477 research outputs found

    Reverse-Safe Data Structures for Text Indexing

    Get PDF
    We introduce the notion of reverse-safe data structures. These are data structures that prevent the reconstruction of the data they encode (i.e., they cannot be easily reversed). A data structure D is called z-reverse-safe when there exist at least z datasets with the same set of answers as the ones stored by D. The main challenge is to ensure that D stores as many answers to useful queries as possible, is constructed efficiently, and has size close to the size of the original dataset it encodes. Given a text of length n and an integer z, we propose an algorithm which constructs a z-reverse-safe data structure that has size O(n) and answers pattern matching queries of length at most d optimally, where d is maximal for any such z-reverse-safe data structure. The construction algorithm takes O(n ω log d) time, where ω is the matrix multiplication exponent. We show that, despite the n ω factor, our engineered implementation takes only a few minutes to finish for million-letter texts. We further show that plugging our method in data analysis applications gives insignificant or no data utility loss. Finally, we show how our technique can be extended to support applications under a realistic adversary model

    A comparison of clustering and modification based graph anonymization methods with constraints

    Get PDF
    In this paper a comparison is performed on two of the key methods for graph anonymization and their behavior is evaluated when constraints are incorporated into the anonymization process. The two methods tested are node clustering and node modification and are applied to online social network (OSN) graph datasets. The constraints implement user defined utility requirements for the community structure of the graph and major hub nodes. The methods are benchmarked using three real OSN datasets and different levels of k?anonymity. The results show that the constraints reduce the information loss while incurring an acceptable disclosure risk. Overall, it is found that the modification method with constraints gives the best results for information loss and risk of disclosure.This research is partially supported by the Spanish MEC (projects ARES CONSOLIDER INGENIO 2010 CSD2007-00004 -- eAEGIS TSI2007-65406-C03-02 -- and HIPERGRAPH TIN2009-14560-C03-01)Peer Reviewe

    Transforming Graph Representations for Statistical Relational Learning

    Full text link
    Relational data representations have become an increasingly important topic due to the recent proliferation of network datasets (e.g., social, biological, information networks) and a corresponding increase in the application of statistical relational learning (SRL) algorithms to these domains. In this article, we examine a range of representation issues for graph-based relational data. Since the choice of relational data representation for the nodes, links, and features can dramatically affect the capabilities of SRL algorithms, we survey approaches and opportunities for relational representation transformation designed to improve the performance of these algorithms. This leads us to introduce an intuitive taxonomy for data representation transformations in relational domains that incorporates link transformation and node transformation as symmetric representation tasks. In particular, the transformation tasks for both nodes and links include (i) predicting their existence, (ii) predicting their label or type, (iii) estimating their weight or importance, and (iv) systematically constructing their relevant features. We motivate our taxonomy through detailed examples and use it to survey and compare competing approaches for each of these tasks. We also discuss general conditions for transforming links, nodes, and features. Finally, we highlight challenges that remain to be addressed

    Privacy and spectral analysis of social network randomization

    Get PDF
    Social networks are of significant importance in various application domains. Un- derstanding the general properties of real social networks has gained much attention due to the proliferation of networked data. Many applications of networks such as anonymous web browsing and data publishing require relationship anonymity due to the sensitive, stigmatizing, or confidential nature of the relationship. One general ap- proach for this problem is to randomize the edges in true networks, and only release the randomized networks for data analysis. Our research focuses on the development of randomization techniques such that the released networks can preserve data utility while preserving data privacy. Data privacy refers to the sensitive information in the network data. The released network data after a simple randomization could incur various disclosures including identity disclosure, link disclosure and attribute disclosure. Data utility refers to the information, features, and patterns contained in the network data. Many important features may not be preserved in the released network data after a simple randomiza- tion. In this dissertation, we develop advanced randomization techniques to better preserve data utility of the network data while still preserving data privacy. Specifi- cally we develop two advanced randomization strategies that can preserve the spectral properties of the network or can preserve the real features (e.g., modularity) of the network. We quantify to what extent various randomization techniques can protect data privacy when attackers use different attacks or have different background knowl- edge. To measure the data utility, we also develop a consistent spectral framework to measure the non-randomness (importance) of the edges, nodes, and the overall graph. Exploiting the spectral space of network topology, we further develop fraud detection techniques for various collaborative attacks in social networks. Extensive theoretical analysis and empirical evaluations are conducted to demonstrate the efficacy of our developed techniques

    Privacy-preserving mechanism for social network data publishing

    Full text link
     Privacy is receiving growing concern from various parties especially consumers due to the simplification of the collection and distribution of personal data. This research focuses on preserving privacy in social network data publishing. The study explores the data anonymization mechanism in order to improve privacy protection of social network users. We identified new type of privacy breach and has proposed an effective mechanism for privacy protection
    • …
    corecore