740 research outputs found

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    ASCR/HEP Exascale Requirements Review Report

    Full text link
    This draft report summarizes and details the findings, results, and recommendations derived from the ASCR/HEP Exascale Requirements Review meeting held in June, 2015. The main conclusions are as follows. 1) Larger, more capable computing and data facilities are needed to support HEP science goals in all three frontiers: Energy, Intensity, and Cosmic. The expected scale of the demand at the 2025 timescale is at least two orders of magnitude -- and in some cases greater -- than that available currently. 2) The growth rate of data produced by simulations is overwhelming the current ability, of both facilities and researchers, to store and analyze it. Additional resources and new techniques for data analysis are urgently needed. 3) Data rates and volumes from HEP experimental facilities are also straining the ability to store and analyze large and complex data volumes. Appropriately configured leadership-class facilities can play a transformational role in enabling scientific discovery from these datasets. 4) A close integration of HPC simulation and data analysis will aid greatly in interpreting results from HEP experiments. Such an integration will minimize data movement and facilitate interdependent workflows. 5) Long-range planning between HEP and ASCR will be required to meet HEP's research needs. To best use ASCR HPC resources the experimental HEP program needs a) an established long-term plan for access to ASCR computational and data resources, b) an ability to map workflows onto HPC resources, c) the ability for ASCR facilities to accommodate workflows run by collaborations that can have thousands of individual members, d) to transition codes to the next-generation HPC platforms that will be available at ASCR facilities, e) to build up and train a workforce capable of developing and using simulations and analysis to support HEP scientific research on next-generation systems.Comment: 77 pages, 13 Figures; draft report, subject to further revisio

    European HPC Landscape

    Get PDF
    This paper provides an overview on the European HPC landscape supported by a survey, designed by the PRACE-5IP project, accessing more than 50 of the most influential stakeholders of HPC in Europe. It focuses at Tier-0 systems on the European level providing high-end computing and data analysis resources. The different actors are presented and their provided services are analyzed in order to identify overlaps and gaps, complementarity and opportunities for collaborations. A new pan-European HPC portal is proposed in order to get all information on one place and facilitate access to the portfolio of services offered by the European HPC communities

    SPRINT: more runners, fewer hurdles

    Get PDF

    The Role of Computational Science and Emerging Technologies in the Natural Sciences Education at University Level

    Get PDF
    AbstractThis paper is focused on the role of Computational Science and emerging technologies in the natural sciences education at university level. We outline our Integrated Metacognitive Process Model (IMPM) and our Collaborative Learning approach based on Collaborative Creative Cross-Pollination activity model at postgraduate level. We present our multidisciplinary approach based on the following three components: the existence of multidisciplinary research environment (non-silos departmental culture), computational science research methods as core part of the curricula and collaborative teaching activities facilitated by novel collaborative tools using Collaborative Creative Cross-Pollination. Some results showing the advantages of such an environment and approach are presented. The initial results have shown overall average improvement of the average marks with around 5% plus clear satisfaction of the students as evident from their responses to the course evaluation

    Learning Parallel Computations with ParaLab

    Full text link
    In this paper, we present the ParaLab teachware system, which can be used for learning the parallel computation methods. ParaLab provides the tools for simulating the multiprocessor computational systems with various network topologies, for carrying out the computational experiments in the simulation mode, and for evaluating the efficiency of the parallel computation methods. The visual presentation of the parallel computations taking place in the computational experiments is the key feature of the system. ParaLab can be used for the laboratory training within various teaching courses in the field of parallel, distributed, and supercomputer computations

    CSR: Small: Collaborative Research: SANE: Semantic-Aware Namespace in Exascale File Systems

    Get PDF
    Explosive growth in volume and complexity of data exacerbates the key challenge facing the management of massive data in a way that fundamentally improves the ease and efficacy of their usage. Exascale storage systems in general rely on hierarchically structured namespace that leads to severe performance bottlenecks and makes it hard to support real-time queries on multi-dimensional attributes. Thus, existing storage systems, characterized by the hierarchical directory tree structure, are not scalable in light of the explosive growth in both the volume and the complexity of data. As a result, directory-tree based hierarchical namespace has become restrictive, difficult to use, and limited in scalability for today\u27s large-scale file systems. This project investigates a novel semantic-aware namespace scheme to provide dynamic and adaptive namespace management and support typical file-based operations in Exascale file systems. The project leverages semantic correlations among files and exploits the evolution of metadata attributes to support customized namespace management, with the end goal of efficiently facilitating file identification and end users data lookup. This project provides significant performance improvements for existing file systems in Exascale file systems. Since Exascale file systems constitute one of the backbones of the high-performance computing infrastructure, the semantic-aware techniques also benefits a great number of scientific and engineering data-intensive applications. This project strengthens the ongoing development of high performance computing infrastructures at both UNL and UMaine. The project enhances undergraduate and graduate education at both participating institutions and outreach to K-12 in UMaine via an ongoing NSF-funded ITEST program
    corecore