separated

into K subvectors of dimension L with K = M − L + 1, such that the sub-vector is

written xk = [xk, xk + 1, · · · , xk + L− 1]T . Each of these subvectors are then stored in

a data matrix X = [x1, x2, · · · , xk] of dimension L×K such that all K subvectors are

stored. This now allows construction of the covariance matrix which then allows the

eigenvalue decomposition. The eigenvalues are used to construct their corresponding

eigenvectors. The largest eigenvalues are used to construct the interference subspace.

These components in the interference subspace are assumed to have much larger value

than those of the scene signal, which then allows the assumption that the complement

subspace is spanned by the scene signal and background noise only. The received signal

xk is projected onto the interference subspace F to give the vector fk, so that finally

the RFI free data can be obtained as follows

x̂k = xk − fk (2.11)

where x̂k is the RFI suppressed radar signal. This is performed for all subvectors, and a

new RFI free data matrix X′ of the same structure as X is constructed, to then provide
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the final full cleaned signal x′ of dimension M ×1 This process is repeated for all pulses

within the data collection N .

Figure 2.12: Example systems flow chart for non-parametric eigensubspace interfer-
efernce estimate and subtract method as demonstrated in [4]

The major drawbacks of the eigensubspace method are that if the RFI power and target

echo power are similar, the subspaces will not be obtainable.

CEMD is the approach used to remove RFI by decomposing NBI-contaminated radar

echoes into a sum of basis functions . A similar approach is also demonstrated in

[79]using intrinsic mode functions (IMF) - in each of these functions there is a single

frequency component and each of these functions are orthogonal to the others. RFI

and target echoes can be separated using blind source separation as they can both be

classified as independent signals. The RFI is initially identified in the frequency domain.

The returns with NBI present are then filtered in the time domain and whitened. At this

stage independent component analysis (ICA) is used which decomposes the echoes into

a series of basis signals. The RFI is then identified by performing thresholding. [81,82]

Another method proposes an interference detection method analyzing the statistics

of the spectral content of the return pulses [5]. Using the kurtosis of the returned
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spectral data, a decision is made to whether RFI exists in the spectrum, as shown in

Figure(2.13). If interference is detected, the ICA and eigensubspace filtering methods

are applied. The eigensubspace method explores the energy difference using second

order statistics.This method is limited in that if the RFI power and target echo power

are similar, the subspaces may not be obtainable. ICA assumes that the target echoes

are Gaussian distributed and calculates the statistical difference between the RFI and

the echoes. This method may then not be applicable if the returns are non-Gaussian.

Figure 2.13: Kurtosis of range-frequency profile with and without NBI [5].

Independent subspace analysis (ISA) is an extension of the theory of ICA, but is based

on reducing the redundancy in time-frequency representation [83]. ISA provides a

method to solve for the separation problem in the time-frequency domain. If NBI is

found to be present using the kurtosis detection method, the single pulse is projected

onto the time-frequency domain using the short-time Fourier transform. The previous

method using ICA alone requires there to be at least as many mixture signals as sources.

When the RFI is observed to be time-variant, this restricts the number of samples that

can be used when estimating its spectrum. This restriction of samples negatively effects

the potential performance of the eigensubspace method. One method successfully esti-
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mates the RFI power spectrum with reduced dependence on a large number of samples

to perform the classification and mitigation of RFI. The RFI is estimated adaptively

and iteratively and the RFI is then filtered using orthogonal subspace projection. [84]

The methods discussed so far are suitable for narrow-band interference which is clas-

sified as interference which occupies less than 1% of the total radar bandwidth. For

wider-band interferences, these methods struggle due to much higher computational

expense and the resultant distortion and possible artifacts introduced, caused by fil-

tering out large portions of the spectrum.To address this, there are some emerging

techniques to deal with interference which is wider than 1% of the band. As the wide-

band interference can be detected in either the time or frequency domain, the short-time

Fourier transform is used to represent the interference in the time-frequency domain,

This then allows the problem to be expressed as a series of instantaneous spectrum

narrow band mitigation problems. Then, similar statistical tests can be performed,

as discussed for the narrow band case. [85] Another recent approach which uses the

short-time Fourier transform to exploit a sparse representation in the time-frequency

domain. A joint-estimation approach is presented which performs WBI suppression and

signal of interest recovery via sparse representations [86].This topic continues to be an

area of ongoing research, both in identifying and separating the interference, and also

in reducing the computational expense of these algorithms.

2.4.4 Missing Data Problem

The interference mitigation approaches discussed, either completely remove the samples

with interference present, thereby also losing the samples with scene information, or aim

to reconstruct or separate the interference from the desired signal. The filtering case

often provides computationally cheap and easily implementable solutions, but the major

drawback lies in the degradation in performance, associated with missing data in the

spectrum. A set of general signal processing methods exist for the reconstruction of

spectral information from gapped data. These methods are generally based on the

principle of iteratively estimating the spectrum and updating the missing samples in

a way that could be described as interpolation. While a selection of these methods

have been directly applied to SAR, there are many other pre-existing algorithms for

spectral estimation . These techniques can also be readily applied to missing spectrum

38



Literature Review

data for SAR. As SAR raw data is often random, non-parametric approaches generally

perform better than parametric methods as no assumptions on the content are imposed

on the problem. However, this performance gap between applying non-parametric and

parametric techniques was not seen to be large in one comparitive study [87].

Of particular interest are the three methods which dominate the literature for missing

data SAR; Papoulis-Gerchberg algorithm, AR-Burg and the gapped amplitude and

phase estimation (GAPES) method. The first estimates the spectrum of the complete

signal by interactively removing the high frequency components present due to the

loss of information in the time-domain. This is an iterative based algorithm which

is guaranteed to converge if a ratio between the available samples and the nulled-

samples is satisfied. Furthermore, it is able to reconstruct the spectrum without any

assumptions placed on the scene content. A significant drawback of this method, is

that the number of iterations required for a suitable performance output is in the order

of several thousand [88].

Autoregressive methods are often applied in order to compute the coefficients of an

adaptive filter which is applied to interpolate the data. The AR-Burg method uses the

Burg interpolation method to construct the AR filter coefficients which then filters the

spectral data to estimate the missing spectrum [89].

The amplitude and phase estimation (APES) algorithm was developed as a spectral

estimation algorithm [58], but later extended to include capability for missing data in-

terpolation GAPES [90]. GAPES makes an assumption that the missing data has the

same spectral content as the existing data set, which is a fairly natural assumption for

the SAR scene model. The GAPES method offers some advantages over the AR-Burg

algorithm as there is a less restrictive model assumed, but at the cost of higher compu-

tational expense. GAPES has been observed to generally outperform AR-Burg, but this

is dependent on the oversampling ratios. For small oversampling rates, GAPES only

performs slightly better than AR-Burg. Alternative non-parametric methods have been

proposed, but with notably higher computational expense. These methods are based on

an iterative adaptive approach or sparse learning via iterative minimization. Overall the

most promising methods for implementation are the AR-Burg and GAPES algorithm,

which have both demonstrated their applicability to the SAR missing data problem.

The main drawback of these methods is the inability to properly reconstruct spectrally-
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flat, non-sparse scenes. This has higher significance for applications such as bi-static

SAR and interferometry. However for many applications, imaging the strongest targets

in the scene is adequate. There is also growing interest in the application of compressive

sensing techniques to attempt to reconstruct sparse scenes in the case of missing data.

The performance is dependant on a number of finely tuned parameters and the type of

CS algorithm applied. The performance can be very good, but computational expense

and restriction to sparse scenes are the main drawbacks [91,91].

2.4.5 Summary

There is evidently a large spread of possible methods for RFI mitigation in SAR, each

with its own strengths and setbacks. Filtering methods, especially adaptive filtering,

can be effective at reducing the presence of RFI but risks causing a rise in sidelobes -

one of the initial effects of RFI, so these methods are only partially effective unless used

alongside a sidelobe reduction algorithm. Filtering methods could be especially effective

combined with spectrum re-filling methods such as GAPES or AR-burg, if the scene is

suitably sparse. Parametric approaches depend on the ability to model the RFI as sinu-

soidal waves, but must do so fairly accurately in order to avoid introducing estimation

bias causing disruption to the full modelling and estimation process. Non-parametric

methods are more robust to error, but often highly computationally expensive or place

requirements that may not always be true, i.e. that the RFI eigenvalue bases are sepa-

rable. Both parametric methods and non-parametric methods are generally restricted

to dealing with very narrowband interference (< 1% of radar bandwidth).

2.5 Chapter Summary

The waveform design and RFI mitigation for SAR approaches are localized to specific

parts of the processing chain. Waveform design places energy around the areas of

the lowest RFI power in the interest of maximising the SINR in a spectral avoidant

approach. This is problematic for SAR, as this region of the frequency response is

then unknown and lowers resolution. The RFI mitigation methods for SAR attempt to

remove this interference on receive. In light of new adaptive techniques for waveform

design and the full processing chain, it would then be pertinent to combine both the
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transmit and receive aspects of the process to fully optimize the cycle for SAR. The

main challenges in these areas still apply. An adept solution should: provide low range-

sidelobes and minimize interference to provide a full dynamic range to the SAR image,

provide high-resolution imaging, be computationally feasible to meet the adaptivity

timing constraints laid out in [41].

The main restriction in dealing with RFI is the narrow-band assumption, as shown,

this is the failing point for both parametric, in terms of computational expense and

non-parametric as the interference cannot be easily separated from the desired radar

signal. With current methods not addressing these problems, a new solution that does

not inherently require on the bandwidth to be signficantly less than the radar band-

width is necessary. In addition it would be desirable for the computational complexity

of the RFI mitigation technique to be indepedent of RFI bandwidth. For a dynamic

radar environment where the interference may change pulse-to-pulse, a computationally

cheap solution is especially crucial. The following work in Chapter 4 & 5 will discuss

a waveform-design driven interference mitigation method that can work for larger than

RFI 1% of the radar bandwidth and is low computational complexity, which scales

independently of RFI frequency components. Chapter 3 continues to describe the sys-

tem model and estimation necessary to facilitate this waveform-RFI mitigation driven

technique.
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Chapter 3

Range Profile Estimation

3.1 Introduction

This chapter presents a frequency-domain based processing method for waveform recep-

tion to complement the subsequent work on waveform design for SAR. In addition, the

relevant background on receive processing, obtaining the range profile, will be discussed

alongside the discrete radar signal model. The concept of the waveform-estimator pair

is an important theme throughout this work; waveform design can only yield perfor-

mance gains when designed with respect to the appropriate estimator. The proposed

range-profile estimator replaces the stretch-processing receive step (deramp-on receive)

in standard SAR receive processing. The motivation for using a new filter lies in the

need to move away from LFM-dependent receive filters to facilitate waveform diver-

sity. This method, named the time-constrained frequency domain estimate (TCFDE),

is based on system identification methods and exploits a factorization to the discrete

Fourier transform in an approach similar to OFDM. This modification in the frequency

domain and projection to the time domain to obtain the constrained SAR range pro-

file is a novel thesis contribution. Comparisons are drawn between OFDM-SAR and

TCFDE with respect to energy usage, sidelobe level, noise-suppression, system timing

and assumptions used in the algorithms. It is shown, that similar to OFDM, TCFDE

produces a high resolution range profile with low sidelobes, maximizing the use of the

available bandwidth due to an effect known as “inter-range cell interference (IRCI)-

free” estimation [31]. The limiting operational factors of TCFDE are analyzed via a

simulation to test its Doppler tolerance and where the range profile cannot be modeled

as finite.
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3.2 Radar Range Profile

3.2.1 Radar Signal Model and Range Profile

Radar range estimation at its most fundamental is the process of one-dimensional echo-

location using the time taken for a transmitted signal to reflect off a scattering point

and return to the radar. The received signal then has embedded relative distance

and reflector strength information. The representation of target amplitudes and their

delay constitutes the range profile. This complex valued reflectivity can be used to

represent the relative strength compared to other targets in the scene and also holds

phase information. The range profile is defined as a time-delimited one dimensional

array of the reflectivity of the corresponding range-cells on the ground of the scene

of interest. The physical extent of the range profile depends on the radar operational

mode.

It is common practice for radar targets to be modeled as point targets of infinitesimal

physical extent which results in the reflected radar waveform being a time delayed signal

with amplitude attenuation. The true nature of superposition of scattered electromag-

netic radar signals is a multi-faceted problem requiring knowledge of many variables and

their underlying interactions including, but not limited to; waveform polarization, prop-

agation medium characteristics such as cloud content, scattering angle of targets and

the dependency on frequency of the target reflectivity [8]. As inclusion of these factors

would distract from the intent of the following work, the standard discrete scattering

model that is used in many radar applications is used here and throughout instead.

For a single scatterer, the returned signal is an amplitude scaled version of the origi-

nal signal, shifted according to its relative time delay. For a continuum of scatterers

the returned signal is a linear superposition of each of the signals and resulting from

their separation in space, the returned waveforms are also separated in phase. The

radar environment and the physical RF waveforms are most accurately represented in

continuous-time through the following received signal model across a physical extent in

range of r, where r is related to propogation time by the speed of the RF waveform c,

r = ct

y(t) =

∫
t
h(t)x

(
t− 2r

c

)
+ n(t)dt (3.1)

such that y(t) is the returned signal, x(t) is the transmitted signal, r denotes the relative
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distance of a target reflector, such that 2rn
c is the round-trip time taken for the signal

to travel to-and-from the target and the scene range profile h(t) is written as

h(t) = Aνn(t) (3.2)

where A can be used in a model to account for signal attenuation or antenna pattern

considerations, but will generally assumed to be A = 1. It is assumed for now that

the physical extent of the range profile is finite, but will be discussed further in this

Chapter.

3.2.2 Discrete Time Signal Model

Continuous models are infeasible for representation in digital systems and for compu-

tational modeling, therefore a discrete-time model is more practical both for modeling

and to represent the digital signal processing in the radar. Discretization is carried out

at the front-end of the radar by the analogue-to-digital converter (ADC), according to

a sampling rate fs, which must satisfy at least the Nyquist rate. The transmitted signal

of length τc is therefore represented digitally in N samples such that

N = τfs (3.3)

The observed received discretized signal from a transmission x(t) is a superposition of

multiple scaled and time delayed signals can be expressed generally as follows

y(t) =
∑
n

hnx

(
t− 2rn

c

)
+ n(t) (3.4)

such that the basic components of the radar measurement process can be represented

as a time-series by; the transmitted signal, x(t), νn is the complex valued reflectivity

value of a single scatterer , the received signal y(t) and noise in the system n(t) resulting

from internal radar hardware noise and any additional interference sources. Note that

this received signal does not represent any of the additional receive processing such as

band-band conversion or “deramping”. In this discrete time representation the range

profile is then discretized according to the waveform resolution, which is determined

by the bandwidth of the transmitted signal. In Chapter 2, the concept of modulating

frequencies to the main RF signal to obtain higher range resolution proportional to the
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bandwidth of the resultant signal was introduced. Range imaging can then be achieved

by using the different frequencies present in the signal to obtain high resolution. The

true range profile is continuous but it is physically impossible to measure this with the

necessarily band-limited radar signal x. This imposes a limit on the possible resolution

of the imaging process

∆rk =
c

2Bc
(3.5)

Therefore, for a physical range extent of r, the number of discrete points in the range

profile is given as

K =
r

∆rk
(3.6)

The interaction of the range profile with the transmitted signal can, equally to (3.4), be

expressed as a linear convolution, due to the “shifting” mechanism in time. Therefore,

the observations at the receiver can be expressed as the linear time-domain convolution

of the transmitted signal and the range profile vector h as

y(k) = [h(k) ∗ x(k)] + n(k) (3.7)

where the transmitted waveform is x =
[
x(0) x(1) · · · x(k) · · · x(N − 1)

]T
, k

is the kth sample of transmitted waveform where k = (0, 1, · · · , N − 1). The range

profile is h =
[
h(0) h(1) ... h(K − 1)

]T
. The noise plus interference vector n is an

(N + K − 1) dimensional vector with covariance matrix Rnn = E[nnH ]. The linear

convolution can also be expressed in matrix form as follows

y = Xh + n (3.8)

where X is a (N +K − 1)×K rectangular and Toeplitz matrix where columns contain

time shifted versions of the transmitted signal x and the received signal is of corre-

sponding length (N + K − 1). The terms after the data vector can be zero as they

correspond to before or after the transmitted signal.
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X =



x(0) 0 ... 0

x(1) x(0) ... 0
...

...
. . .

x(K − 1) x(K − 2) ... x(0)

x(K) x(K − 1) ... x(1)
...

x(N − 1) x(N − 2) . . . x(N −K)

0 x(N − 1) . . . x(N −K + 1)
...

0 0 . . . x(N − 1)



3.2.3 SAR Range Profile

Synthetic aperture radar (SAR) processing is fundamentally different from classic radar

modes such as detection and tracking in that the aim is to gather and process infor-

mation on the ground clutter, which forms the image. The observed returned signal

from the ground is then a superposition of many scattering points rather than a small

number in detection scenarios. Desirable features of a SAR range profile would consist

of many fine resolution cells with low sidelobe levels and a low noise level. The higher

the sidelobes are, the more likely that less reflective surfaces will not be sufficiently

imaged as they become buried in the response from brighter targets. This is difficult

to achieve, as each range cell with a scattering target contributes its own sidelobes due

to the auto-correlation function of the transmitted signal. Sidelobes from each target

cell then spills over into the neighbouring cells in an effect known as inter-range-cell-

interference (IRCI). With an increasing number of range cells the IRCI worsens and

has the effect of reducing the resultant range resolution [31].

In a SAR mode, the radar antenna main-beam is focused onto a patch on the ground

which then forms the corresponding range profile. This is usually of a pre-determined

length according to the scene size of interest, known as the range swath Rw. The

number of range cells denoted as K is then given by (3.6), where r represents the range

swath Rw. A returned range sample consists of a summation of all reflectivity points
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Figure 3.1: Example of spotlight data collection showing the range and azimuth direc-
tions.

for the corresponding time sample - this amounts to summing across other samples in

the azimuth direction, providing a 1D slice across the scene in the range dimension.

The central point of a SAR scene, the scene centre, is commonly used as the reference

point for other signal returns. In Figure 3.1, the slant range distance r0 to the scene

centre is given as t0 = r0
c . The ground patch propagation time is the difference in delay

between the nearest range cell of interest ti and the furthest range cell tf , tk = tf − ti,

which then corresponds to the time taken for the signal to propagate across the scene.

3.2.3.1 Cross-Range

A returned range sample consists of a summation of all reflectivity points for the corre-

sponding time sample - these targets must be separated in the cross-range, also known

as azimuth direction. In addition to using a large bandwidth to obtain high range res-

olution, the defining property of the SAR mode is the use of a sidelooking radar beam

to obtain multiple 1D range-profiles, each differing in content, which are then processed

to obtain a 2D image. Formation of the one-dimensional range profile is carried out

at successive steps in the cross-range, also known as azimuth direction. There are a

number of methods in which the cross-range data can be gathered, the major modes

being stripmap which does not change the beam direction and in effect builds up the
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image by sliding along the cross range and spotlight mode, which focuses on one patch

of ground and changes look angle along the flight-path (aperture) to obtain different

angle views of the same scene. Spot-light SAR is chosen to be the primary mode for

application for its general application to shorter scene sizes which will be discussed

later in this chapter. It is noted that these techniques could also be applied to other

imaging modes. Figure 3.1 depicts spotlight mode operation where the same patch on

the ground is illuminated by the main radar beam at each successive azimuth position

and called from hereon the “scene of interest”. SAR operates on a low pulse-repetition

rate (LPRF) and does not suffer range-ambiguities. As the platform moves to gather

the image, two successive pulses are then represent successive azimuth positions and

are then subject to some amount of change.

3.3 Range Profile Estimation Methods

Estimation of the range profile can be described as a inverse problem; where the range

profile is to be determined from the input and output of the system. It can also

be described as a deconvolution process - the scene has been linearly convolved with

the transmitted signal, and using the received signal, we wish to deconvolve the two

signals.The following section discusses the principle methods used for reconstructing

the SAR range profile.

3.3.1 Matched Filter

The matched filter is ubiquitous across radar signal processing and has particular merit

in detection applications. It is designed such that it optimizes the SNR based on

the response from a single target response. In Gaussian white noise, the detection

probability is maximized and is by its definition the optimal estimator for detection

[92]. As noted in the previous section, it is crucial to note that the SAR mode is not

a detection mode, but instead aims to reconstruct the radar range profile from the

summation of many return signals. Therefore, it is no longer optimally matched to

each individual return. The matched filter performs the time-domain deconvolution of

the return and transmitted signals.

ĥ(t) = y(t) ∗ xH(−t) (3.9)
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where, in effect, the received signal is being matched to the original signal which is

time reversed and conjugated due to its directional difference (retreating from radar

rather than returning). The matched filer is then looking for the points of correlation

where the time delay of the correlations can then be translated to the target range. The

performance of the matched filter is limited by the point-spread function (PSF) - this

value can also be interpreted as the auto-correlation function, which drives the design

of NLFM waveforms as discussed in Chapter 2.

For the proceeding discussion on alternative estimators which are presented in matrix

format, it is useful to also write the matched filter in this way. It can be expressed in

matrix form by a bank of matched filters, each matched to a particular column of the

transmitted signal matrix X, and therefore to each element of the range profile impulse

response.

y = Xh + n (3.10)

XHy =
{
XHX

}
h + XHn (3.11)

If the following is approximately true

XHX ≈ CI (3.12)

where I is the identity matrix of dimension N×N , C is a constant, the range profile can

be evaluated via the following approximation, neglecting the noise term and assuming

the identity matrix

ĥ ≈ XHy (3.13)

which corresponds to the same processing shown in the time domain, as the rows of

XH contain time delayed and conjugated versions of the transmitted signal. As (3.12)

is an approximation, this causes the observed sidelobes - another way of expressing the

resultant sidelobes from the autocorrelation.

3.3.2 Stretch Processing

In SAR applications, it is common to have very long pulse lengths in order to obtain

long distance imaging by creating a high energy, low power signal. Stretch processing

- also known as deramp processing - inherently depends on the waveform being a LFM
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signal. Built into its analysis is the time taken for signals to propagate between the

scene and the radar - if the total patch propagation time is less than the length of the

chirp signal tk < τ (K < N) a lower sampling rate can be used at the ADC due to the

resultant smaller spread of frequencies on receive. The form of the transmitted LFM

signal is given as

xc(t) = [a(t)− a(t− τc)]exp(2πjφL(t)) (3.14)

where a(.) denotes the signal envelope and for notational simplicity, the LFM phase

term is denoted φL(t) = (fct + 1
2αt

2), recalling from Chapter 2, α = Bc
τc

refers to

the change in frequency over time (chirp rate). Then considering that each of these

transmission signals are shifted in time according to the distance of their round-trip

delay tn

y(t) =
∑
n

νnxc(t− tn) (3.15)

such that the received signal is a summation of the shifted and time-delayed transmitted

signal xc. In order to perform the reconstruction, the conjugate of the receive signal is

mixed with a “deramp” LFM signal set up according to the arrival times of the target

echoes. It is assumed here that the receiver has knowledge of the patch propagation

time and that n target signals will arrive between ti and tf . The deramp waveform xd

starts at time ti and ends at tf + τc

xd(t) = [a(ti)− a(t− tf )]exp(2πjφL(t− ti)) (3.16)

The received signal is then mixed with the conjugate of the deramp signal

sderamp = y(t)x∗d(t) (3.17)

giving the resultant deramped signal. Owing to the constant chirp term α, phase terms

combine and cancel [8] (not shown here) to give a frequency term which separates out

each of the target returns as a result of the linear chirp term α

sderamp =
∑
n

νnexp(2πj(α(ti − tn)︸ ︷︷ ︸
fn

(t− tn)))× [a(t− tn)− a(t− (tf + τc))] (3.18)

This signal, known as the deramped signal, is a superposition of many sinusodial waves,

each scaled and increasing in frequency, as denoted by fn, according to the time of the
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carrier tn. The spread of frequencies present is then proportional to the spread of the

range swath. Like any multi-frequency signal, this can be easily interpreted in the fre-

quency domain by application of a Fourier transform. Applying a Fourier transform

to the deramped signal, the absolute modulus of which is a top-hat rectangular func-

tion, results in a sinc function denoted as A(f), which is then shifted by the resultant

corresponding phases

Sderamp(t) =
∑
n

A(f − 4αtn)νnexp[2πj(φL − ftn)] (3.19)

The result is that the target distance can then be calculated from the frequency at the

peak of the corresponding sinc function such that the range profile can be mapped onto

by a given frequency via the following relationship

tn =
fnπ

α
(3.20)

Stretch processing can be considered as a Fourier technique and was historically con-

sidered a computationally cheap method via use of a fast Fourier transform (although

traditional radars performed this in hardware). Its strongest feature however was the

reduced requirements for the ADC if the duration of the chirp is much longer than

the scene propagation time. This is true for spotlight SAR, but generally is not the

case for stripmap mode. The main drawbacks for stretch-processing is its inflexibility

to alternative waveforms. The need to synthesize non-linear and alternative waveform

structures to facilitate both adaptivity to the surrounding environment and additionally

to reap performance benefits may force the use of alternative range profile estimators.

However, it should also be noted that there has been some research effort to support

the use of NLFMs in combination with the stretch processor [93].

3.3.3 Orthogonal Frequency Division Multiplexing

A problem that higher bandwidth SAR systems may face is the problem of IRCI -

sidelobes that are formed from each range cell which propagate along the full range

profile - for more range cells, there are more respective sidelobes. The need to reduce

IRCI is the motivation for design of a SAR-specific receive filter for OFDM proposed

in [31]. In the following section an OFDM-SAR application which recognizes the need to
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modify the receive processing to fully exploit the use of OFDM-waveforms. As discussed

in the previous Chapter, OFDM has significant potential for SAR in that it may be

able to provide ultra-low sidelobe levels and allows design in the frequency domain. As

the sub-carriers do not have to occupy a contiguous block they can easily allow large

gaps in the frequency domain.

3.3.3.1 Discrete Fourier Transform,Cyclic Prefix and OFDM

Sinusoidal signals are eigenfunctions of LTI systems, so if the range profile is considered

to be linear and invariant, then an infinite duration signal is an eigenfunction of this

system. This is one of the reasons for using the waveform cyclic prefix. The definition

of the DFT states that a circular convolution of two signals in time will then be a

multiplication in the frequency domain.

F {y[n] = x[n] ~ h[n]} = X[i]H[i], 0 < i < N − 1 (3.21)

The DFT matrix is defined

F =
1√
N


1 1 1 · · · 1

1 WN W 2
N · · · WN−1

N
...

...
...

. . .
...

1 WN−1
N W

2(N−1)
N · · · W

(N−1)2

N


such that WN = exp[−j2π/N ] and the IDFT F−1 is defined accordingly so that

FHF = IN, where I is the N × N identity matrix. There are often many advan-

tages to operation in the frequency domain, namely efficiency via simple point-to-point

multiplication as opposed to matrix computation of convolutions.However, the interac-

tion of a finite transmitted signal and a transmission medium cannot be described as

a circular convolution, rather it is a linear convolution process. By creating a cyclic

prefix as the input to the impulse response, the process can then be approximately

represented by a circular convolution. This then allows multiplication in the frequency

domain on application of the DFT.

Y [i] = F {y[n] = x[n] ~ h[n]} = X[i]H[i], 0 < i < N − 1 (3.22)
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As introduced in Chapter 2, the addition of the cyclic prefix acts a guard interval

between each of the sub-signals to prevent self-interference between the signals within

the transmission medium, known as intersymbol interference (ISI). The addition of the

cyclic prefix then allows both 1) removal of ISI 2) approximating circular convolution

allowing simple calculations. The first K samples relating to the length of the cyclic

prefix are removed on waveform reception. This sets up the following linear model

y = Rs + n (3.23)

where R is a K×K square and Toeplitz matrix which is a cyclic-matrix representation

of the impulse response (described in full in the next section), s is the OFDM waveform

and the truncated received signal y is of corresponding length (K). The cyclic prefix

allows the frequency response of the scene to be modeled as a circulant convolution

matrix. This matrix, due to its Toeplitz and square dimensions, can be said to be

normal such that RHR = RRH and has an eigen-decomposition R = MΛMH where

Λ is a diagonal matrix of eigenvalues of D and M is a unit matrix where the columns

are eigenvectors of R. Given that the R is a circulant matrix, this allows the following

eigen-decomposition with the DFT matrix F to also be true R = FHΛF.This yields the

following relationship, which then allows application of the DFT according to definition

(21) in the context of circular convolution [94]

R = FHdiag {Fr1}F (3.24)

where r1 is the first column of the matrix R Applying the DFT to (3.23)

Fy = F[Rs + n] (3.25)

Y = FRFHF[s] + N

Y = FFHdiag {Fr1}FFHS + N

Y = diag {Fr1}S + N

Y = DS + N (3.26)

where D is the representation of R in the frequency domain.
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3.3.3.2 OFDM-SAR

This application [31] is of particular interest as it highlights the requirement of using

a suitable receive process to fully exploit performance enhancements from using a par-

ticular waveform. Previous attempts to integrate OFDM with radar use the matched

filter, but these results are subject to IRCI [35]. Like stretch processing, the algorithm

requires the knowledge of the scene size and operates in the limit where the signal vector

length is greater than the respective scene signal vector length such that N > K. This

is the condition under which the IRCI is suppressed. The following presents the range

profile estimation algorithm from [31].

OFDM waveforms exploit use of a cyclic extension, a repetition of the signal added to

the start of the transmission to act as a guard interval and is removed on waveform

reception.In the following analysis, the OFDM transmit signal is written such that the

cyclic prefix is removed and is represented by the “tail” section of the signal such that

s′ =
[
s(K − 1), s(K), · · · , s(N +K − 2)

]T
On receive, the first K − 1 samples relating to the cyclic prefix are removed, and the

signal is modeled as an N × 1 vector such that

y = Rs + n (3.27)

where y =
[
y(N − 1) y(N) ... y(N +K)

]T
, the target strength coefficients d can

be given by the following cyclic, square and Toeplitz matrix of dimension N ×N

R =



d(0) 0 · · · 0 d(K − 1) ... d(1)

d(1) d(0) · · · 0 d(K − 1) ... d(2)
...

. . .
. . .

...
. . . ...

...

d(K − 2) · · · d(0) 0 · · · 0 d(K − 1)

d(K − 1) d(K − 2) · · · d(0) · · · 0 0

0
. . .

. . .
...

. . .
. . .

...

0
. . . d(K − 1) d(K − 2) ... d(0) 0

d(1) · · · 0 d(K − 1) d(K − 2) · · · d(0)


which consists of cyclically shifted copies of the N dimensional weighting target strength
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coefficient vector, which is analogous to the estimated range profile ĥ

d =
[
d(0), d(1), · · · , d(K − 1), 0, · · · , 0

]T
and where the number of zeros at the end of the vector is N−K. For an OFDM system,

the demodulator performs the DFT on the received signal, to give

Y = DS′ + N (3.28)

where S′ is the FFT of the the time domain truncated vector s′. The estimate of D is

then given simply as a division of each of the vectors of the same dimension

D̂ =
Y

S′
(3.29)

So that then the range profile estimate can be obtained by applying the N-point inverse

DFT (IDFT)

d̂ = F−1 {D} (3.30)

3.3.3.3 Insufficient Cyclic Prefix

However, due the matrix sizing of the circulant matrix, it can only be represented by a

maximum of N elements. When the signal size becomes smaller than the swath width

N < K, there is no longer one range cell mapped onto the coefficient vector d which

results in reduced resolution

R =


d̃(0) d̃(N − 1) · · · d̃(1)

d̃(1) d̃(0) · · · d̃(2)
...

...
. . .

...

d̃(N − 1) d̃(N − 2) · · · d̃(0)


each d̃ value given as

d̃(n) =
∑

i:0<iN+n<M−1

diN+n, (n = 0, · · · , N − 1) (3.31)

The weighting vector becomes a summation of reflectivity coefficients from several range

cells, which results in energy from neighboring range cells contributing to each estimated
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Figure 3.2: Basic flow chart of system identification process

d̃(n) value. This results in reduced range resolution. So while this OFDM-SAR method

is capable of reduced sidelobes, this is only possible up to the condition of range-swath

matching where N = K.

3.4 Least Squares System Identification

System identification can be described, in a general sense, to be concerned with tasks

of parameter estimation based on observations originating from a dynamical system.

For system identification problems which can be described as linear in the parameters,

the least squares method is a suitable for their estimation. The radar profile estimation

system can be described as a linear problem, and is as such, suitable for estimation

via least-squares approximation. In 1960, [95] described the optimal estimation of an

impulse response of a linear time-invariant system (LTI) in the presence of white noise

using knowledge of the input and output over a specified interval of time. The radar

estimation problem - in particular the SAR range-profile estimation problem meets this

criteria. Leading from this work, the next section presents the salient aspects of this

work and integrates this to the radar range-profile problem in the time domain, and is

then expanded on to formulate a frequency domain least-squares estimator. While this

result has now been exploited and used across many areas of control theory and system

identification, it has not been applied to the SAR range profile estimation problem.

3.4.1 Time Domain Model

The least squares methodology uses a set of inputs x, observations y and estimates the

model parameters β which approximate the smallest sum of squared residuals between

the observations and the estimated output using model parameters.

The input and output can be continuous but require discretization. The input is as-
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sumed to be known and the resulting output c(n) is then modified by additive noise

z(n) caused by internal measurement errors and/or an additional non-observable system

input

y(n) = c(n) + z(n) =
∞∑
p=0

β(p)x(n− p) + z(n) (3.32)

An example system flow chart is given in 3.2. Since in reality the input and output

are finite values, the impulse response must also be approximated by a finite set of

values. Approximating an infinite impulse response as finite can induce some level of

error which is system dependent, but generally reported to be small [96].In order to

proceed with impulse response estimation, the following model assumptions are made

1. h(p) = 0 for p > P , such that the impulse response is assumed to be zero outside

the measurement interval

2. x(n) is observed for 0 ≤ n ≤ N and is not identically zero in this interval

3. x(n) = 0 for n < 0 and n > N

4. y(n) is observed for 0 ≤ n ≤ N + P

These model assumptions are readily applicable to the SAR case: 1. in stretch process-

ing, it is already assumed that the range impulse response is of finite length and zero

outside the range of interest for 2. and 3. the transmitted waveform x(n) is non-zero

across the relevant intervals and 4. represents the corresponding interval in which the

received signal is observed.

3.4.2 Least Squares Estimate

The least squares method finds coefficients β̂ which minimizes the sum of the squared

error of the linear model

M∑
n=0

{y(n)−
P∑
p

βpxp(n)}2 = [y −XHβ]H [y −XHβ] (3.33)
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These coefficients β̂ can then be estimated by a set of simultaneous equations known

as the normal equations such that

β̂ = (XXT )−1Xy (3.34)

which is found by taking the derivative of the sum of the squares (3.33) and solving for

its stationary point. The least squares estimator is an unbiased estimator when z(n) is

white Gaussian noise (WGN). The covariance matrix of β̂ is such that

cov(β) = E[(β − β̂)(β − β̂
T

)] = (XHZ−1X)−1 (3.35)

If the noise is white then the covariance matrix can be reduced to

Z = σ2
zI (3.36)

where I is the identity matrix and σn are the noise variance values. The covariance of

the estimate is then also reduced to

cov(β) = σ2
z [XX]−1 (3.37)

Which serves as a goodness of fit metric for the model coefficients β.

3.5 System Identification for SAR

3.5.1 Time Domain Problem Formulation

The following treatment continues estimation of the radar range profile as a discrete

and finite impulse response. As presented initially in Section 3.2.2, the observations at

the receiver can be expressed as the convolution of the transmission sequence and the

finite impulse response vector n for a single pulse p as

yp(n) = hp(k) ∗ xp(k) + np(n) =
K+N∑
k=0

hp(k)xp(k − n) + n(n) (3.38)
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where the transmitted waveform is

xp =
[
xp(0), xp(1), · · · , xp(k), ..., xp(N − 1)

]T
k = (0, 1, · · · , N − 1)

where k is the kth sample of the transmitted waveform. The finite impulse response is

hp =
[
hp(0) hp(1) ... hP (K − 1)

]T
The linear convolution can also be expressed in matrix form as follows

y = Xh + n (3.39)

where X is a (N +K − 1)×K rectangular and Toeplitz matrix where columns contain

time shifted versions of the transmitted signal xp and the received signal is of corre-

sponding length (N + K − 1). The terms after the data vector can be zero as they

correspond to before or after the transmitted signal.

X =



x(0) 0 ... 0

x(1) x(0) ... 0
...

...
. . .

x(K − 1) x(K − 2) ... x(0)

x(K) x(K − 1) ... x(1)
...

x(N − 1) x(N − 2) . . . x(N −K)

0 x(N − 1) . . . x(N −K + 1)
...

0 0 . . . x(N − 1)



In order to estimate the impulse response we use the least squares framework described

above such that the impulse response of the scene can be expressed as [97]

ĥ = (XHR−1
nnX)−1XHR−1

nny (3.40)

If the noise and interference source is white (e.g. uncorrelated) , the covariance matrix

60



Range Profile Estimation

is reduced to a diagonal of the variances Rnn = σ2
nI giving the simpler ordinary least

squares (OLS) estimator:

ĥ = (XHX)−1XHy (3.41)

The expression gives an exact estimate of the impulse response, but is computationally

expensive to compute - note that there are several matrix multiplications and an inver-

sion. To proceed with least squares estimation, the properties of square and circulant

matrices, as used in OFDM in equation (3.24) are exploited to express the problem

more efficiently in the frequency domain.

3.5.2 Cyclic Extension

By describing the problem in the frequency domain we can exploit factorization with

the discrete Fourier transform (DFT) to create a computationally efficient least squares

expression. Matrices that are square, circulant and Toeplitz factor conveniently with

the discrete Fourier transform. Rearranging the (N +K − 1)× (K) rectangular matrix

given in (3.39) into this format allows an efficient implementation using a DFT. The

transmitted signal matrix length and the impulse response vectors are manipulated as

follows to allow the problem to be represented as a circular convolution

y = Xc

 h

0N−1

+ n (3.42)

Xc = FHdiag {Fxc1}F (3.43)

where Xc is formed using (3.24) and xc1 is the first column of a circulant signal matrix

such that

xc1 =

x(0), x(1), · · · , x(N − 1), x(N), x(N + 1), · · · , x(N +K − 1)︸ ︷︷ ︸
zero terms

T (3.44)

The ith column of Xc is obtained by applying i − 1 cyclic shifts downwards to xc1,

where i = 2, ...,M and M = N +K − 1. This cyclic extension is performed by adding

K − 1 zero terms. Now the signal matrix is circulant, Toeplitz and square of dimension

M × M . Correspondingly, the impulse response vector is extended by N − 1 zero

samples, the extension shown as a N − 1-dimensional vector 0N−1, so its vector is now
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Figure 3.3: Form of the cyclically extended matrix Xc relative to the original rectan-
gular matrix X where K − 1 is length of impulse response and N − 1 is
signal length

also of dimension M . The last K − 1 columns of Xc beyond N − 1 can contain any

value as the corresponding elements in the impulse response vector are zeros. Then

these additional samples do not have to be transmitted and this extension is merely an

artifact used in this stage of the processing.

3.5.3 Frequency Domain Solution

Applying Fourier transforms to both sides of time-domain circulant matrix equation

(3.42) and using the identity property, where F is the M -point DFT, gives

Fy = FXcF
HF

 h

0N−1

+ Fn (3.45)

Now the expression for circulant-Toeplitz matrices given in (3.43) can replace Xc and

again using the identity property gives

Y = ΩH + N (3.46)

where Ω = FXcF
H = diag {Fx1}, Y = Fy,H = F

 h

0N−1

 and N = Fn. Given an

expression of the system model in the frequency domain, a corresponding generalized
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least squares estimate forH

Ĥ = (ΩHΩ)−1ΩHY (3.47)

Equation (3.47) is an approximation since it does not embody the constraint on the

estimate inherent in (3.42), specifically

0N−1 = [ 0N−1,K IN−1 ]F−1Ĥ (3.48)

where 0N−1 is an column vector of N − 1 zeros, 0N−1,K is an (N − 1)× (K) matrix of

zeros and IN−1 is an (N−1)×(N−1) identity matrix. Now that each of the signals are

M dimensional in the frequency domain, they can be treated by element-wise division,

such that the matrix operations can be simplified as

Ĥi =
Yi
Ωi

i = (1, ...,M) (3.49)

This frequency domain least squares problem has the same number of knowns and

unknowns, which was not the case in the time-domain problem of (3.41) which had

fewer unknowns. An approximation to the least-squares estimate of (3.40) is obtained

by projecting the estimate provided by (3.49) onto the feasible set of solutions defined

by the constraint of (3.48).

ĥc = [ IK 0TN−1,K
]F−1Ĥ (3.50)

where IK is an K ×K identity matrix. This operation removes the additional N − 1

samples that were added to the original time domain problem to allow the problem

to be expressed in the frequency domain via representation via circular convolution.

The removal of the extra N − 1 terms in the time domain also acts as noise-removal.

This works best when N > K, as noise removal performance is proportional to the

number of samples N removed. Here we are also exploiting the assumption that the

impulse response is finite and of known length which was invoked in the formation of

the time-domain model. This process of obtaining the solution will be referred to as

the time-constrained frequency domain estimation (TCFDE) throughout the rest of this

work.
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3.5.4 Comparison of TCFDE and OFDM

3.5.4.1 Processing Considerations

As the range profile estimation algorithms for both TCFDE and OFDM-SAR have

inherent similarities it is pertinent to compare and contrast the two in their application

to SAR. Firstly, it is noted that the OFDM-SAR algorithm described above makes

use of a physical cyclic prefix in the waveform to discard these samples on receive

to allow its impulse response matrix R to be represented as a circulant matrix, which

ultimately allows the receive and transmitted samples to be of the same length, allowing

element-wise division in (3.29). This approach is restrictive for larger scene sizes, as

it cannot process swath lengths longer than the signal N < K as shown in (3.31) the

range-cell elements then overlap resulting in reduced resolution. The frequency domain

division resulting from the use of cyclic extension is also applied in the proposed TCFDE

method, but crucially, the transmitted signal is not physically altered. Algorithmically,

the transmitted signal is extended and the impulse response is also artificially extended

in (3.42) to allow the vector to take on the same dimension. This is not assuming that

the impulse response is longer than initially assumed, only a processing artifact. These

modifications allow benefits that are not seen in the OFDM algorithm such that; 1)

the impulse response length may be longer than the signal length (N < K) without

reduction is observed range resolution; 2) there is then a noise-suppression stage in-built

to the final step where the impulse response is constrained in the time domain.

3.5.4.2 Energy, Waveform and Timing Considerations

For both methods the receiver expects signal returns to arrive from ti onwards , as

depicted in Figure 3.4. The figure highlights that although the received signal is both

cases is K+N−1 samples long, and arrive at the same time at the respective receivers,

the first K received samples in the OFDM case are removed. For the comparisons

here, and as is typical in SAR, it is assumed that the furthest scatterer reflection will

have returned before the next pulse is transmitted. Assuming a relatively low pulse

repetition rate (PRI), this is a valid assumption to avoid the effects of range-folding.

Both systems are ready to transmit the next pulse N + K − 1 time samples after

the first return begins - after one full returned pulse duration. If the period between

transmit and receive is small, this can result the signals overlapping and interfering
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Figure 3.4: Timing overview for one pulse repetition interval from transmission to
receipt for the OFDM (left) and TCFDE (right) estimation schemes.

(range folding). If this overlap is less than K time samples, the OFDM signal is not

affected, as the first K samples will be discarded on receive. Therefore, in this way,

the OFDM signal is protected from range-foldover whereas OFDM-SAR uses the full

received signal.

Though both algorithms exploit the cyclic extension factorization with the FFT; the

OFDM signal does so in the traditional approach by physically transmitting a cyclic

prefix at the start of the signal but the TCFDE algorithm adds extra zeros in processing

to give efficient factorization. This post-receive processing will not prevent performance

degradation for TCFDE if pulse-overlap occurs.

The key difference is energy usage. The OFDM-SAR algorithm requires transmission

of unused signal energy as K of the transmitted N + K − 1 samples are discarded

at receive. For the same scene size, the OFDM algorithm requires K samples more

transmit time. Figure 3.5 shows that for a waveform where N < K and K samples are

removed, the majority of the waveform energy is discarded. The TCFDE algorithm is

waveform independent in the sense that it does not require particular transmit waveform

properties such as a cyclic prefix or particular phase or frequency relationship - so it

can easily use waveforms that have been designed with constant modulus waveforms

that make efficient use of the transmitted by running it in saturation. While OFDM

waveforms can also use constant amplitude modulus waveforms, it may be at the cost of

losing the initially designed spectral shape which can have strong impact on performance
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Figure 3.5: Diagram exemplifying energy loss on receive for OFDM-SAR waveforms,
for a large number of range cells, a large proportion of the signal energy
is lost. K is number of samples in range profile and N is number of
transmitted signal samples.

for OFDM-SAR [31].

3.6 Simulated Results

In order to exemplify the effects from using different range-profile reconstruction meth-

ods, the following section presents a simulation analysis to compare various waveform-

estimator pairs. The following simulations demonstrate results for the matched filter,

the OFDM-SAR estimator and the proposed TCFDE method. Simulations performed

are on reconstruction of a range profile with a single range scatterer, SAR simulation

with a number of point targets, tests on the applicability of TCFDE in terms of Doppler

tolerance and situations where the impulse response is longer than expected.

3.6.1 Range Profile Example

Each of the range-profile estimators will be assessed according to the resultant base

noise-floor level and apparent resolution according to the width of the peak. The base

noise level is determined either by the algorithms ability to suppress noise, or in the

extent of range sidelobes in high sidelobe cases. This noise-base measurement level is

important in SAR imaging as it corresponds to the ability to image low reflectivity

scatterers. The resolution, determined by the width of the peak then also determines

how finely point scatterers can be resolved. To clearly demonstrate the range-sidelobes

from an individual range cell only one range scatterer is used in this demonstration.

LFM, NLFM and OFDM waveforms are used in the following assessment of the range-

profile estimators. In the interest of a fair comparison, all waveforms have the same

energy-budget, such that the longer OFDM-block plus cyclic extension waveform is
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scaled to have the same transmitted power as the LFM and NLFM waveforms. Each

of the signals are limited to an energy budget such that total waveform energy ET =

xHx = 1. Four simulated examples are shown to demonstrate two distinct cases at low

and high noise level where:

1. N < K : the scene length creates an impulse response that is longer than the

corresponding discrete representation of the signal

2. N > K: the scene length impulse response is shorter than the discrete represen-

tation of the signal.

The two levels of noise covariance are σ2
n = 1e−5 and σ2

n = 0.01. The respective experi-

ments use a pulse length of N = 512 and K range gates, such that in the first experiment

K = 128 and in the second K = 2560 to test TCFDE capability for K >> N . Changing

the pulse length has implications for the energy content so this demonstration will only

change the overall range-profile length. The parameter size for N was chosen based

on the corresponding radar bandwidth, pulse length size and sampling rate also used

in [31]. Values for K were chosen to represent extremes with respect to N to demon-

strate results for when the range profile is smaller or much larger (worst case generally)

than the pulse length.

The NLFM waveform is designed over the same frequency-time sweep as shown in

Figure 3.6 and has its spectrum designed using SPA with the Hann window as input

- as discussed in Chapter 2, a non-rectangular spectral shape reduces the height of

the sidelobes due to the relationship with the autocorrelation function. An OFDM

waveform is generated as per the algorithmic description in [31] such that the frequency

profile is completely flat but with large variations in the time domain. The LFM,

NLFM and OFDM waveforms used are shown in Figure 3.6. An additional waveform is

generated for OFDM using weights in the frequency domain according to the NLFM to

compare OFDM-SAR results using a non-spectrally flat waveform. The instantaneous

frequency in Figure 3.6 is not shown here for OFDM-SAR. The OFDM waveforms are

spectrally precise owing to their design from the weights in the frequency domain and

direct synthesis to the time domain, as shown for the spectrally flat OFDM waveform

in Figure 3.6 b. This design approach gives rise to its large variance of values, shown

in the real component of the time domain in Figure 3.6 c, not constrained by constant
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Figure 3.6: LFM, NLFM and OFDM waveform comparison

increase in the change of frequency or by constant modulus amplitude.

The waveform-pair estimators under test are: LFM-MF, NLFM-MF, LFM-TCFDE,

NLFM - TCFDE, OFDM - OFDM-SAR and NLFM/OFDM - OFDM-SAR. Results

are shown for the same bandwidth Bc and pulse length τc, but the overall scene length,

or range profile swath, Rw is changed. Each of the values obtained in Table 3.1 has

been evaluted using a set of 1000 runs to obtain the mean value.
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Estimator-Waveform Scenario A Scenario B Scenario C Scenario D
Set-up: N > K, σ2

n = 1e−5 N > K, σ2
n = 0.01 N < K,σ2

n = 1e−5 N < K,σ2
n = 0.01

MF-LFM 2.19 2.2 2.25 2.25
MF-NLFM 0.36 0.36 0.71 0.72
OFDM SAR -OFDM 2.7e−8 0.02 9e−6 8.6
OFDM SAR-NLFM 2.8e−8 0.02 1.1e−5 16.1
TCFDE-LFM 2.0e−8 0.017 2.7e−8 0.2
TCFDE-NLFM 3.1e−7 0.39 2.7e−8 0.68

Table 3.1: Resultant MSE values for various estimator-waveform pairs

3.6.1.1 Performance Assessment

The majority of radar metrics are centralized around the matched filter scheme, high-

lighted in a study for OFDM radar [98]. For example, the standard radar ambiguity

function and “mismatch loss” are inherently based on the nature of matching two sig-

nals. As this is highly embedded into radar literature, new metrics are required when

using non-traditional receive filters. While MF based algorithms are assessed based on

the sidelobe levels for autocorrelation, the TCFDE and OFDM-SAR algorithms do not

perform an auto-correlation like operation and as such do not have an analogous metric

to the auto-correlation sidelobes. As a linear-least squares algorithm and standard for

system identification algorithms [97] the natural approach to error assessment is the

overall mean square error in the estimate. Continuing, comparisons are drawn using

this metric. To find a single metric which accounts for the structure of the response

which includes resolution and sidelobe level itself is a non-trivial task. Therefore this

metric [97] does not give specific information about structure or sidelobe level, but an

overall representation on how similar the range-profile estimate ĥ is to its true discrete

representation h,

ρ = tr(cov(h− ĥ)) = E[(h− ĥ)(h− ĥ)H ] (3.51)

3.6.1.2 Results

Table 3.1 shows the resultant MSE values for the listed estimator-waveform pairs.

In Table 3.1 is observed that the values for the MSE for the matched filter (MF),

both LFM and NLFM, are in general much higher. Although the matched filter is the

optimal detector in noise, it is subject to IRCI, whereas the other estimators are not.
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The MF results have consistently larger MSE values owing to both the lower resultant

resolution and the larger sidelobes as a direct result of IRCI. Also note that the MF-

NLFM offers significantly decreased MSE values due to the decreased sidelobes. For

the cases where the range profile is increased to K = 2560, the MSE is increased for

both MF-LFM and MF-NLFM. Again, this effect can be attributed to IRCI. With

more range samples, there is more IRCI, worsening the MSE value. The MF estimation

method, by design, is robust to increased levels of white noise. Conversely, the OFDM

waveform-estimator is the most sensitive and its performance significantly degrades with

increased noise, especially when combined with decreased resolution in the insufficient

cyclic prefix case, as demonstrated in Scenario D. The TCFDE case provides some noise-

reduction, comparing the flat spectral OFDM waveform and TCFDE-LFM in Scenario

B, the TCFDE has lower MSE values in both high noise cases (Scenario B & D).The

NLFM waveform as input to the TCFDE is subject to increased distortion compared to

the LFM which becomes more evident with added noise. This effect is more prominent

in Scenario D where N < K as the extent of noise removal is proportional to N . The

largest values arise from using an NLFM-OFDM waveform paired with the OFDM-SAR

estimator in noise with a longer scene length.

A selection of these estimator-waveform pairs are plotted in Figure 3.7. Firstly, Figure

3.7a shows the low noise case and short scene scenario. As expected, the MF-LFM plot

yields the highest sidelobes and the poorest range resolution due to limitation from

the autocorrelation function. The MF-NLFM estimation yields much lower sidelobe

levels and also finer resolution, owing to the relationship between spectral shape and

autocorrelation. While the MF-NLFM pair gives lower sidelobe levels, note that the

TCFDE-NLFM pair performs worse than the TCFDE-LFM. This point stresses the

importance of the role of the estimator in the waveform-estimator pair.The base level

of the waveforms processed by the TCFDE and OFDM-SAR algorithm the similar for

the case of very low noise, with very narrow peaks and sidelobes. Comparing Scenario

A to C - both of which are in the low noise case - C represents a longer impulse response;

most of the sidelobe and base-noise levels are the same across the waveform-estimator

pairs, excluding the OFDM result, which now has a much higher noise level and a

wider peak. This is as a result of the algorithm reverting to the insufficient cyclic prefix

case. Adding noise into the system and comparing A to B and C to D, the estimation

methods and their robustness to noise becomes apparent.
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Figure 3.7: Top left to bottom right: Scenario A: N > K,σ2
n = 1e−5, Scenario B:

N > K,σ2
n = 0.01, Scenario C:N < K,σ2

n = 1e−5 Scenario D:N <
K,σ2

n = 0.01. The results have been normalized such that the maximum
peak value was set to 0dB in the case of each estimator.

71



Range Profile Estimation

Summary

• Matched Filter: high sidelobes, lower resultant resolution, robust to white noise,

invariant to scene length changes, optimized performance for shaped, non-flat

waveforms

• OFDM-SAR: low sidelobes, high resolution, poor robustness to noise, heavily

dependent on scene size N > K, preference to spectrally flat waveforms

• TCFDE: low sidelobes, high resolution, some noise-suppression ability, some de-

pendence on scene size, but operational for N > K with suitable waveform

Both the OFDM-SAR and TCFDE algorithms using a spectrally weighted waveform

perform worse compared to their spectrally flat counterparts. Whereas the MF method

performs better using NLFM that the approximately spectrally flat LFM. This high-

lights the necessity of choosing the correct estimator and that waveform design must

be tailored according to its receive estimator. Chapter 4 will further discuss the impact

of the waveform spectral content on the performance.

3.6.2 SAR Images

To demonstrate the resultant performance each of the range-profile estimation algo-

rithms have on the final SAR image, a series of simulated SAR images have been

generated using the MF, TCFDE and OFDM-SAR range-profile estimators combined

with the backprojection algorithm. These have been calculated for the same set of sce-

narios as the single-scatterer case in the previous section. Two sets of images, (a-f) and

(g-l), are created with different range swaths to create the correct K:N ratio and there-

fore both have different range-cell to pixel ratios and image resolutions. For N > K

there are minor visible differences in the images between lower and high noise cases.

The OFDM and TCFDE images provide finer resolution than the MF examples as also

observed in the single scatterer examples. For this short range swath set-up the noise

reduction and sidelobe levels perform well for all estimators - there is little noticeable

qualitative difference between the higher and lower noise set but the differences are ap-

parent in the image MSE value. The N < K set shows the greatest visible distinction

between methods where the OFDM high noise image shows visible rings, distorting the

quality of the image. The same effect is apparent to a lesser extent with the TCFDE
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in g). Higher resolution is given in the images which used frequency domain division

(TCFDE & OFDM), but are subject to increased levels of distortion with increased

background white noise.

3.6.3 Doppler-Shift

The TCFDE estimator is set-up in a such a way that it may be more vulnerable to

spectral mismatch due to the direct division in the frequency domain. To demonstrate

the impact of Doppler shifts due to platform motion, which is inherent in SAR, on the

received signal the following simulations demonstrate the resultant impact on range-

profile estimation. The effect of a Doppler shift on a waveform is represented as a

stretching or a compression of the signal in time and can be represented as follows [98],

yd(t) =
√
γy(γ(t− τ)) (3.52)

such that

γ = 1 + β = 1 +
2

c
· 〈 û,v〉 (3.53)

where û is a unit direction vector |u|u and v is the velocity vector of the platform which

defines the angle between their inner product θ, shown in Figure 3.9. From a moving

platform such as in SAR, the Doppler shift is then dependent on the velocity vector

between the platform and a signal reflector, which is then dependent on the angle.

θd = cos−1 |u||v|
uv

(3.54)

The following simulations calculate the resultant received signal due to a Doppler shift

for a spotlight operation where the angle changes across the collection aperture. The

smallest angle that occurs on a straight flight path is determined by θmin = tan−1 Cw
2d0

,

where Cw is cross-range swath, which gives the maximum shift γmax. For the zero

shift case, γ0 is given when the platform is perpendicular to the scatterer θ0 = 90◦ ⇒

β = 0 ⇒ γ = 1. To test in upper-limit conditions, the background white noise level

σ2
n = 0.1. The platform velocity is 200ms−1, the cross range width Cw =2.5km and the

slant-range vector R0=6km. Two simulations are performed:
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Figure 3.8: Column 1: LFM-TCFDE, Column 2: MF-LFM, Column 3: LFM-NLFM.
Scenario A: a-c, Scenario B: d-e, Scenario C: g-i,Scenario D: j-l. See
Table 3.1 for Scenario definitions
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Figure 3.9: Depiction of relevant vectors and scene scenario for Doppler shift in a
SAR scenario
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Figure 3.10: Single point scatter for maximum and minimum Doppler stretch for spec-
ified scene, shown for both TCFDE and MF
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Figure 3.11: Increasing times such that τ1 = 0.25τc, τ2 = 0.5τc, τ3 = τc

Simulation 1

The resultant shifted received signal is calculated according to (3.52) for the zero shift

and maximum shift case. This is calculated for both MF-LFM and TCFDE-LFM. The

received signal is passed to the range profile estimation algorithm and the result for

the zero shift and maximum shift case are shown in Figure (3.10). There is a slight

but non-significant difference between the maximum and minimum shifted range-profile

estimations. This is slightly more prevalent for TCFDE. As a result, it can be concluded

that the Doppler shift sensitivity of the TCFDE method for SAR is negliable compared

to the MF and therefore will not have an impact on the performance of the technique.

Simulation 2

The performance is assessed here by comparing the zero shift estimate to the estimate

at each successive angle, comparing like-for-like estimators to give a measure of the

extent which the shift is affecting the MSE. The change in performance is calculated as

∆ρ = tr(cov(ĥγ0 − ĥγ)) = E[(ĥγ0 − ĥγ)(ĥγ0 − ĥγ)H ] (3.55)
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where hγ0 is the estimated range profile from the zero shift case and hγ is range pro-

file at each specific Doppler shift. For longer waveforms, there is a larger duration

over which the shift occurs. Three LFM waveform durations were used to analyse the

differences caused as a result of Doppler shift. The resulting performance shift over

angle is demonstrated in Figure 3.11. For small waveform durations, TCFDE has less

performance difference than the MF. For longer waveform durations, it is shown that

MF has consistently less difference.

Overall, it can be concluded that for a moving platform in SAR the Doppler shift does

not cause significant degradation to the TCFDE approach for range-profile estimation.

3.7 Chapter Conclusions

It has been demonstrated in this chapter that frequency-domain system identification

methods are applicable for use in range-profile estimation in SAR. Similar to emerg-

ing high-resolution methods in OFDM-SAR it can provide an IRCI-free range profile

exemplified in low sidelobes and fine resolution. As the TCFDE approach does not

require use of a cyclic-prefix or a particular constraint in time in frequency, it is a suit-

able candidate to support waveform diversity. However, it is noted then the potential

drawback lies in added distortion if a highly-shaped non-flat spectral waveform is used.

This can be mitigated to some extent with the inbuilt noise suppression. It is noted

that this performance degradation when using a spectrally shaped waveform is less than

that seen in OFDM. For a scene size, the IRCI free estimation can offer a reduction

in MSE error. MSE is a relative measure, and cannot directly give information alone,

it can be compared against the other estimators to contrast the performances. The

results from Scenario D suggest by using TCFDE for a large scene size (compared to

pulse length) and where the SNR is 20dB, an improvement of 15dB in sidelobes can be

made compared with MF, where instead of sidelobes, the restriction is the base noise

level. However, an alternative and widely used method in combination with the MF is

to apply windowing functions, which can also serve to dramatically reduce the sidelobe

level. Comparions made here are for unwindowed MF.
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Chapter 4

Spectrum Competitive Waveform
Design

4.1 Introduction

Although waveform design has been applied to a range of radar scenarios, there has

been little research towards adaptive SAR systems for interference mitigation. Current

spectral waveform design methods for interference mitigation are generally aimed at

other radar modes, such as detection [29]. As discussed in Chapter 3, waveform design

is inexorably linked to the end purpose of the radar and its subsequent signal processing

- a waveform optimal for detection will not necessarily be optimal for obtaining the best

estimate of the range profile in SAR. As such, these methods do not perform well in

SAR due to the creation of gaps in the spectrum which is detrimental to the imaging

performance. By shaping the waveform to avoid the source of the interference, large

gaps are created in the scene frequency response and raise the range sidelobes, as

experienced in the earlier attempts to mitigate interference in SAR [3,12,73,75]. Often

neighboring RF signals can leak into the operational bandwidth of the radar or the

radar can be affected by transmissions from an unlicensed user attempting to operate

in the same bandwidth.

A SAR image is formed by obtaining the range profile of the desired scene from many

successive angles, but the presence of RFI disrupts the quality of the range profile

estimate. As each successive range-profile is altered due to the angle, it requires re-

estimation. Given the ability to modify the spectral content of the waveform via adap-

tive waveform design, it is then desirable to obtain the best possible estimate of the

scene in the presence of interference. This problem is set up as a system identification

problem, motivated by modifying the waveform such that it attempts to estimate the

range profile with the minimum mean square error criterion.

Particularly in a spectrally-crowded environment, there is no guarantee that external
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RFI will be spectrally constant across the entire duration of operation. To address

this, the adaptive waveform design solution will re-estimate the RFI spectrum at every

received pulse - the smallest timeframe available to carry out this measurement. There

is then a pulse-to-pulse dependance on the estimate of the RFI from the previous pulse

which gives the most recent measurement. It then must be assumed that the RFI

is spectrally constant within the window between estimating the RFI from the most

recent returned signal and designing and transmitting the next waveform. In this work,

it is also assumed that the RFI is entering the receiver as a direct signal and is not

interacting with the terrain. Additionally, it is assumed that the RFI is correlated.In

this Chapter a computationally efficient system-identification/waveform-design scheme

for mitigating RFI in SAR on a pulse-to-pulse basis is presented. No prior knowledge

of the RFI is required. The main contributions of this Chapter are:

• Joint range-profile/interference-spectrum estimation. Range-profile estimation,

set up as a classical system identification problem in Chapter 3, is expanded to

address interference estimation. Through this formulation, the optimal solution

is identified as the generalized least squares (GLS) problem with a well defined

Cramer Rao lower bound (CRLB) [99]. By extending concepts from frequency

domain adaptive filtering [100], an approximation to the GLS estimator that is

based on the fast-Fourier transform (FFT) is developed. This approximation is

free from inter-range-cell interference and, significantly, also provides an estimate

of the interference spectrum on-the-fly.

• Adaptive waveform design. A similar frequency domain approximation to the

CRLB is developed. This approximate CRLB is optimized with respect to the

spectrum of the transmitted signal given the usual energy constraint on the wave-

form. This leads to a simple closed form solution that we prove is the global

minimum for the approximate CRLB (given the energy constraint).

• Computationally efficient combined estimation/design/synthesis. To illustrate the

potential of the above they are combined with a waveform-synthesis technique for

nonlinear linear frequency modulation (NLFM) based on the stationary phase

approximation (SPA) [33]. This synthesis methodology is considered because: i)

its computational complexity is similar to what is proposed above; (ii) NLFM

meets the constant amplitude waveform constraint required for many practical
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systems and only requires phase shifters rather than time delays in electronically

steered systems. It is noted however that the techniques mentioned above are not

restricted to this form of synthesis or to NLFM. It is shown that the combined

system has complexity of O(M log2(M)) per transmitted pulse, where M is the

sum of range extent and transmit signal length in samples.

4.2 System Model & Problem Formulation

The following section presents the adaptive waveform design framework for interfer-

ence mitigation in SAR. The problem formulation for the time domain is given and

is followed by the newly proposed frequency domain system identification modified for

added interference.

4.2.1 System Framework

The system block diagram shown in Figure 4.1 operates as per Algorithm 1 where p is

the current pulse number in a coherent burst of P consecutive pulses. Steps 2 to 6 of

the Algorithm describe the operations in the main blocks of Fig. 2, starting in the top

left hand corner and moving clockwise round the diagram.

Algorithm 1 Adaptive Waveform Design Scheme

Initialize: first pulse x1 as LFM
1: for p = 1 : P do
2: Transmit pulse xp.
3: System identification: the transmitted pulse and the associated received signal y

are used to estimate the impulse response hp of the SAR scene and interference N̂
at the pth position of the radar.

4: Interference spectrum estimate; formed from the interference estimate.
5: Transmit waveform optimization: optimize transmit spectrum using estimate of

interference spectrum.
6: Stationary phase waveform design: transmit spectrum is used to synthesize the

next NLFM transmit pulse xp+1.
7: end for
8: Pass the collection of P impulse responses {hp}Pp=1 to the SAR image formation

algorithm.

In the adaptive system shown in Figure4.1 the first transmitted pulse is used to obtain an

estimate of the interference frequency profile N̂ and a scene estimate ĥ1. The first step
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on waveform transmission is the waveform interaction with the scene (impulse response)

and the interference plus noise - the received signal y is then a superposition of both of

these signals. The least-squares system identification uses both the transmitted signal

and the received radar signal (with RFI) as an input. The LS system identification

aims to estimate the impulse response ĥ. The resultant error from this estimation

process is the RFI spectrum N̂. This error is then smoothed to produce an interference

spectral estimate which is used to aid the design of the next transmitted waveform. The

spectrum of the waveform is then passed to the stationary phase waveform synthesis to

produce a time domain signal.

An LFM signal is used to start the process as is it nearly spectrally flat and aids the

initial system identification calculation to estimate the interference spectrum by placing

energy across the entire band. If there is no correlated noise present, the flat spectrum is

optimal for the impulse response estimation. In correlated noise this first LFM pulse is

expected to perform sub-optimally as it is not yet shaped according to the interference

as this is initially assumed to be unknown. This method simultaneously obtains inter-

ference and scene data on the same pulse, which if successful, is an advantage compared

to passive approaches that do not collect scene data while collecting interference data.

This first LFM pulse then allows an estimate of the RFI spectrum and subsequently

enables the design of the next NLFM pulse to obtain an enhanced estimate by shaping

the spectrum of the waveform. To allow full use of the synthetic aperture, all pulses

are used to form the image.

4.2.2 Time Domain Problem Formulation

Following from the TCFDE framework introduced in Chapter 3, here the estimation of

the range profile is again expressed as a discrete time problem, recalling the expression

given in 3.39

y = Xh + n

where X is a (N + K − 1) × K rectangular and Toeplitz matrix where columns con-

tain time shifted versions of the transmitted signal xp. Because it is assumed that

the impulse response is finite and all the collected returns from the transmitted signal,

equation (3.39) defines N + K − 1 equations in K unknowns and is thus an overde-

termined system. The noise plus interference n is an [N + K − 1] dimensional vector
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Figure 4.1: Pulse-to-pulse system flow chart.

with co-variance matrix Rnn = E[nnH ] and the interference is assumed to exist within

the same bandwidth as the transmitted signal. Chapter 3 considered the case where

there was no interference and the covariance matrix was reduced to a diagonal of the

variances Rnn = σ2
nI giving the ordinary least squares (OLS) estimator, giving the

following expression for the impulse response

ĥ = (XHX)−1XHy (4.1)

The covariance matrix now requires use of the generalized least squares (GLS) expres-

sion [97]

ĥ = (XHR−1
nnX)−1XHR−1

nny (4.2)

Using the estimator for the GLS problem directly is computationally expensive and

furthermore, initially, the interference covariance is unknown. Generalized least squares

is equivalent to applying ordinary least squares to a whitened version of the system

[97]. It is then possible that if the spectra for the transmit signal is matched to the

interference, that the ordinary least squares solution can be used by “whitening” the

system. The following work in this Chapter seeks a more formal solution. Waveform
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design is employed to achieve the optimal estimation of the scene impulse response in the

presence of correlated interference according to the least-squares solution. Waveform

design for the optimal least squares solution should try to minimize the error to find the

best fit for ĥ. The Cramer-Rao lower bound (CRLB) for the generalized least squares

estimate of the impulse response vector is given by the spread of the covariances [97]

cov(h− ĥ) = E[(h− ĥ)(h− ĥ)H ] = (XHR−1
nnX)−1 (4.3)

Using the CRLB as a criteria for optimization, waveform design for SAR system iden-

tification in the presence of interference can be formulated as the following constrained

optimization problem

min
x

tr(XHR−1
nnX)−1

s.t. xHx = ET

(4.4)

where ET is the energy in the transmitted signal. There does not appear to be an

existing analytical method to solve this expression. A possible numerical optimization

procedure is particle swarm optimization (PSO), a global optimization technique [101].

This can be applied to the optimization problem to find the best overall waveform

under the constraint of energy. As it is an iterative method PSO potentially requires

a large number of computations to find the solution - especially as matrix inversion

is required on each iteration. We propose a more computationally efficient approach

to estimating the impulse response by factorizing with the DFT and expressing the

problem in the frequency domain. The following steps aim to approximate the CRLB of

(4.3) to facilitate a tractable analytic solution that is computationally efficient. However

we use (4.4) and its solution through PSO, as a benchmark to quantify the performance

loss incurred by the approximation.

4.2.3 Frequency Domain Solution

The following frequency domain solution expands on the TCFDE method for estimating

the impulse response in order to design the waveform. Applying Fourier transforms to

both sides of time-domain circulant matrix equation and using the identity property,
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where F is an [N +K − 1]-point discrete Fourier transform gives

Fy = FXcF
HF

 h

0N

+ Fn (4.5)

Now the expression for circulant-Toeplitz matrices given in (3.43) can replace Xc and

again using the identity property gives

Y = ΩH + N (4.6)

where Ω = FXcF
H = diag {Fx1}, Y = Fy,H = F

 h

0N

 and N = Fn, where each

of the vectors listed are of dimension M × 1. Given an expression of the system model

in the frequency domain, a corresponding generalized least squares estimate for H

Ĥ = (ΩHD−1Ω)−1ΩHD−1Y (4.7)

where

E[NNH ] = FRnnF
H = D (4.8)

The noise-covariance matrix Rnn is positive definite as there will always be some level

of background white noise due to the presence of thermal noise in the receiver. The

eigen-decomposition can be written as

Rnn = VΛVH

where Λ is a diagonal matrix of the eigenvalues and V is the orthonormal matrix such

that VHV = I whose columns are the corresponding eigenvectors. The eigenvectors

also define the Karhunen-Loeve transform(KLT) of the noise vector VHn .The elements

of VHn are orthogonal and therefore uncorrelated since

E[VHnnHV] = VHRnnV = VHVΛVHV = Λ

The KLT has history of being approximated by signal-independent transforms such as

the DFT and the discrete cosine transforms due to its complexity. This approximation

of the DFT to the KLT has lead to the DFT being used to approximately orthogonalize
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signals. The justification for this was initially used in Markov-1 processes [102]. Exam-

ples can be found in the fields of frequency-domain adaptive filtering [72, 100] and in

radar, where the frequency snapshot model uses the orthogonalization assumption [103]

and also in [29] to justify use of the frequency domain to avoid a matrix inversion.

Assuming that now, due to the application of the DFT, the frequency domain sam-

ples are uncorrelated, the off-diagonal elements of the frequency domain interference

covariance matrix D will be approximately zero and are disregarded allowing a vector

expression D̃ to be formed from the diagonal replacing D in (4.7).

D̃ = diag(D)

This provides a simple estimate in the frequency domain which is element wise. With

this approximation we have what might be called a “doubly-diagonal” system, both the

input signal matrix Ω and the noise covariance matrix D̃ are diagonal. The GLS of

(4.7) reduces to OLS with the added benefit that we do not require knowledge to D̃ to

form the estimate.

Ĥi =
Yi
Ωi

i = (1, 2, · · · ,M) (4.9)

ĥc = [ IK 0TN−1,K
]F−1Ĥ (4.10)

where IK is an K × K identity matrix. This works best when N > K, as noise

removal performance is proportional to the number of samples N removed. This effect

on performance is demonstrated in section 4.5.3. The corresponding estimate of the

time-constrained frequency response is then:

Ĥc = F(

 ĥc

0N−1

) (4.11)

Finally,using the constrained frequency response estimate, an estimate N̂ of the inter-

ference N is provided

N̂ = Y −ΩĤc (4.12)

and from which an estimate of the interference spectrum D̃ can be formed in a straight-

forward way, D̃ = g(|N̂i|2), where g is a moving average filter which is applied to
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smooth the spectral estimate.The unfiltered spectral estimate D = |Ni|2| may exhibit

large sample to sample fluctuations as this estimate results from a single realization of

the spectrum. Thus, directly using this spectral estimate would also yield a waveform

that is high in sample-to-sample fluctuation and may not provide a good representation

of the true spectral distribution.

The TCFDE of (4.9),(4.10) and (4.11) provide an approximation to the GLS of (4.2)

that is DFT based. This approach is more computationally efficient than the direct

GLS estimator. Using the TCFDE is thus better suited to the relatively long impulse

responses that are typical in SAR, as larger DFT dimensions scale better computation-

ally than matrix inversions. In addition the TCFDE does not require explicit knowledge

of the interference covariance matrix Rnn and provides a mechanism through (4.11) to

estimate the spectrum of that interference “on-the-fly”. The latter capability facilitates

adaptive waveform design.

4.3 Waveform Optimization

We now have three possible estimators for the impulse/frequency response. Equation

(4.2) provides the optimal solution if the interference covariance matrix is known. Its

performance is given by (4.3). The unconstrained frequency domain estimate of (4.9)

is the simplest computationally but it is liable to give poor performance as it has

no capacity for noise reduction and it approximates linear convolution with circular

convolution. The constrained frequency domain estimate of (4.9),(4.10), and (4.11)

is an improvement on (4.9) because it enforces linear convolution and reduces noise

through (4.10) and (4.11). The performance of this constrained frequency domain

estimate are explored further in [104]. Central to many adaptive waveform design

(AWD) methods is the judicious choice of a cost function. Ideally we would like to

use a cost function that accurately reflects the performance of the radar, e.g. (4.3).

However, if we chose to implement (4.2), the optimization of (4.4) is a still a major

challenge. Often a cost function is chosen that is an approximation to or a bound

on the actual performance metric because no convenient closed form solution for the

metric exists. For example, in AWD for detection [36], the asymptotic performance is

used as a cost function because no closed form solution for the detector performance

on finite data sets exists. Similarly, in bearing estimation [105], the CRLB is used even
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through the estimator does not achieve that bound. Again no closed form expression

for the performance of the estimator exists. Thus while we advocate the use of the

constrained estimate of (4.9) ,(4.10), & ((4.11)) for estimating the impulse response,

we use the unconstrained estimate of (4.9) to provide a simple cost function for the

waveform design that leads to a closed form expression for the transmitted spectrum

in terms of the spectrum of the interference. As argued earlier the performance of the

unconstrained estimate is poorer than the constrained one and thus we are optimizing

an upper bound on the performance of the constrained estimate. Start by assuming

that (4.6)-(4.8) are an accurate representation of the estimation problem. If this was

the case the performance ρ of the estimate (4.11) would be given by:

cov(H− Ĥ) = E[(H− Ĥ)(H− Ĥ)] = (ΩHD−1Ω)−1 (4.13)

This can be reduced into a single value to quantify the performance by using the trace

of the covariance matrix.

ρ , tr((ΩHD−1Ω)−1) =
M−1∑
i=0

Di

|Ωi|2
(4.14)

As in (4.4), the performance of the estimation is limited by the total energy in the

transmitted signal such that in discrete time, using Parseval’s theorem is given as

follows.

ET =

M∑
i=0

|Ωi|2 =

N−1∑
k=0

|xi|2 (4.15)

We seek to minimize the performance metric ρ and hence optimize the performance of

the system identification subject to the energy constraint of (4.15). The optimization

problem for the frequency domain estimator can be expressed as follows

min
Ω

M−1∑
i=0

Di

|Ωi|2

s.t. ΩHΩ = ET

(4.16)

For ease of notation we define the energy at each frequency sample as

Ei = |Ωi|2 (4.17)
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In a similar manner to [29] we incorporate the constraint by defining a Lagrangian,

where we define f(E) =
∑

i
Di
Ei

, g(E) =
∑

iEi

min
E

f(E)

s.t. g(E)− C = 0 (Ei > 0, ∀i)
(4.18)

Due to the energy being a non-negative value, this necessitates the presence of inequality

constraints which would normally require application of Karush-Kuhn-Tucker(KKT)

conditions. In this case, the inequality is a simple example. In its place, therefore,

the problem is approached here by first solving the optimization problem without the

inequality constraints using the Lagrangian, then proceeding to identify all possible

solutions and show that only one of these solutions satisfies the inequality constraints

and that it is a minimum. Proceeding without the inequality restraint, a Lagrangian

solution is feasible because there is a single equality constraint and the gradient of g(E)

is a non-zero constant, such that the constraint will always be enforced. Defining the

Lagrangian function as

L(E, λ) = f(E) + λ(g(E)− C) (4.19)

Necessary conditions for a solution are obtained by setting the partial derivatives of

L(E, λ) with respect to each of the elements of E to zero

∇Ef(E) + λ∇Eg(E) = 0N (4.20)

∂L

∂Ei
= −Di

E2
i

+ λ = 0 (4.21)

λ =
Di

E2
i

, ∀i (4.22)

Since both Di > 0 and Ei > 0 ∀i, then λ > 0

Ei = ±
√
Di

λ
=
±
√
Di√
λ

(4.23)

Now applying the energy equality, where C = ET

Ei = ET
±
√
Di∑

i±
√
Di

(4.24)
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Figure 4.2: Illustrative example demonstrating signal energy outcome from (4.25) is
proportional to the interference energy.

There is then 2N possible solutions dependent on the choice of sign on the square root

of each Di. Consistently choosing either all positive or all negative roots, the solutions

are then, in both cases

Ei = ET

√
Di∑
i

√
Di

(4.25)

This solution then satisfies the non-negative energy constraint and the remaining so-

lutions all contain both positive and negative choices for the square roots of each Di.

Which finally gives an expression for the transmitted signal energy distribution which

optimizes the frequency domain least-squares problem. The sufficiency conditions are

shown in Appendix A. For brevity we will call (4.25) frequency domain waveform opti-

mization (FDWO).While the development here is similar to [29], the result is distinctly

different. In [29] a detection problem is addressed whereas here we address system

identification problem. Thus it is not surprising that the results might be different and

it is interesting to note that there is no sense of “water-filling” here or conclusion that

signal energy should be directed to areas of the spectrum where the interference density

is relatively low as in [29]. Rather (4.25) suggests a more competitive approach. An

example signal outcome E for a given interference energy D is shown in Figure 4.2.
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4.4 Waveform Synthesis

The previous section has determined the energy distribution across the frequency band.

The following describes a possible method of synthesizing a time domain signal accord-

ing to the spectrum described in (4.25). We desire a chirp based signal with constant

amplitude modulus and spectrum distribution. The stationary phase approximation

(SPA), a standard technique used for synthesis of nonlinear FM waveforms [1], provides

synthesis according to these criteria. The synthesis technique detailed here is indepen-

dent from the TCFDE scheme. If desired alternative waveform synthesis techniques

can be used in conjunction with the TCFDE scheme, provided that they synthesize a

signal with the desired frequency spectrum e.g. using OFDM techniques or non-chirp

based methods.

4.4.1 SPA Background

SPA relies on the assumption that amplitude variations are very slow compared to phase

variations, which results in most of the energy becoming concentrated around stationary

points. Applying a Fourier Transform to a general chirp signal with amplitude and phase

variation creates the following intractable integral

X(f) =

∫ ∞
−∞

a(t)ejφ(t)e−j2πftdt =

∫ ∞
−∞

a(t)ejψ(t)dt (4.26)

where φ(t) is waveform phase, ψ(t) is a phasor term and a(t) is amplitude. A large ma-

jority of the contribution to the Fourier spectrum occurs where the change of oscillation

of the function is at its lowest, a stationary point, this can be exploited to calculate

an approximation to the integral. SPA requires the frequency to be monotonic which

allows there to be only 1 stationary point and the solution is then

ψ̇(t) = φ̇(t)− 2πf = 0 (4.27)

and thereby a relationship between t and f is given simply as

φ̇(t) = 2πf (4.28)
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This occurs when the frequency is monotonically increasing and the amplitude varia-

tions are much slower than the phasor variations, such that

|ȧ(t)|
a(t)

� |ψ̇(t)| (4.29)

When the amplitude variations are very slow compared to the phase variations, integrat-

ing over the majority of the time axis will represent integrating a constant amplitude

phasor. The integral of one period of a phasor is zero if the instantaneous phasor

frequency ψ̇ is not zero. This is applicable to the chirp waveform as across the time

axis of the waveform, the amplitude is constant except from switch-on and switch-off.

Provided that the signal has constant amplitude, the following expression can be used

to relate the phase and the spectrum [1],

φ̈(t) =
a2(t)

E(f)
=

C

E(f)
(4.30)

where C is a constant. For a given signal the energy is automatically constrained under

the time integration limits and across the bandwidth in frequency. The average chirp

rate is γ = Bn
t1−t0 , where Bn is nominal bandwidth and t0 and t1 are times at the

start and end of the sweep respectively.For ease of notation we describe the process in

continuous time. The energy of the transmitted chirp waveform is defined as

ET =

∫ ∞
−∞
|x(t)|2dt =

∫ t1

t0

| exp{jφ(t)}|2dt (4.31)

Then using Parseval’s theorem the total energy expression can be related to the chirp

spectrum:

ET =

∫ ∞
−∞

E(f)dF = t1 − t0 =
Bn
γ

(4.32)

Which satisfies that the signal has finite energy for a fixed time duration t1 − t0 which

is the area under E(f).
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Figure 4.3: a): Input spectrum given by E(f) (blue) and resultant transmit spectrum

given by SPA. b): Synthesized transmit signal. Non-linear upward sweep

in instantaneous frequency gives non-linear “chirp” waveform.

4.4.2 Implementation

The following steps demonstrate how to synthesize a discrete time waveform given a

desired spectrum while constraining the finite waveform energy over the radar waveform

bandwidth using the SPA. The energy of the transmitted chirp waveform as defined in

the time domain was given in (4.15). Now using total energy expression in 4.32 can be

re-expressed in discrete format as:

ET =
M∑
i

E(i) = {t1 − t0} =
Bn
γ

(4.33)

which again satisfies that the signal has finite energy for a fixed time duration t1 − t0,

the area under E(f). Using this relationship, the total energy in the time domain can
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be mapped onto the frequency domain using the following steps, allowing a desired

spectrum to be synthesized with continually increasing phase and constant modulus

amplitude as given by (4.30).

The algorithm table below and the corresponding Figure 4.4 describe the discrete SPA

implemenation steps.

These expressions allow synthesis of a NLFM waveform according to a desired spectrum

E(f) by continually increasing the phase. As demonstrated in Figure 4.3 the output

spectrum is an approximation to the input spectrum as provided by E(f). While this

method is not exact, it is a computationally simple approach for waveform synthesis

compared to more precise but computationally complex methods demonstrated in the

literature. Furthermore, a precise replication of the input spectrum may not be required

as E(f) is calculated based on an estimate of the interference D(f) provided by the

system identification on the prior pulse. By approximating to the spectrum of the

interference, small errors in the interference estimate are not further propagated into

the performance of the system identification of the current pulse. The spectral estimate

is likely noise after a single realization, therefore the input spectrum to the SPA E(f)

is passed through a moving average filter to smooth out the spectrum so as not to force

the SPA to follow the sharp sample-to-sample deviations.
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Algorithm 2 SPA Implementation

1: Perform discrete integration of the desired spectrum E(f) shown in Figure 4.4 a
using a cumulative sum to generate corresponding energy values in the time domain,
which are represented by time vector tf (i):

tf (1) = E(1)

tf (2) = E(1) + E(2)

tf (i) = E(1) + · · ·+ E(i− 1) + E(i) (4.34)

These values are irregularly spaced across the time domain, as they are dictated
by E(i), and span tf (i) = (1, · · · , N). Parseval’s rule is now applied to normalize
the total energy to maintain equal energy in the time and frequency domains. The
resultant values are shown in Figure 4.4 b.

2: Generate a regularly spaced frequency axis to represent the frequency domain points
of interest across the desired bandwidth Bn such that

fF = (1, · · · ,M) (4.35)

where fF (1) = −Bn
2 and ff (M) = Bn

2 . Using the SPA relationship given in (4.30),
fF can be mapped to tF , such that the instantaneous frequency at time tF (i) is
given by fF (i). fF forms the y-axis values shown in Figure 4.4 c and tF are the
x-axis values.

3: Generate a regularly spaced time axis corresponding to the desired points in time
for waveform synthesis

tT = (1, · · · , N) (4.36)

4: Using the mapping between the irregularly spaced time-energy vector tf and the
regularly spaced vector in frequency, ff , interpolate to obtain the desired frequency
values fT at the desired waveform synthesis time-domain points given by tT . This
forms the desired interpolation points and the x-axis point shown for the interpo-
lated data in Figure 4.4 d.

5: The phase of the desired waveform can now be calculated from the interpolated
frequencies fT

ψ(i) = 2π
N∑
i

fT (i) (4.37)

6: Finally use the phase to synthesize the desired waveform via

x(i) = exp{jφ(i)} (4.38)

The real component of the synthesized waveform is shown in Figure 4.4 e and the
resultant output spectrum in Figure 4.4 f.
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a) b)

c) d)

e) f)

Figure 4.4: SPA Implementation process: a)Input spectrum b) Cumulative sum of

spectral energy c) Energy projected onto time domain d) Interpolation to

obtain values of frequency at desired time samples e) Real component of

new synthesized waveform f) Input(desired) and output (synthesized) SPA

spectrum
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4.5 Performance Evaluation

4.5.1 Simulation Experiment Set-Up

The following section demonstrates the performance of the TCFDE technique combined

with the waveform optimization and design method in terms of the error in the impulse

response estimate. This method has been tested using random complex impulse re-

sponse values so as to demonstrate that the results are not dependent on a particular

scattering distribution. Additionally this section aims to evaluate the associated loss in

performance that is introduced in the development of the alternative frequency domain

estimate, the TCFDE, which approximates the direct estimator (4.3). The assumed

knowledge to perform the simulations is as follows; the transmitted signal and its spec-

tral representation, the received signal and the length of the range-swath, which corre-

sponds to the impulse response length K. The known frequency domain representations

of the received and transmitted signal, Y and Ω are processed according to steps (4.11)-

(4.10), to provide an estimate of the impulse response ĥ. The norm of the simulated

impulse response vector h is normalised to unity such that
∑K−1

k=0 |hp(k)|2 = 1. Narrow-

band interference is generated by constructing uncorrelated complex normal samples

of length M then passed through a band-pass filter to create correlated interference

samples so that the interference lies within 10% of the overall signal bandwidth. The

impulse response estimate ĥ is evaluated and 1000 trials are executed at each configu-

ration. The energy in each transmit signal and the total nominal bandwidth is constant

across generated waveforms.

To quantify the performance of the following waveform design and estimator pairs under

test, and as is usual with the assessment of system identification algorithms, we calculate

the norm of the error vector (trace of the error covariance matrix) between the actual

complex impulse response value h and the estimated value ĥ.

ρ , tr(cov(h− ĥ)) = E[(h− ĥ)H(h− ĥ)] (4.39)

This metric is calculated for the ensemble of pseudo-randomly generated scene impulse

responses and interferences as described above. The interference estimate ρN is cal-

culated in the same manner as (4.39), replacing ĥ for N̂ . TCFDE is a discrete time
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technique which can be used for any corresponding transmit signal bandwidth, time

and sampling frequency - the important metric for performance being the relationship

between K the number of samples corresponding to the scene length and N the trans-

mitted signal length. For the following section , the relationship is shown for a ratio

of K/N = 0.25. This is incrementally altered in section 4.5.3 by increasing the scene

length and keeping transmit signal length constant.

4.5.2 Performance Relative to Interference Power

As the radar system is limited by an upper bound of energy, there will exist a critical

interference level where the placement of energy into the same band as the interferer will

no longer provide a useful estimate of the impulse response as high sidelobes and noise

override the signal. To demonstrate the performances relative to interferer strength,

the following simulations increase the interference power to lower the overall signal

to interference and noise ratio (SINR) The base SNR (background noise only) is kept

constant at 40dB.The SINR is measured at the front end of the radar after the analogue

to digital conversion and prior to additional signal processing.

SINR =

∑M
m=0 |Ωm|2∑M

m=0E[|Dm|2]
(4.40)

where the power of the interferer is a finite value. The total power in the interference

is increased at each simulation to demonstrate the result on performance with increas-

ing interference as demonstrated in Figure 4.5. The RFI is 10 % of the total signal

bandwidth.The dependency on the interference spectrum relative to the transmitted

signal is demonstrated in (4.25). As this necessitates that performance for the FDWO-

NLFM-TCDFE method is limited by the level of interference power, the performance

with increasing RFI strength is demonstrated here via simulation. The SINR ranges

between 35dB and 0dB were chosen as 35dB is just above the level of background

noise (40dB), up to 0dB, at which point the transmitted signal and interference signal

strength are the same. Typical operational values in a scenario of energy leakage from

a neighbouring RFI transmitter may be expected to be around 15dB through to 5dB

average SINR, but this greatly depends on the distance of the RFI source from the

radar - due to the 1
R4 power drop off rule, distance is an important factor [10]. Deliber-

ate jamming systems may have significantly more power available. There are assumed
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to be regions of the spectrum which are interference free, which on average lowers the

SINR over the bandwidth. If there are a few frequency samples of high strength SINR

e.g. -20dB, this is treatable and the overall SINR will lower signficantly depending on

the remaining areas of the radar bandwidth which have no RFI present. In UHF/VHF

radar which has a very congested spectrum, the average SINR values will be much

higher as there are few spectral regions within the radar bandwidth that have no RFI

energy present. Chapter 5 deals with scenarios that are more similar to UHF/VHF

region interference.

Simulated examples demonstrate how performance error varies with interference power

for the following waveform and impulse response estimation techniques;

1. LFM with stretch processing

2. Initial LFM- Time Constrained Frequency Domain Estimate

3. Frequency Domain Waveform Optimization-NLFM-Time Constrained Frequency

Domain Estimate

4. Generalized Least Squares optimized with Particle Swarm Optimization with

known interference covariance Rnn

Where (1) is the standard SAR configuration, (2) is the first step of the system identifi-

cation process as shown in 4.1,(3) is the second and following pulses designed waveforms

using the suboptimal estimator and (4) is the global optimal solution constrained under

energy, but without amplitude or phase constraints. For a comparison to TCFDE, the

PSO method is used to solve the original optimization problem given in (4.4). The PSO

optimization is only under the constraint of energy and finds the optimal time-domain

waveform solution xpso(t) based on the interference co-variance matrix Rnn. The PSO

waveform is generated by using the estimated NLFM waveform for the initial condi-

tions and numerically searching for the optimal waveform to minimize the error in the

impulse response estimate (4.4).

4.5.2.1 LFM- Time Constrained Frequency Domain Estimate

This approach to initializing the system is not the optimal solution, but it provides

performance as least as good as LFM-stretch (Figure 4.5) until much higher interference
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regions. If the interference spectrum is already known, this step can be omitted and

the FDWO-NLFM-TCFDE process can be used.

4.5.2.2 Frequency Domain Waveform Optimization-NLFM- Time Constrained

Frequency Domain Estimate

Leading from the initial interference spectral estimate given by the LFM-TCFDE the

performance of the FDWO-NLFM-TCDFE is indicative of the best system performance.

Note that its performance is also dependent on the quality of the interference estimate

from the prior pulse. In this way, it serves as an indicator of the overall system perfor-

mance. It is shown in Figure 4.5 that using this scheme consistently improves perfor-

mance compared with transmitting the LFM signal- both compared to evaluation via

stretch processing and TCFDE.

4.5.2.3 Cramer Rao Lower Bound

The CRLB is a waveform-dependent measure of the best possible performance attain-

able by a specific designed waveform in an interference characterized by covariance

matrix Rnn as shown in (4.3). The true known simulated Rnn is used along with

the time-domain SPA synthesized waveform to provide the CRLB value. Therefore,

it is a useful tool to evaluate any performance losses in the adaptive system. These

losses account for both: i) the estimation of the interference to design the waveform

and ii) those incurred via the TCFDE impulse response approximation to the direct

GLS estimate approach in 4.3. These include the diagonalization assumption used to

form the expression in (4.7) and the approximation of linear-to circular convolution

and re-constraining this value in the time domain in (4.10) back to linear convolution.

The CRLB has been calculated for both the LFM waveform and the NLFM wave-

form used in the FDWO-NLFM-TCDFE combination and are labeled CRLB-LFM and

CRLB-NLFM respectively in Figure 4.5. The larger performance gap between in LFM-

TCFDE and CRLB-LFM compared to FDWO-NLFM-TCFDE and CRLB-NLFM can

be attributed to the larger error in interference estimate, shown in Figure4.5
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4.5.2.4 Particle Swarm Optimiztion-Generalized Least Sqaures

This result serves as an indicator of an absolute lower bound of performance for a given

interference. Using the simulated interference covariance matrix, the PSO algorithm

searches for the global optimal time-domain waveform solution constrained only by en-

ergy (4.3). In the absence of structure constraints in the form of phase or amplitude,

while this waveform offers the best performance, this is a both a computationally ex-

pensive and not amenable to physical implementation. However, in comparison to the

FDWO-NLFM-TCFDE, it demonstrates the performance losses incurred by; (i) using

the alternative frequency-domain estimator TCFDE (ii) using SPA to constrain the

time-domain waveform to be constant amplitude and increasing in phase over time (iii)

Further, if the CRLB-NLFM estimate (given from the FDWO-NLFM-TCFDE) is com-

pared to the PSO-GLS, the difference shows the performance lost by forcing the am-

plitude and phase structure via the SPA. For moderate levels of interference there is

minimal performance impact of constraining the waveform The difference between the

FDWO-NLFM-TDFDE and PSO show the costs of using an alternative estimator and

enforcing a chirp.
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Figure 4.5: Performance error norm results from 35dB to -20dB at K/N=0.25 on a

semi-log plot

4.5.2.5 Interference Estimate

The performance error of the interference spectrum estimate D̂ is shown for comparison

between the initial (LFM) (p = 1) and adapted FDWO-NLFM-TCFDE pulse (p = 2)

and finally a subsequent third pulse (p = 3) using the interference estimate from the

prior pulse in Fig. 6. There is minimal performance gap between (p = 2) and subsequent

estimation demonstrating that for static interference further pulses are not required to

improve the interference estimate.

4.5.3 Performance for Relative Scene Size

Shown in (4.10), the TCFDE method constrains the frequency-response estimate in the

time-domain to re-express the estimate without assuming circular convolution. This

step removes N − 1 samples to provide the original K − 1 range cells, which as a by-

product removes noise that was present in the additional N − 1 samples. The ability
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Figure 4.6: Mean squared error for interference spectrum estimate for initial pulse
p=1, adapted pulse p=2, and the subsequent pulse p=3
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Figure 4.7: Performance impact for increasing impulse response lengths at varying
levels of SINR
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to remove noise/error originating from the estimation process is therefore dependent

on the ratio between the discrete representation of the scene impulse response K − 1

and the transmitted pulse length N − 1. It can be demonstrated (see Appendix B.1 for

proof) that the constrained solution is proportional to the unconstrained solution by a

factor γ,

cov(ĥc − hc) = γcov(Ĥu −Hu) = γρ (4.41)

Where γ = K
N+K , such that γ < 1, thus constraining the solution will always decrease

the error in the solution. When N > K (for small scene sizes) the reduction factor γ is

comparatively large but when K > N , there is a less error removal through γ.

The following simulated experiment demonstrates different scene lengths relative to

the same pulse length and its effect on the TCFDE performance. The longer the pulse-

length relative to the scene size, the larger the performance gain. The performance error

improves linearly with the removal of samples. This effect is shown in Figure 4.7 for

increasing scene sizes while keeping the pulse length N constant. This is demonstrated

for interference levels of 5dB, 10dB and 15dB SINR. The higher the interference level,

the higher the gradient at which the performance drops off due to additional noise

suppression. While the method is operational for larger scene sizes it is at reduced

performance as additional noise suppression is greater for smaller scenes.

4.5.4 Performance for Relative RFI Bandwidth

The FDWO solution of (4.25) is dependent on the interference spectrum and the total

energy of transmitted signal. The experiment in Section demonstrated the change in

performance by changing the overall interference power. The interference spectrum Di

can also occupy varying spans of the radar bandwidth. This experiment demonstrates

the impact in performance through increased bandwidth. The overall power-budget is

the same, but the spread across the radar bandwidth is increased. While it is uncommon

to encounter interference spectra that exceeds 10% of the radar bandwidth, results

are demonstrated from the range of 1% to 30% in Figure (4.8) for 5 different overall

interference strengths in SINR. The results demonstrate that the FDWO approach

provides best performance for lower bandwidths and performance is lost for increasing

bandwidths.
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Figure 4.8: Performance Error varying with increasing RFI bandwidth from 0.5% of
the total operational radar bandwidth to 30%.
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4.5.5 Computational Complexity of FDWO-NLFM-TCDFE

An overview of the scaling of the processing required for one pulse is presented in

this section. The larger the input scene length K and pulse length N , the higher the

number of operations required for the signal processing for the TCDFE scheme per

pulse. This method initially appears to be low-computational complexity as this is

a non-iterative process. The computational complexity of the full adaptive cycle can

be broken down into the following stages : 1) system identification and interference

estimation, 2)waveform design, 3)waveform synthesis.

1. System Identification and Interference Estimation:

The system identification process complexity is given by the number of operations

between calculating ĥ and N̂. The upper limit on the computational complexity

can be given by considering the computations required each iteration for; element-

wise division in (4.9) which increases linearly with the vector size M so there are

M divisions, the DFT and inverse DFT in (5.10)O(M log 2M) [106] and finally the

element-wise multiplication used in calculating N̂. Calculating ĥ and N̂ requires

M-point DFTs as given in (14) and (4.10)

C1 = O(M) +O(M log 2M)

2. Waveform Optimization and Design:

The waveform design can be carried out via the expression in (4.25). This requires

calculation of the total energy ET which is a summation over M points and scales

linearly.Calculating Ei(F ) then requires O(M) for division of M .

C2 = O(M)

3. Waveform Synthesis:

The implementation of SPA requires a cumulative summation of the estimated

optimized waveform spectrum Ei(F ) in order to use relationship between change

in frequency and time as shown in (4.28). This uses the addition and multiplica-

tion operator. Linear interpolation is also required for obtaining frequency values

for the set of time samples corresponding to ψ̈(t). Linear interpolation compu-

tational complexity depends both on the number of existing data points M and
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the number of data points to be interpolated. For this case, the number of points

to be interpolated is the same as the original number of data points. The largest

operation performed by an interpolation algorithm is sorting the each data point

into the relevant interval between two existing points given as (2M) log 2(2M).

After this, the linear interpolation is simple and performs two additions and one

multiplication so scales linearly.

C3 = O(M) +O(M log 2(M))

Overall the FDWO-NLFM-TCDFE based adaptive cycle computational complexity

scales withO(M log 2M) as the dominant complexity term per waveform design-transmission

or azimuth point.

4.6 SAR Scenario Example

4.6.1 Simulation Set-Up

We consider a spotlight SAR system and assume an approximately circular antenna

pattern. In addition, the following simulation assumes a circular flight path to allow

the range swath to be the same length at all azimuth points. A representation of the

circular flight path is shown in Figure 4.9 and the associated simulation parameters

are displayed in the following table. Waveform values based on those used in [31]

and platform values based on those representative for operational use of X-band SAR

systems.
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SAR scene parameters Value

Platform height: h 1500 m

Range-to-scene centre: R0 6000 m

Range swath: Rw 512 m

Range resolution: ∆R 1 m

Range profile samples: K 512

Platform velocity: 200 ms−1

Azimuth flight path length: L 1178m

Flight path angle: θc 5.62◦

Pixel values 256 × 256

Pulse length: τc 3.41µs

Bandwidth: Bc 150MHz

Wavelength: λ 0.03m

Sampling rate: fs 150MHz

Waveform samples N: 512

Table 4.1: SAR platform and scene values used in simulation

Figure 4.9: Illustrative figure of radial flight path used in simuations and associated

parameters.

The parameters used for the scene and relative platform positions are as shown in the

table:

The estimated impulse response vectors collected at each azimuth point is then pro-

cessed using the back-projection image formation algorithm. The test scene image is
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shown in Figure (4.10) which represents the back-projection image created from the

actual impulse responses of the scene without added interference. The test SAR scene

represents a static aircraft on the ground and is used to exemplify the effects of inter-

ference on the final SAR image.
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Figure 4.10: Test SAR image representing a stationary ground-based aircraft created
using back-projection with no interference

4.6.2 Constant Interference Source

In this example the interference source does not change its spectral content N across

the SAR data collection for all azimuth points. After a two-pulse cycle, the waveform

does not need to adapt further and continues to transmit the designed pulse x2. The

initial pulse identifies an approximate estimate of the interference spectrum N1 and

the adapted waveform provides an improved estimate of the interference N2 as demon-

strated previously. We compare the SAR images created from the LFM-stretch method,

the FDWO-NLFM-TCFDE approach and additionally LFM-TCFDE to demonstrate

the imaging result if the waveform was not updated at all.

Figure 4.11 shows images for FDWO-NLFM-TCFDE, LFM-TCFDE and LFM-stretch

across each row. Each row representing SINR strengths of 10dB, 5dB and 0dB. With

increasing interference strength, the images show increased blurriness of features and

some artifacts on the outskirts of the image for the LFM-stretch in column 3. The

LFM-TCFDE shows increased “graininess” as a result of increased distortion in each

impulse response estimate. The FDWO-NLFM-TCFDE method produces images which

degrade to a much lesser extent qualitatively compared with the other approaches.
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a) b) c)

d) e) f)

g) h) i)

Figure 4.11: Row 1: 10dB, Row 2: 5dB,Row 3: 0dB. FDWO-NLFM-TCFDE images:
a),d) & g). LFM-TCFDE images: b),e) & h). LFM-stretch images:
c),f),i).
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4.6.3 Dynamic Interference Source

In the following example the interference spectrum is changing pulse-to-pulse by an

upwards sweep in frequency across the radar bandwidth frequency which the radar

signal is using and the total width of the narrowband interference is kept constant

at 5%. The total SINR is kept constant at 5dB. This scenario demonstrates a need

to employ waveform design regularly enough to compensate for interference changing

pulse-to-pulse. Figure 4.12 shows images created for an azimuth collection where the

waveform design is employed every 5th, 50th, 100th and only once at the beginning of

the data collection. The image heavily degrades if the pulse is not adapted at all after

the initial interference estimate is obtained introducing severe image artifacts. If the

pulse collection is reduced to only once every 5 pulses, the image is not optimal, but still

maintains a clear outline of features. If the radar system is not capable of readapting

the waveform at every pulse, this reduced rate may then still produce images of an

acceptable standard if the interference spectrum is changing at every pulse. The higher

the rate of update, the better the image quality.

a) b)

c) d)

Figure 4.12: Waveform design updated at every: a)5th pulse b) 50th pulse c) 100th
pulse d) once across whole azimuth collection
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4.7 Conclusion

This Chapter has presented a combined system identification and waveform design

scheme for mitigating RFI in SAR on a pulse-to-pulse basis. It has been demonstrated

that under the TCFDE scheme, to minimize the error in the scene impulse response,

the waveform spectral content should be directly proportional to the energy of the RF

interference. Using cyclic extension as an artifact in the processing and using diag-

onalization properties of the DFT allowed formulation of an unconstrained frequency

domain estimate. This estimate was then constrained back in the time domain to pro-

vide a solution for the impulse response. This interference estimate is then used in

the FDWO which shows that the optimal solution is directly proportional the spec-

trum of the interfernce. Combining this with SPA waveform synthesis has provided a

physically feasible means for implementation and is of low computational complexity.

Performance is decreased for larger SINR and wider RFI bandwidths, but is able to ad-

dress larger RFI bandwidths without any additional computational cost. Results have

demonstrated that this scheme can be used for cases where the signal length is either

greater than or less than the ground patch propagation time, but at the expense of loss

of performance due to less noise-removal. This scheme is most suitable for the scenarios

where the bandwidth availability is compromised from leakage from neighboring trans-

mitters or other unwanted in-band interference returning usage of the entire spectrum

to the radar. Compared to spectrum friendly approaches where areas of the spectrum

are avoided due to interference, this scheme competes and aims to return usage of the

entire spectrum to the SAR system.
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Chapter 5

Waveform Design: Fight or Flight

In the crowded spectral environment, waveform transmission with spectral gaps across

its bandwidth is likely to become standard operational practice for wideband radar

modes such as SAR. However, this has to be implemented with caution as removing

frequency samples from the received signal causes degradation of the final SAR image

[71,107,108]. This loss of performance is manifested in reduction of resolution and the

appearance of large sidelobes which spill across the image masking neighbouring cells

with weaker reflectors - a similar set of problems initially caused by the interference. The

competitive waveform design scheme for SAR introduced in Chapter 4 demonstrated

that placing energy across the entire spectrum the waveform “fights” with an interferer

at particular spectral bins, rather than avoid transmission, thereby reducing the extent

of reduced resolution caused by omitting samples. The current optimization method

focuses on minimising the performance based on the unconstrained frequency response

estimate H according to

tr(cov(H− Ĥ)) =

M∑
i=0

Di

|Ωi|2

as derived in Chapter 4. The trace is the sum of all elements on the diagonal of

the covariance matrix; this is the sum of the squares of the errors across the whole

frequency domain specified by the radar bandwidth. The solution to this optimization

from the FDWO in the previous chapter suggested that if the power of a finite-power

interferer was concentrated increasingly at one bin, all of the energy in the transmitted

waveform would be concentrated there, decreasing the energy distributed among the

remaining frequencies. This mode of operation is valid as concentrating energy on

one bin still acts to reduce the resultant interference at the other frequencies so less

energy is required at the other bins. However, if the interferer continues to increase

power in one bin, there will come a limit at which competing at that bin no longer

“wins” the energy fight, and, on the way to addressing it we have reduced our energy

in the remaining bins and so cant estimate the rest of the frequency response in the
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other bins with any reliability. Thus, we may have to consider flight, abandon the bins

where there is simply too much interference and concentrate our resources, the energy

in the transmitted waveform, in the areas of the spectrum where the interference is not

too competitive. In order to continue, we revisit the error covariance matrix and the

elements along the diagonal. This Chapter continues to only consider the elements of

this vector in where we can compete with the interference and modify the waveform

optimization process and system identification accordingly.

A cost function is built to minimize the MSE by separating the transmit waveform

into spectral regions to either place signal energy or avoid. The method provides a

decision on which areas of the spectrum to avoid and transmit - this is particularly

useful in the case where the interference is spanning multiple frequency samples or

for a band with multiple interferences.This modified cost function requires inclusion of

knowledge of the frequency response, which poses a challenge as this is also the desired

outcome of the waveform measurement. Possible options to address this are discussed.

The waveform design process is computationally efficient, and performed on-the-fly on a

pulse-to-pulse basis. As post processing, an attempt is made to recover missing spectral

data caused as a result of a gapped transmit spectrum. This process is aided by the

resultant decrease error in the present frequency domain data via waveform design.

Comparisons are made to well-known spectral interpolation algorithms for SAR phase

history recovery (GAPES and AR-Burg).After missing data recovery, standard image

formation algorithms are applied to produce a SAR image. These images are improved

in terms of reduced artifacts caused by interference and overall image MSE, compared

with the standard LFM and linear notched filter interference mitigation approach.

5.1 System Identification

As before, the system identification process provides a pulse-to-pulse estimate of the

range impulse response and an interference estimate based on the most recent measure-

ment. Following from the time-domain development in the previous chapter, the system

is unchanged until the frequency domain manipulation. The adaptive system structure

is largely the same at a high level, as shown in Figure 5.1, the modification is that

the impulse response estimate is now altered as the frequency response has admitted

gaps in the spectrum, denoted as ĥg for the impulse response. The addition in the full
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Figure 5.1: Pulse-to-pulse system flow chart for gapped waveform design

processing from the previous system is the inclusion of post-processing to attempt to

recover the gaps in the spectrum. The following section will describe the modifications

made to the system identification block to admit gaps in the spectrum.

To facilitate waveform design with gaps in the spectrum, the interference spectral power

defines two sets in the frequency domain for the waveform design process to determine

whether to transmit or omit frequency samples. Allow a threshold value τ to be defined

according to the maximum interference power D across the frequency samples labeled

by index i = 0 . . .M − 1,

τ = τd ×max(Di), 0 < τd < 1 (5.1)

where τd = 1 is analogous to transmitting with the full spectrum. Allow this threshold

to define a set S and its complement S{ over the frequency domain samples of the radar
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Figure 5.2: A single realization of interference D PSD shown in dB with various
threshold levels corresponding to the threshold factor τd.

bandwidth,

S(τ) = {i : Di < τ}

S{(τ) = {i : Di ≥ τ}
(5.2)

These sets will correspond to allowing the transmission of energy in S and restrict trans-

mission in S{. An illustrative example of the threshold applied to a single realization

of interference is shown in Figure 5.2. With this distinction between sets defined, the

frequency domain system identification can be re-expressed accordingly,

Y = ΩSH + N (5.3)

such that the transmitted signal samples

Ωi =

Ωi if i ∈ S

0 if i ∈ S{

Where ΩS denotes the waveform in the frequency domain across the set of “allowed”

transmission samples and therefore any samples for Ω{
S = 0. The interference plus noise
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term N, is unchanged, as is the true frequency response H. Note that the received signal

can be written according to separable sets where

Y{
S = Ω{

SH + NS = (0)H + NS = NS (5.4)

YS = ΩSH + NS (5.5)

The expression in (5.4) implies thats a direct measurement of the interference can be

obtained in the spectral region where the signal has not been transmitted. This is a

potential advantage of allowing gaps in the spectrum. However, the remainder of the

interference in NS is still unknown. An illustration of this effect is shown in Figure

5.3c.

N = NS + NS{ (5.6)

Continuing the frequency domain system identification under the same framework de-

veloped previously by estimating the frequency response,

Ĥi =

0 if i ∈ S{

Yi
Ωi

if i ∈ S

For samples with no corresponding transmitted energy, there will be no measurement

of the frequency response, so is set to zero to avoid division by the zero terms in the

waveform ΩS . Furthermore, as shown in (5.4) any received energy in this band is

interference, which should be removed from the calculation of the frequency response.

Else, the standard result applies. Where HG is the full frequency response vector with

gaps included of length M ,

ĤG = H{
S + HS (5.7)

As before, constrain the impulse response estimate in the time domain

ĥgc = [ IK 0TN−1,K
]F−1Ĥgc (5.8)

Defining ĥgc as the constrained impulse response estimated obtained with gaps in the

spectrum.

Ĥgc = F(

 ĥg

0N

) (5.9)
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Figure 5.3: Various stages of the system ID process:top-to-bottom: a) input gapped
spectrum waveform and the RFI PSD to be identified b)The true frequency
response of the ground, the gapped frequency response and the constrained
frequency response c)the interference amplitude and the separated sets of
the receive signal YS and Y S{
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This provides an error reduced estimate of the spectrum. Which finally, provides a

full estimate N̂ of the interference, where the remainder of the interference NS can be

identified from

N̂ = Y −ΩĤ (5.10)

5.2 Waveform Design

The waveform design is based on the FDWO framework developed in the previous chap-

ter. To allow non-competitive operation, the capability to avoid areas of the spectrum

in the interest of minimizing the overall MSE is developed. The previous format re-

quired knowledge of the interference alone, while this Section demonstrates that the

extension also requires partial knowledge of the scene frequency response.

5.2.1 Missing Samples

Continuing to work with the metric of minimizing the MSE of the estimated frequency

response from the true frequency response, the following Section discusses development

of this cost function. To construct the cost function, the effect of removing samples of

the frequency response on the performance in terms of the MSE must be considered.

The unconstrained performance according to the MSE criterion was previously defined

as the trace of the covariance of the frequency response.

ρ = tr(cov(H− Ĥ)) = tr(E|(H− Ĥ)(H− Ĥ)|) =

M−1∑
i=0

Di

|Ωi|
(5.11)

In an ideal case with no noise/interference, the total covariance is zero. Adding noise to

the system, the estimate of the performance is degraded as the covariance is now non-

zero. In the case that the waveform does not transmit energy in ΩS{ it is assumed that

the frequency samples received in this region only contain background noise, interference

or unwanted energy leakage, as shown in (5.4), the measured frequency response is

therefore zero. So the resultant performance error added by omitting samples can be

written as

ρS(τ){ = tr(cov(Hi − Ĥi)) =
∑

i∈S(τ){

|Hi − 0|2 =
∑

i∈S(τ){

|Hi|2, i ∈ S(τ){ (5.12)
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This term then effectively represents a penalty for removing samples, and its value

is added to the covariance term for the transmitted waveform samples. By assuming

that each frequency sample is independent, the performance of each set can be calcu-

lated separately. Therefore, the total covariance with missing spectral components can

be written as follows, substituting back in the covariance for the non-zero frequency

samples.

ρ(τ) = ρS(τ) + ρS(τ){ =
∑
i∈S(τ)

Di

|Ωi|2
+

∑
i∈S(τ){

|Hi|2 (5.13)

This creates a trade off between the reduction in error caused by omitting frequency

samples with high levels of interference and the increase in error caused by the penalty

term by omitting samples. To minimize the performance error ρ, the sets need to be de-

fined according to τ such that a balance between the resultant performance of omitting

samples and the performance penalty this incurs is obtained. An example of this effect

is demonstrated in Figure 5.4 where the values for ρS and ρS{ are plotted separately

against changing threshold. Here it is demonstrated that increasing SINRs cause vary-

ing levels of performance ρS with changing threshold. Only a single frequency response

plot for different thresholds is shown as ρS{ does not depend on the interference. The

performance error for ρS increases as the threshold increases, as more interference is

included in the covariance estimate (5.13). However, the performance error for ρS{ will

then decrease with increasing threshold as less samples are being removed from the

frequency response estimate.

5.2.2 Waveform Optimization

With the cost function in terms of the MSE of the frequency response defined, this

Section proceeds to demonstrate an approach to solve for the energy distribution of

the waveform and the areas to avoid transmission according to the threshold τ . As

before in Chapter 4, there is limited energy available for transmission so constrained

optimization provides an expression for the waveform spectrum with respect to this

criteria. The optimization is carried out in two steps; firstly the energy distribution that

minimizes ρ is found by enforcing the energy constraint for a fixed arbitrary threshold,

then secondly the threshold that minimizes ρ is found by using the expression for the
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Figure 5.4: Example shows how the independent components ρS{ and PS for the per-
formances change according to threshold factor for four different levels of
interference.

energy distribution. This section begins by performing the constrained optimization

and follows with a method to evaluate the optimal threshold using the constrained

optimization expression.

5.2.2.1 Constrained Optimization

The constrained optimization problem can be expressed as follows under the constraint

of the total energy available, where Ei = |Ωi|2

min
E

ρ(E, τ) =
∑
i∈S(τ)

Di

Ei
+

M∑
i∈S(τ){

|Hi|2

s.t.
∑
i∈S(τ)

Ei = ET

(5.14)
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Proceeding to solve (5.14) under the energy constraint by using the following Lagrangian

L(E, τ) =
∑
i∈S(τ)

Di

Ei
+

∑
i∈S(τ){

|Hi|2 + λ(
∑
i∈S(τ)

Ei − ET ) (5.15)

Now determine the minimum value of the Lagrangian L by setting the first derivative

equal to zero. For this case, the derivative is calculated with respect to values i ∈ S

and τ is fixed in the following partial derivative, such that for a chosen threshold the

resultant waveform energy distribution is then the solution of the Lagrangian optimiza-

tion.

∂L

∂Ei
= −Di

E2
i

+ λ = 0, i ∈ S (5.16)

λ =
Di

E2
i

, i ∈ S (5.17)

Ei =
ET
√
Di∑

i

√
Di

, i ∈ S (5.18)

Which provides the waveform energy distribution over the set defined by a chosen

threshold τ subject to an energy constraint. The optimal waveform is then obtained by

choosing a value of τ and designing a waveform according to the defined sets. As an

extension of the previous FDWO but with gaps allowed in the spectrum, this approach is

named Gapped Frequency Domain Waveform Optimization (GFDWO). Given a means

to obtain the waveform spectrum ES for a chosen threshold τ , an optimization procedure

is now needed to solve for the optimal threshold value τ .

5.2.2.2 Numerical Search

Substituting in the expression for the waveform energy distribution (5.18), the cost

function with implicit energy constraint can now be expressed as:

ρ(τ) =
1

ET
(
∑
i∈S(τ)

√
Di)

2 +
∑

i∈S(τ){

|Hi|2 (5.19)
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As the cost function is only implicitly dependent on τ via the set definition in (5.2)

there is no apparent means to solve this via gradient based methods. Alternatively, 1-

dimensional numerical optimization methods which do not use the gradient but instead

iteratively step towards the extreme value of the cost function can be used for relatively

low computational expense. To find the waveform spectral distribution ES(τ) and the

threshold τ which minimises the performance, carry out the following steps where the

stopping tolerance ∆ρ0 = 1e−4

Algorithm 3 Waveform Optimization: GFDWO

Initialize: Obtain estimate of D, choose initial τ , according to optimization method
1: while ∆ρ >: ∆ρ0 do
2: Define sets S{ and S
3: Obtain estimate of

∑
i∈S(τ){ |Hi|2

4: Calculate performance (5.19)
5: Find next value for τ , based on ρ(τ)
6: end while

5.2.2.3 Cost Function Analysis

To gain an understanding of the form of the cost function to choose an appropriate

optimization method, the resultant performances according to varying thresholds are

demonstrated in Figure 5.5. Varying strengths of interference were generated for both

narrow-band interference occupying 1% of the radar bandwidth and wider interference

occupying 10% of the radar bandwidth. The performance results are plotted against

the relative threshold factor term τd which can take on values between 0 < τd < 1,

representing a continuous range of thresholds from: no transmission across the spectrum

(τd = 0 ) to reduction to the competitive transmission mode (τd = 1) respectively. The

threshold value τd is relative to the strength of the interference; if the noise floor PSD

value of the interference was -60dB from the peak PSD value, -60dB then represents

the τd = 0 scenario. In this way, it is representative of the dynamic range of the

interference. The following results demonstrate the variation of the threshold factor

from its maximum PSD value labeled at 0dB to -70dB below the maximum value.
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5.2.2.4 Cost Function Results

For lower SINR and narrower bandwidth interferences (shown in Figure 5.5a for cases

> 15dB SINR ), it is apparent that the competitive case is the optimal transmission

mode. For higher interference values the optimal threshold tends towards smaller values,

corresponding to larger spectral gaps. The cost function realizations appear to be

smooth and convex - so are likely to have a single minimum. The minina represents

the threshold factor where the balance between omitting samples and competing with

interference has been acheived and finds the lowest MSE. The true position of the

minimum may be more difficult to obtain in cases where the gradient changes very

slowly. In the case where there is a slowly changing gradient, multiple thresholds yield

very little change in performance. This does not impact the final result as it is the

minimum performance value of most concern.

The general trend shown in Figure 5.5a & b that for increasing interference SINR, the

minimum performance value is obtained with a decreasing threshold factor value. This

is an intuitive result, as the lower the interference, the lower the total contributing

value for ρ{S , compared with the cost of missing samples. The cost function results

demonstrate that generally better overall performances can be obtained from narrower

RFI bandwidths - Figure 5.5a. As the SINR increases, wider bandwidths result in more

samples requiring removal from the available samples to transmit, resulting in a greater

penalty. For wider band interferences, it can be observed that the best possible per-

formance achievable is worse (higher MSE) compared to narrower interferences. In the

competitive mode, the energy has to spread across more bins, reducing the achievable

SINR at each sample. Allowing spectral gaps then results in a larger loss of samples for

wider-band interferences to compensate for the additional large contributing ρS terms.

Plotting the cost functions has determined that the performance cost functions can

informally be treated as convex one-dimensional optimization problem.
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Figure 5.5: MSE performance plotted as a function against relative threshold value τd

on a semi-log scale. τd = 1 (e.g. 100)is representative of the competitive

case where transmission is across the entire radar bandwidth and no gaps

are admitted into the spectrum. τd = 0 is representative of no transmis-

sion. These results are representative of stepping through from full to no

transmission.
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5.2.3 Optimization Procedure

While any numerical 1D optimization procedure could be applied, the proposed method

for optimization is the “golden section” method which uses two points to begin an it-

erative search for the value which minimizes a cost function. This is especially useful

in this scenario where the result is bounded between 0 < τd < 1. The golden section is

dependent on the objective function being univariate in nature (a single extreme point)

which is well suited to convex problems. It is not proven that the performance function

has a single minima and it is possible that more than one minimum may exist. How-

ever, as shown in Figure 5.5, it is implied that the resultanting performance difference

would be very small as the function is both smooth and has a slowly varying gradient

around the minimum resulting in many threshold values having similar performance

values. Furthermore both of the input functions ρS and ρS{ are linearly decreasing and

increasing respectively with decreasing threshold factor, the resultanting optimization

function will then be well-behaved.

While this method does not guarantee to find the global minimum, choosing a sensible

initial input parameter improves the route which the optimization procedure takes,

improving the chances of finding the global minimum. As the total energy in the

transmitted signal is known, the SINR can be used as an indicative parameter to select

a range of thresholds to search. By initializing the optimization with a value closer to

the global minimum, the overall result and computational time for the golden section

method will be improved. By exploiting the linearly decreasing correlation between

the SINR and the threshold factor τd, and allowing the search to take on this value

+/−10% of the estimated value of τd the search criteria can be narrowed, reducing the

likelihood of becoming stuck in local minima. The SINR metric does not factor into

account the spectral shape and interference bandwidth, but provides a rough indicator

of performance suitable for initializing the golden search. While the actual results are

dependent on the nature of the interference and scene content, this approach provide

a search margin for the golden section method. The values do not need to be exact as

they are merely providing a starting point for the optimization procedure.

Using the global optimization procedure particle swarm, the true minimum can be

found. There is a general trend between the threshold factor and the SINR. As shown

in Figure 5.6, by initializing the golden section method with the values indicted by the
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Figure 5.6: Numerical search for optimal threshold across different time domain SINR
interferences at 1% RFI bandwidth for a distributed scene. The algorithms
used are the golden search across the full range of τd, particle swarm
optimization and golden search with specifically chosen search ranges

SINR, the accuracy of the result, compared with the particle swarm algorithm which is

assumed to be the true minimum, has improved. It is shown that the global optimization

procedure tends to find lower optimal threshold values. The cost function tends to have

slowing gradient near the minimum in which the golden section method converges as the

performance difference is less than 1e−4∆ρ0, the global method continues to iterate until

a much smaller convergence criteria is met as it will not become stuck in local minima.

These differences in optimal threshold however do not greatly impact the performance

due to the slower gradients that can be observed around the minima relating to little

change in performance.

5.2.4 Cost Function Estimation

On designing the waveform, the performance cost function must be evaluated by ob-

taining; a recent estimate of the interference Di, the frequency response values Hi that

will be omitted, and the total waveform energy ET . Obtaining the current estimate of

the penalty parameter of the cost function is problematic in two ways. Firstly, an esti-

mate of the overall energy loss in the return of the next frequency response is required.
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Clearly this cannot be known a-priori as this is the desired outcome of the radar data

acquisition process. The interference may not change pulse to pulse, but by the nature

of SAR data collection, there will almost certainly be a change in frequency response

pulse-to-pulse to some extent. Secondly, by not transmitting energy within a given

band S, there is a lack of historical information on the frequency response to then make

an estimate of the next measurement. Under the waveform design scheme where holes

are being placed in the spectrum, this data may not ever be collected. Both problems

are missing data problems. As in many applications for missing data, the existing data

must be exploited in some manner to predict or assume something about the missing

content. Proceeding, it is worth noting that it is not each sample of the frequency

response required but the summation over all samples squared.

∑
i∈S{
|Hi|2 (5.20)

It is postulated that the requirement of a summation, and not the individual values, then

gives the problem the freedom such that only an estimate within the correct magnitude

will be sufficient. Possible approaches to providing an estimate are as follows:

• Use the frequency response for the immediately prior pulse - while the nature

of the synthetic aperture means that the ground frequency response is changing

due to changed position and angle, overall the change between pulses is small. In

terms of energy, there is the same total response from the scene, but the sample

to sample magnitudes are subject to a change within this limit at each pulse. The

summed value over a number of pulses may then gives more leeway - the changes

sample to sample may be high with respect to the value of the measurement

(depending on platform motion), but the change in summed average will not be

significant in terms of order of magnitude.

• If the prior pulse frequency response has gaps in the spectrum due to waveform

design or is corrupted with a high level of interference, there are two options;

1) take a crude estimate of the frequency response using the mean value across

the existing data, assuming that the ground can be represented as wide sense

stationary. 2) interpolate using a fast AR method to obtain an estimate of (5.20).

• Use autoregressive methods along the slow-time data collection to extrapolate
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the data to predict the total energy loss. This is likely to be a computationally

inefficient approach due to the possibly low information gain with respect to high

computational cost

The waveform design has to adapt to both the possible change in interference, and the

certain change in frequency response over the azimuth run. While changes in frequency

response may be slow on a pulse-to-pulse basis, they are guaranteed to change over

the course of the azimuth data collection at a rate proportional to the pulse-repetition

interval(PRI). The longer the PRI, the more change that will be observed from a moving

platform.

There are two key cases to consider when using the previous frequency response mea-

surement. Firstly, the most common case in this scheme, in which the previous fre-

quency response has a gap in the spectrum. The second case is where a new interference

source has appeared in the previous pulse and has corrupted the frequency response in

a region that was previously unexpected. In this scenario, the system identification is

able to locate the frequency bins with the highest interference so that these samples are

not used for estimating the next frequency response. Both of these cases then lead a

gap in the frequency response of the scene.

To carry out waveform design, methods to estimate the penalty function with missing

information are explored.

Method 1: Basic Averaging

To design the next waveform, the frequency response from the previous pulse HP−1

is used which is assumed to have spectral gaps. The assumption is made that the

average of absolute value of the frequency response squared of the known samples is

approximately equal to the value across the unknown samples

∑
i∈S |H

P−1
i |2

NP−1
a (τ)

≈
∑

i∈S{ |H
P−1
i |2

NP−1
m (τ)

(5.21)

where Na is the number of available samples and Nm is the number of missing sam-

ples. For scenes where the frequency response is wide sense stationary, this assumption

should hold well.The penalty function is then calculated so for each threshold estima-
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tion carried out in the optimization procedure, only the corresponding new number of

missing samples requires updating.

ρS{(τ) =
Nm(τ)

NP−1
a (τ)

NP−1
a∑
i=1

|HP−1
i |2 (5.22)

Method 2: Autoregressive Interpolation

Again, using the previous gapped frequency response, the individual values aim to be

filled in using autoregressive interpolation. This method is detailed in full in Section

5.4. Using the existing values in the previous frequency response HP−1
S , forward and

backwards linear prediction aims to fill in the missing samples. These samples can then

be inserted into the usual equation for the penalty value (5.20). This method comes

at a much higher computational expense than averaging, for each missing sample AR

coefficients must be calculated according to the input data, before performing the actual

estimation of the missing sample.

Figure 5.7 demonstrates an example of these methods applied to a single realization of

the absolute value of the frequency response. As shown the averaging method appears

to taper over the gap in a simplistic manner whereas the AR approach shows sample

to sample variation.
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Figure 5.7: Assumed values of |H| used for estimating the penalty value - both the

averaged and interpolated values are shown for a sparse scene frequency

response. Zoomed in plot of gap shown below

Spectral Gap Estimation Impact on Performance

The following simulations were carried out with the intention of demonstrating the

impact of frequency response estimation over the gap using previous information, com-

pared to the optimal outcome using the true frequency response of the current pulse of
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interest. The simulations are based on those described previously, values can be found

in Chapter 4 or Appendix A. The pulses are based on pulse 2-4 of the SAR collection

to allow initialization of a gapped waveform.

The example considers two consecutive pulses (pulse 3 & 4), the first of which has

already been designed to have a gap in the spectrum XP−1
S(τ){

according the chosen

threshold τP−1 based on the known measurement of the interference two pulses ago

DP−2 and the predicted frequency response loss calculated based on HP−2. The second

pulse in the experiment is the current pulse which is under design. Using the most recent

interference estimate obtained from the prior pulse DP−1, and the gapped frequency

estimate HP−1
S , results for the different proposed methods of estimating (5.20) are

compared. To demonstrate how the performance changes with increasing interference

levels, and therefore differing threshold levels, the same experiment is conducted at

different SINR levels.
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(a) Differences between the estimated

penalty and actual penalty value
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scene

Figure 5.8: Results using different methods to approximate missing frequency response

show for both the penalty value and overall performance. The previous

pulse with a gap is used to predict the next transmitted waveform.

Figure 5.8a shows the direct difference in penalty value between what the true fre-

quency response in the gap is, and the estimated gap for the averaging and interpolation

method. This is demonstrated here for a distributed scene where the frequency response

exhibits high levels of sample to sample variation - exemplifying a worst case scenario

(sparse scenes with fewer strong target returns have less sample to sample variance).

132



Waveform Design: Fight or Flight

High sample to sample variation referring to the variation being on the same scale as

the value of the measurement itself. AR methods struggle to model the rapid changes

and a small gap may not represent the average value for the averaging method. While

it is not possible to obtain the current frequency response method before waveform

design, it is shown here for comparison purposes - this has been obtained in simulation

by firstly calculating the optimal gapped waveform using the true penalty value (known

to the simulation by design), then using the return to estimate the frequency response.

The best performance shown is the result for the difference in penalty value (5.20) be-

tween the estimate and true value and applying the averaging method to the current

pulse frequency response result. All method’s performances are related to the quality

of the frequency response estimate they are based on which decreases with SINR. The

interpolated approach has a larger performance error than the averaging method, for

both versions. Overall, the scale of error compared with the frequency response value is

small. This then results in a very small impact on the performance difference as shown

in Figure 5.8b. As the SINR decreases, this error in penalty estimate is smaller in

comparison with the additional error due to interference and more missing data in the

system. Then, it is concluded that estimation using the summation across the penalty

value is a reasonable substitute for the lack of the known frequency response estimate.

5.2.5 Waveform Synthesis

The previous Chapter demonstrated that for a continuous spectrum, the SPA provided

a suitable fit to an input spectrum. As an approximate method, the SPA struggles

to replicate the deep nulls under the constant modulus amplitude constraint. While

the waveform synthesis is a secondary consideration to the FDWO method, it is a

considerable factor in the final perfomance. Ideally to produce deep notches, a more

computationally expensive but precise synthesis method would be used such as [64],

however this does not support functionality for the adaptive element of the system.

Instead, the proceeding results are shown for direct synthesis, assuming this has been

achieved via some means such as OFDM waveform synthesis. For a more practically

realistic comparison, the results obtained using SPA are also shown. This problem in

itself is a research topic in its own right, and it outside the scope of the research here.
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5.3 Performance Evaluation

5.3.1 Simulation Set-Up

The estimated optimal waveform for varying levels of interference are shown in terms

of their resultant constrained frequency response MSE and the resulting interference

estimate MSE. When the threshold is at the maximum, the penalty term disappears,

so is plotted to compare the results against the competitive case. The case where the

threshold is chosen to fully remove interference at any value above the noise floor is

shown as τmin. This result is then combined with the waveform design and system

identification approach as before, but with the pre-selected threshold. The result with

the same noise-floor threshold is also shown for a standard LFM and matched filter

where all frequency samples with interference present are notched out on receive. As the

SINR increases, the performance decreases linearly with SINR for the full competitive

case, while the gapped spectrum case decays at a slower rate - shown in Figure 5.9a.

The competitive performance is entirely dependent on the increasing level of error in

the frequency response according to the ρS term. The gapped spectrum case has slower

decaying performance as it removes the highest interference contributions but then adds

to the error by removing more samples as the interference strength increases (and the

optimal threshold also decreases). The minimum threshold case does not change as

the interference increases as all the contributing interference above the noise floor are

removed at all cases. This comparative result then demonstrates the performance gain

that can be made using this optimal threshold waveform design method, as opposed to

standard operation where all interference is removed.
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Figure 5.9: MSE performance results with 5% RFI bandwidth present for varying

SINRs

For the interference estimate, the competitive case performance degrades linearly with

the SINR in dB, as demonstrated in the previous chapter, but is not shown here due to

its effect on the scale of the graph. The differences between the interference estimate

error from the optimal and the minimum threshold case are small. This is as a result

of the direct measurement of the interference where the waveform does not transmit
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- as shown in (5.4). The low threshold case performs similarly to the optimal case

as the interference is measured directly in the gapped spectral region, the additional

performance gain available in the optimal case is due to the improved interference

estimate obtained from ρS{ - the overall MSE is improved here in the optimal case.

An example interference spectrum and the resultant waveform is demonstrated for four

different interference levels in Figure 5.10. Three waveforms are shown; the resultant

optimal threshold waveform, the competitive case, and the minimum threshold case. In

the first example at 20dB SINR, the threshold creates a small gap where the strongest

interferer lies. Increasing the interference to 10dB SINR, the threshold lowers further

and a larger waveform gap is created. At -5dB SINR, for this case the minimum

threshold waveform and the optimal waveform are very similar. There is very little

change between the threshold here and for the following result at -20dB SINR. This is a

good example of the effect where the performance function does not see much change in

performance for relative threshold value. The total relative threshold factor value has

changed as interference dynamic range is 65dB in example c) but 85dB in example

d). Although the optimal threshold factor has changed, the resultant waveform and

performance has only differed slightly.

This waveform design method finds particular use for a spectrum with multiple in-

terferers as shown in this case. The transmitted energy below the threshold operates

in a spectrum competitive way to maintain the minimal MSE. For example, if across

the radar bandwidth there are stronger and a weaker interference sources, the wave-

form optimization will choose the appropriate threshold to compete where possible, and

place spectral holes otherwise. Also for wider-band interference signals that spill energy

across multiple neighbouring bins, this technique will find the optimal level to compete

or avoid at no additional computational cost.
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a) b)

c) d)

Figure 5.10: Waveform design plots in frequency domain at respective SINR: a)20dB

b)10db c)-5dB d)-20dB

5.3.2 SAR Image Result

To demonstrate the performance impact of correctly designing the threshold according

to the interference level and using the developed waveform design criteria, a series of

example SAR images are shown. The interference has been kept constant across the

collection and averaged according to the exponential smoothing criteria also used in

the previous chapter. At each pulse, the prior pulse is used to predict the gap using
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the averaging method detailed in Section 5.2.4. The interference estimate is updated

at each pulse according to an exponential smoothing window, where the averaging

window is 10 pulses long. The constrained impulse response vectors for each pulse

are then formulated from the constrained frequency response vectors by application of

the IFFT. Each of the impulse response vectors are then used in the back-projection

image formation. Two contrasting sets of images are shown, one at 5dB SINR where

the competitive case is still applicable as demonstrated previously, the other at -20dB

SINR at which point the competitive case has significantly degraded. Also shown is the

case where any interference above the noise-floor is notched out (τd = min). This is

also applied to a LFM-notched matched filter, where any interference above the noise

floor has a null placed at the relevant receive frequency.

a) b) c) d)

e) f) g) h)

Figure 5.11: Figures a - d represent images formed at 5dB SINR, figures e - h rep-

resent images formed at -20dB SINR. Images a & e are formed with

τd = min threshold, b & f formed with τd = 1, c & g τopt and d & h

are formed using a matched filter where frequencies with interference are

notched out on receive

The images at 5dB appear to be of similar quality for τd = opt and τd = 1, whereas the

fully notched cases show additional artifacts and some further blurring - particularly for
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the notched matched filter. Increasing to -20dB, the competitive case is by far the worst

image result. The results for the minimal and optimal threshold are similar, as artifacts

have been introduced due to the missing spectral components in the optimal case as

more samples have been removed due to higher interference. The result for the notched

matched filter appears to be unchanged, as the processing is the same regardless of

SINR.

5.4 Spectrum Recovery

It has been discussed that creating gaps in the spectrum causes a decrease in the

performance in terms of the frequency response MSE due to raised sidelobes throughout

the range profile. There are a class of methods which attempt to refill the spectrum

based on the available data. As the waveform design creates gaps in the spectrum, it is

then appropriate to consider these interpolation algorithms as a post-processing step to

produce an enhanced estimate of the frequency response. This allows the formation of

images without holes in the spectrum, improving the final image MSE. Additionally, by

improving the estimate of the existing estimate of H ∈ S through minimising the MSE

by waveform design, it is proposed that an enhanced estimate of H ∈ S{ can be made by

refilling the spectrum, compared with a transmitted LFM signal, notch-on receive and

then re-fill. Reconstructing missing phase history has previously been demonstrated

by a collection of algorithms [88], [89]. The most successful application in terms of

result for computational cost are generally accepted to be gapped APES [90] and the

autoregressive method AR-Burg [89]. Below the basic operation of the algorithms and

any assumptions made are briefly noted.

5.4.1 Gapped Spectral Estimation

The amplitude and phase estimation (APES) algorithm is a matched filterbank ap-

proach to amplitude spectrum estimation. GAPES is the extension of the algorithm

to include gapped data and has previously been successfully applied to missing phase

history problems where the image range profile is set up as a spectral estimation prob-

lem [90]. The filterbank that is used by APES and its resulting estimated spectrum can

be used to minimise a least squares criterion which can also be applied to the missing
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data. The least squares criterion then iteratively restores the missing samples, based

initially on the APES filterbank and spectral data that is constructed from the known

data. The only assumption this algorithm makes about the unknown data is that the

missing samples have the same spectral content as the known data. In this context,

the spectral data is the impulse response of the scene, and the time-series data is the

phase history. (In SAR it is common in across areas to interchange the labeling of the

impulse response of the scene as time series data or frequency data, depending on how

the phase history (or frequency response) data is then delimited. It has no bearing on

the end result and is merely a notational preference.) This assumption that the spec-

tral data from the missing samples is the same as the known samples has previously

been shown to hold well for a small number of spectral peaks, which in this context

corresponds to a scene with few strong reflectors. This assumption then does not hold

well for a homogeneous scene with many targets of similar strength, corresponding to

a high density of spectral data to be recovered.

The creation of the filterbank depends on the construction of full-rank covariance ma-

trices. The length of the filters then need to avoid including the “edges” of the data

(start and end), to avoid including zeros representing discontinuities that do not cor-

rectly model the data. This must be taken into account again when introducing the

gaps in the data, enforcing lower filter lengths. It has previously been shown that longer

filter lengths increases the resolution of the estimate, but at the cost of less statistical

stability. Higher spectral resolution can be obtained by defining a higher resolution grid

to estimate the spectrum. Choosing a suitably low length filter to avoid discontinuities

in the data and pairing this with a grid that is finer than the original Fourier samples to

yield a result with a high resolution, that is also numerically stable. GAPES has a dis-

advantage in that its computational expense is high. The original filterbank estimation

requires a covariance matrix inversion for every spectral point to be estimated. The

covariance matrix is of dimension L×L, where L = N−M+1 and N is the total length

of the time-series, and M is the chosen filter length. So by decreasing the size of the

filter the cost of the matrix inversion is increased, in addition to the expense incurred

by introducing a finer spectral grid to increase the resolution. However, as each pulse

is processed independently, this does not need to be performed on the fly and can be

applied to the data after collection. As the waveform design at each pulse optimizes the

scene based on the interference to improve the estimator input data, there is no benefit
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to processing the spectrum-refilled data on a pulse-to-pulse method on the fly.

5.4.2 Linear Prediction

Auto-regressive (AR) models represent a stochastic signal by expressing each output

variable as a linear summation of its own previous values. The current value of an AR

sequence is calculated as a linear combination of the past p values, determined by the

order of the model p, plus input white noise

y(n) = −
p∑

k=1

a(k)y(n− k) + ε(n) (5.23)

where y(n) is a stationary stochastic signal and ε is white noise. The estimation of the

autoregressive parameters a(k) can be performed by a variety of methods, namely the

Yule-Walker, Levinson-Durbin algorithm (LDA) and the Burg algorithm (which itself

uses the LDA). The estimation algorithms are driven by recursively minimising the sum

of the squares of the error between the original and approximated values. The Burg

algorithm uses the LDA but with different inputs to obtain a more numerically stable

result. The LDA approach directly estimates the autoregressive coefficients, while the

Burg algorithm estimates the reflection coefficients which represent the time dependence

between y(n) and y(n − k) after filtering out the prediction from the previous k − 1

samples. Comparisons between various AR estimators show the Burg algorithm to have

lower bias and better numerical stability [109]. Moreover, this particular AR-estimator

method has been previously implemented for a missing phase history.

5.4.2.1 Implementation

The missing frequency response data from the scene is assumed to be an autoregressive

stationary process, such that its AR coefficients can then be estimated using the Burg

algorithm. With the exception of the missing samples, the data is uniformly sampled,

which allows application of the Burg method. Using both forward and linear prediction,

the existing data allows interpolation into the gap from either side. The Burg algorithm

has a modified version specifically for segmented data, which readily fits into the context

of the missing data problem, allocating the segments into the region before and after

the gap [110]. The implications of segmenting the data are that the maximum possible
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model order is reduced; the larger the spectral gap, the lower the maximum model order

can be. However it is worth noting a higher model order does not correspond to a better

fitting AR model - higher order models can lead to overfitting of the data. The optimal

model order can be calculated by minimising Akaike’s information criteria [111]

AIC(p) = ln(RES(p)) +
2p

N
(5.24)

Where RES is the residual variance of the model calculated for a model order p, N is

the number of samples in the data set - in this case N = k +M .

5.4.3 Comparison of spectrum recovery techniques

A series of experiments were carried out to demonstrate how the algorithms perform

in the context of this work. For increasing interference SINR, the difference between

the algorithm MSE and the raw data MSE is demonstrated - both for a sparse scene

with just 1% of the overall range profile is populated, and for a distributed scene with

every cell in the range profile populated with a complex value. A distributed scene

is homogeneous with no significantly strong point targets and exhibits a frequency

response with higher levels of covariance. A sparse scene represents the opposite scenario

with only a very small number of targets and a relatively flat frequency response.

Results in Figure 5.12 are averaged over 100 Monte-Carlo runs, where the impulse

response and interference are non-deterministic. Shown in Figure 5.13 is a realization

of the frequency response recovery and in Figure 5.14 the resultant range profile for the

gapped, the AR-Burg and GAPES recovered data.
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Figure 5.12: Spectrum recovery results in terms of MSE for varying SINR
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Figure 5.13: Example realizations of frequency response recovery
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Figure 5.14: Example realization of final impulse response after spectral recovery

The sparse scene recovery using the GAPES algorithm is very accurate, recovering the

original frequency response to the level of numerical precision of the data. For a sparse

scene, the small number of targets corresponds to a small number of superimposed

frequencies for the GAPES algorithm to recover, which is easily recoverable from the

existing data. The performance degrades for a distributed scene, which represents a

large number of frequencies to recover - the missing frequency samples are then not eas-

ily obtainable from the present data. The GAPES algorithm is very computationally

expensive, but outperforms the AR-Burg algorithm for all observed data points. For

the sparse scene, AR-Burg improves the gapped data, but worsens the estimate of the

gapped data for a distributed scene. For scenes with fewer targets, the recommended

algorithm would be AR-Burg to save on computation time, but for homogeneous scenes

with no or little distinctive targets, the GAPES algorithm must be used to yield im-

proved results. For many SAR scenes, the AR-Burg algorithm should be applicable, as

many images have targets with larger reflectivity and particular reflectors of interest,

particularly in military applications.

5.5 Simulated SAR Images

To demonstrate the final result of the adaptive process and spectrum re-filling the

following Section details a series of SAR image examples.
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5.5.1 Example 1: Constant Interference Source

For a constant interference source, exponential averaging provides an increasingly ac-

curate statistical estimate of the interference. The waveform design is updated at each

pulse according to the most recent estimate of the interference and the previous fre-

quency response estimate. The interference estimate is updated with an exponential

smoothing window of length 10 pulses, and the frequency response gap penalty is esti-

mated via averaging described in Section 5.2.4. With few other parameters changing,

this example can clearly demonstrate the final results between the different interpola-

tion algorithms. It is observed that compared to the gapped spectrum image, using
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Figure 5.15: Waveform design and spectrum recovery at 0dB SINR: a) GAPES-
recovered image b) AR-Burg recovered image c)Image with holes in spec-
trum

spectral recovery lowers the sidelobe levels which then increases the possible dynamic

range of the SAR image. The example shown in Figure 5.15 shows that GAPES pro-

vides the best quality image in terms of blurriness. Both images offer similar levels of

dynamic range.

5.5.2 Example 2: Changing Interference Source- Sweep

In parallel to the example in the previous chapter, an interferer which has a sweeping

centre frequency across the radar bandwidth during the azimuth run is simulated. The

example in 5.15 shows the resulting impact on image formation when the image is

updated at every pulse, every 10th pulse and every 50 pulses out of a total of 500

azimuth collection points. Due to the interference changing between pulses and the
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most recent possible update being the one prior, this exemplifies the best effort in the

worst case scenario, as the update scheme cannot obtain interference updates spectra

on an intra-pulse basis. Comparing the image in Figure 5.16a to the prior example,

Figure 5.16, shows the level of degradation caused from changing interference pulse-to-

pulse. Some additional blurriness is caused, but the image quality is still reasonable.

As expected, the images show increasing levels of distortion with lessening waveform

update rates. At higher interference levels which changes pulse-to-pulse as shown, the

waveform must be updated more regularly to avoid corrupting the frequency response

estimate.
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Figure 5.16: Waveform design and spectrum recovery using GAPES at 0dB SINR
with interference changing pulse-to-pulse: a) Update at every pulse b)
update at every 10th pulse c)update at every 50th pulse

5.6 Adaptive System Overview

This Chapter has proposed an extension to the adaptive waveform design technique

based on the initial system identification and FDWO concept with added spectral

avoidance. The waveform design and system identification process depend on applying

a threshold to the interference estimate to separate the frequency-domain data into two

regions; firstly a set where the interference is deemed too disruptive to compete and

waveform transmission should avoid transmission and secondly, a set where the wave-

form should transmit its energy optimally to minimise the impulse response MSE. In

the case where the interference is too high, the system identification process has high

levels of interference in the frequency response and the interference estimate is very low
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- neither result is then useful for the adaptive system without additional processing, for

example using computationally expensive methods that are infeasible on the fly to esti-

mate and subtract interference. The key difference from the competitive approach is the

requirement of partial information on the scene frequency response, as demonstrated in

Section 5.2.4.

Now the full system has been discussed, a possible outline of the system logistics are dis-

cussed here, including: the initialization of the system, the adaptive scheme with wave-

form design and the system identification receive filter and additional post-processing

leading to image formation.

5.6.1 System Initialization

As the radar system is switched on, it is beneficial to have a measurement only period

before transmission, sometimes known as a “sniff”, to obtain initial information on

background noise and interference levels at the receiver. If there is interference present,

this measurement will be used in the waveform design. However, an estimate of the

scene frequency response will also be required if the interference is suitably high and

therefore it is likely that the waveform design criteria chooses to place gaps in the

spectrum. An appropriate course of action could be to initially estimate a threshold

according to the overall SINR, as was done to refine the optimization search in Section

5.2.3. In low SINR levels an LFM signal can be transmitted in order to obtain a rough

estimate of the full frequency response and the interference profile. This cannot be used

if the interference is very high on receive as the estimate of the frequency response can

be significantly degraded.

5.6.2 Scene Data Acquisition

After the initial measurements of the frequency response and interference have been

obtained, the waveform can be redesigned at every pulse according to the most recent

gathered interference data or a decision can be made at each pulse based on whether the

interference has changed more than a user defined parameter to the interference when

the waveform was last designed. This is also run alongside a check with the change

in frequency response. As the previous competitive system only needed information
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on whether the interference had changed - if the background interference source did

not change, the waveform could remain the same throughout the entire data collection.

In this scheme, with the added dependence on the ground frequency response, the

waveform may require more redesign as the frequency response will change across the

aperture. The frequency response changes slowly pulse - to - pulse, depending on the

PRI and the change in look angle and if there has been any change in scene content.

If the radar platform is moving rapidly, this will cause a larger change in angle and

require a higher rate of waveform re-design.

5.6.3 Data Recovery

After the adaptive data-acquisition period is complete, any missing frequency data sam-

ples can be recovered offline as the waveform design has gathered the optimal impulse

response MSE at each pulse. SAR images can be created with these missing gaps, but

for optimal image performance, an attempt was made to refill these in the interest of

reducing sidelobes, MSE and any artifacts caused by the missing data.

5.7 Chapter Summary

This chapter has expanded on the competitive waveform design framework by using

information on the scene frequency response to alter the optimization process to al-

low creation of a gapped waveform spectrum where it improves the frequency/impulse

response MSE. It has been demonstrated that the results will either be equal in perfor-

mance or better than that possible for the competitive framework. The waveform design

continues to act in a partially-competitive manner by placing spectrum energy where

interference lies to obtain a better estimate of the frequency response, but now addition-

ally allows the gaps at the spectral locations where the interference is too disruptive to

the estimate of the frequency response. Placing a threshold on the interference makes

a binary decision on which samples to compete with, and which to avoid. By allow-

ing gaps, a penalty term is introduced which causes some degradation of performance,

manifested as a rise in sidelobes, reduction in resolution, and therefore a reduction in

the dynamic range in the SAR images, reducing the ability to image low reflectivity

scatterers. As is standard in the missing phase-history problem, spectrum recovery has
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been achieved by using the GAPES algorithm for both sparse and distributed scenes.

This method is slightly more computationally expensive than the prior due to the re-

quirement for 1D numerical optimization at each pulse. However, relative to alternative

waveform design optimization methods such as those described in [27], this 1D approach

requires far less computation and is still expected to be a feasible method for on the fly

waveform adaptivity.

There are several complexities that are included when considering a waveform with

spectral gaps. Firstly an appropriate method to recover the lost spectral data and

also consideration of whether it is necessary to invest the required compute time to

attempt to recover the omitted spectral data. While using the SPA method does not

yield the necessary nulls in the spectrum as dictated by the GFDWO, it produces an

approximation which still provides improved results to the FDWO for high interferences.

Applying the SPA to the GFDWO may not produce deep nulls, but the improved

performance is owed to the removal of putting all the energy resources into competing

with a small number of large interference bins.
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Chapter 6

Chapter 6: Conclusions

This thesis has proposed a solution for RFI SAR mitigation via an adaptive waveform

design scheme. The aims and solutions proposed in this thesis are as follows:

1. Reducing impact of of RFI on resultant image: The system identification

method proposed, the time constrained frequency domain estimate (TCFDE),

provided an improved estimate of the impulse response and the interference spec-

tra via spectral waveform design (this result also meets aim 4- to be capable of

estimating interference).The methods discussed in Chapter 4 are more suited to

narrowband RFI, whereas Chapter 5 methods are more capable of treating RFI

with < 1% of the radar bandwidth. The impulse response estimate is provided

on a pulse-to-pulse basis providing a resultant test SAR image which is improved

in terms of image clarity (enhanced sharpness of features) and increased dynamic

range. Applied in a real system, this would likely correspond to reduction of im-

age blurring, removal of any added lines in the image and the ability to image

terrain and other weaker reflectivity targets.

2. Adaptive solution via low cost computational algorithms: The adaptive

cycle discussed in Chapter 4 consists of: system identification (via TCFDE), wave-

form design and waveform synthesis (via stationary phase approximation SPA).

The newly designed waveform is adapting to the most recent estimate of the in-

terference provided by the system identification, therein lies the adaptivity. The

frequency domain waveform optimization (FDWO) method provided a closed-

form solution which was developed by allowing an approximation in the frequency

domain. As a non-iterative method, this provides a reduction in computation re-

quired. Additionally, it scales in complexity with the length of the received signal

length M . Depending on the compute power of the radar system, this algorithm

is likely capable of running within the span of 1 pulse repetition interval(PRI).

This algorithm is of the same complexity as the discrete Fourier transform(DFT).
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DFT based algorithms are already run on legacy radar systems so it is plaus-

able that the proposed adaptive method would too. The methods described in

Chapter 5 are based on the same adaptive cycle elements of system identification,

waveform optimization and waveform synthesis, with modifications. The gapped

frequency domain waveform optimization (GFWDO), is not closed-form but uses

a 1-D optimization. However, this typically requires only a small number (around

10) of computationally cheap iterations to provide a solution. These iterations do

not require the DFT but just vector summation. Therefore the overall combined

complexity of the adaptive cycle in Chapter 5 is still O(M log2(M)).

3. Is feasibly implementable to current electronically scanned radars: It

was laid out in Chapter 2 that for a waveform to be physically viable, it should

have a constant amplitude waveform to allow synthesis via class-C amplifiers and

be continually increasing in phase to assist beam-steering. By using the stationary

phase approximation, both of these waveform synthesis criteria are met. However,

as discussed, in Chapter 5 a more difficult synthesis problem is introduced. While

the GFDWO solution dictates that the wavefom sythesizes large gaps in the spec-

tum, these are not obtainable under the constraints of constant amplitude and

increasing phase via SPA. There is then some reduction in performance between

the desired waveform and the output. It is possible that SPA in conjunction with

another method that places notches across the NLFM synthesized waveform may

result in an improved waveform synthesis.

6.1 Recommendations and Future work

This thesis has provided a first-look at the necessary theory and demonstrated possible

results that could be obtained using adaptive waveform design for interference mitiga-

tion in SAR via simulation. The results show that there is a significant improvement in

the impact of RFI possible using these methods. However, it is important to take note

that these results will be restricted to at some limit by the saturation point of the re-

ceiver. After a radar hardware-defined limit, the combined strength of the interference

and the return signal will drive the receiver into the non-linear region corrupting the

signal. Due to the adaptive nature of the techniques used in this thesis, it has not been

possible to use real SAR data sets that mimic the behavior of adaptation in this study.
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In the near future, experimental radar systems which employ waveform agility and are

software driven facilitated by FPGAs may allow small scale tests of this system. With

a controlled interference source, this could more realistically test the upper limit of the

radar system for saturation.

To improve the waveform synthesis result in Chapter 5, a study into possible methods

for introducing notches alongside SPA in a computationally efficient manner is rec-

ommended. There are many existing methods discussed in Chapter 2 i.e. [2, 64], but

few that are computationally cheap and that offer good performance. Modifications to

the existing SPA method could yield slightly better performance, if a “stop” and “go”

method was used - i.e. seperate the synthesis process into bands where transmission is

allowed; over time allocating energy for transmission at wanted frequencies and having

small periods of no transmission for times corresponding to unwanted frequencies.

It is well-known that high sidelobes pose a significant problem in detection modes - the

TCFDE method may be applicable in LPRF modes with a long signal duration and no

range ambiguities to provide a sidelobe free range profile. However, the higher Doppler

shifts typically found in airborne detection modes are significantly higher than those

demonstrated in Chapter 3 for SAR platform motion relative to the ground, which

would require further investigation.

As highlighted by [17, 47], the target recognition problem requires a different spectral

waveform design solution to the detection problem and also requires a high bandwidth

to discern features. The RFI mitigation methods discussed in this thesis may be directly

applicable to a target recognition problem which, due to its high bandwidth, is likely to

meet the same problems as SAR in the crowded spectrum in its vulnerability to RFI.

The solutions in this thesis were devised using the basis of system identification and

optimizing the CRLB to provide the best estimate of the impulse response. Alterna-

tively, this problem could be approached by forming an optimization problem based on

the information theory route, similar to the techniques in [17,47]

Another possible future route of investigation is to use compressive sensing methods

[91, 112] to reconstruct the missing spectrum that is removed instead of GAPES or

AR-Burg.
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Appendix A

Simulations

A.1 Simulation Parameter Values

The basic radar waveform properties used throughout this thesis are as given in table

A.1 and are unchanged unless explicitly stated otherwise.

As highlighted in the text, the standard backprojection algorithm [113, 114] was used

to form the image with the evaluation of the impulse response at each azimuth posi-

tion. This process is carried out by initially calculating the range to every bin in the

range profile. A matrix representing the number of pixels in the range and azimuth

directions is initialized and used to form the image. Once this is defined, the distance

between the platform and and each pixel representation of the surface is calculated at

each azimuth point. Interpolation is carried out on the estimated impulse response to

relate platform-to-range cell distance to the pixel matrix. By using the relationship

between the platform distance to each range cell and the estimated impulse response,

the pixel distance matrix values are to calculate the value of the impulse response at

those positions, creating the 2D image.

A circular SAR platform trajectory has been simulated in the SAR results in this thesis.

The relative parameters used in the simulation are given in the following table:

The parameters used for the scene and relative platform positions were:

Radar System Parameters Value

Pulse length: τc 3.41µs

Bandwidth: Bc 150MHz

Wavelength: λ 0.03m

Sampling rate: fs 150MHz

Waveform samples N: 512

Table A.1: Waveform properties used in simulations
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SAR scene parameters Value

Platform height: h 1500 m

Range-to-scene centre: R0 6000 m

Range swath: Rw 512 m

Range resolution: ∆R 1 m

Range profile samples: K 512

Pulse repetition interval: fs 150 MHz

Platform velocity: 200 ms−1

Pixel values 256 × 256

Table A.2: SAR platform and scene values used in simulations

A.2 Particle Swarm Optimization

Standard particle swarm optimization (SPSO) has been used in simulated examples in

this thesis. SPSO uses swarm intelligence to search a specified solution space for an

optimal value [101,115,116]. The optimization problem in Chapter 4 is laid out in (4.4),

and the cost function C to be evaluated is

C(x) = tr(XHR−1
nnX)−1 (A.1)

under the constraint that xHx = ET . The optimization is carried out by evaluating

the cost function and using the swarm of particles to search for the the smallest value.

Each “particle” represents: a potential solution i.e. a position in the search space, a

velocity, representing the distance travelled across the search space over a timestep, a

cost function evaluation, a memory of the best previous position found up until the

current timestep and the best cost function value at this position.

Parameters required in the SPSO algorithm are defined as:

• qi= current position of particle

• vi = velocity of particle

• pi = local best position of particle

• pg = global best position

• w =inertial weight
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• e1 and e2 = random number in range: 0→ 1

• k= time step (iteration number)

• Kstop= total number of iterations

• S= swarm size

Each particle has a position within the solution space according to

qi(k + 1) = qi(k) + vi (A.2)

where the velocity of the particle is given as

vi = wvi + e1(pi − xi) + e2(pg − qi) (A.3)

The solution space spans the possible values which the cost function dependent param-

eter can take on. In this implementation, a single particle i represents a single solution,

but is actually a vector representing the transmitted signal xi(t). A single solution

refers to a series of values forming the waveform vector, and a swarm of S particles

would therefore refer to S individual waveforms.

The inertial weight relates to either a exploration of a full search space (high value)

or concentrate on local values (low value). There is no clear definitive value for the

inertial weight and is largely an empirical value which is simulation dependent. The

inertial weight is usually chosen such that 0 < w < 1 [117]. In this simulated case, the

inertial value is set w = 0.9, which generally lead to finding the global solution in fewer

iterations. The waveform values -i.e. the search space - were constricted to take on

values between −1 < x(t) < 1 to prevent all the energy gathering around a few samples

and to maintain a relatively feasible time-domain waveform.

The standard algorithm is modified slightly to constrain the particle solutions to have

energy ET by rescaling the solutions at the end of every evaluation so that the algorithm

block is:
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Algorithm 4 Particle Swarm Optimization for GLS

Initialize: set initial guess swarm positions and velocities, choose w and c1, c2
1: for k = 1 : Kstop do
2: Update velocities
3: Update positions according to velocities
4: Enforce constraint by rescaling waveform energy xHi xi = ET
5: Form transmitted signal matrix for each particle Xi from particle solution xi(t)
6: Evaluate cost functions for each particle Ci(x)
7: Find new global minimum: check new position costs against current global best
8: Update local particle position costs: is new position better than previous
9: end for

10: Position of global best solution is the optimal waveform x(t)
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Proofs

B.1 Covariance of Constrained and Unconstrained Im-

pulse Response

Proof that cov(Hu − Ĥu) = cov(hc − ĥc) if cov(Hu − Ĥu) is assumed to be diagonal.

The constrained impulse response can be calculated as follows

 ĥc

0N

 =

 I 0N

0N 0N

F−1Ĥu (B.1)

To calculate the error in the constrained impulse response

 ĥc

0N

−
 ĥc

0N

 =

 I 0N

0N 0N

F−1(Hu − Ĥu) (B.2)

The error in the unconstrained frequency domain estimate has been approximated as

follows

cov(H− Ĥ) = (ΩHD−1Ω)−1 (B.3)

To estimate the total error the trace is required

tr


cov(h− ĥ) 0N

0N 0N

 = tr


 I 0N

0N 0N

F−1(ΩHD−1Ω)−1FH

 I 0N

0N 0N

 (B.4)
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Then due to the commutable property of the trace

= tr

FH

 I 0N

0N 0N

 I 0N

0N 0N

(ΩHD−1Ω)−1

 (B.5)

= tr


FH

 I 0N

0N 0N

F

︸ ︷︷ ︸
A

(ΩHD−1Ω)−1︸ ︷︷ ︸
B


(B.6)

Only interested in the diagonal of the product AB to find the trace which is written as

tr {AB} = tr


aT1

aT2
...

aTm


[
b1 b2 · · ·bN

]
(B.7)

where aTi is ith row of A and bi is jth column of B and where A and B are respective

parts of equation B.6 as shown.

tr(AB) =
∑
i

aTi .bi (B.8)

We know that the rows of A are sinc functions. The rows of a and b line up such that

only the constant from ai is needed to give the overall expression. This then dictates

that the magnitude of the constant, which is given by the size of the Fourier transform

matrix γ gives the relationship between

cov(Hu − Ĥu) = γcov(hc − ĥc) (B.9)

B.2 Sufficient Conditions

For sufficient conditions we consider the bordered Hessian matrix [118] evaluated at the

candidate solution; For the bordered Hessian matrix the first row and column are con-

structed from ∇Eg(E) and the remaining elements are second-order partial derivatives
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of L(E, λ) with respect to the elements of E [118]. First the constraint, we have

∂g(E)

∂Ei
= 1 (B.10)

i.e. a constant as indicated earlier. Then the partial derivatives of the Lagrangian

∂2L(E, λ)

∂Ej∂Ei
=

∂

∂Ej

(
−Di

E2
i

+ λ

)

=


2Di

E3
i

if i = j,

0 otherwise.
(B.11)

The bordered Hessian is thus

HB =

 0 1TN

1N H

 (B.12)

where H is an (N ×N) matrix containing the partial derivatives defined by (B.11) and

(4.25) and is thus a diagonal matrix with positive terms and 1N is an N -vector of unity

elements arising from (B.10). For a single equality constraint, If a candidate solution

is a minimum then

det(HB,k) < 0, 3 ≤ k ≤ N + 1 (B.13)

where HB,k, the kth leading principal minor, is the upper left (k × k) sub-matrix of

HB.Because of the structure of HB all the relevant leading principal minors have the

same structure as the bordered Hessian itself. Thus, without loss of generality, we only

need to consider det(HB) to infer the rest

det(HB) = det(0− 1TNH−11N )det (H) < 0 (B.14)

because det(H) =
∏N−1
i=0

2Di

E3
i
> 0 and 1TNH−11N =

∑N−1
i=0

E3
i

2Di
> 0. Thus because

(B.13) is satisfied, the candidate solution (4.25) is a minimum and we have already

shown that it is the only minimum that satisfies the non-negative energy constraint.

Hence it is the global minimum for original optimization problem (4.18). Proof by Prof.

B.Mulgrew.
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