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ABSTRACT 

In this paper a comparison is performed on two of the key 

methods for graph anonymization and their behavior is 

evaluated when constraints are incorporated into the 

anonymization process. The two methods tested are node 

clustering and node modification and are applied to online 

social network (OSN) graph datasets. The constraints 

implement user defined utility requirements for the 

community structure of the graph and major hub nodes. The 

methods are benchmarked using three real OSN datasets and 

different levels of kanonymity. The results show that the 

constraints reduce the information loss while incurring an 

acceptable disclosure risk. Overall, it is found that the 

modification method with constraints gives the best results for 

information loss and risk of disclosure.   

General Terms 

Data Hiding, Search Techniques, Information and 

Knowledge, Computational Intelligence. 
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Data privacy, information hiding, graphs and networks, online 

social networks, anonymization, information loss, risk of 
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1. INTRODUCTION 
Data Privacy in graphs has recently become a topic of 

renewed interest by researchers, partially due to the 

emergence of online social networks (OSN), which can be 

represented and analyzed as graphs. OSN data is of great 

potential for data analysts from different disciplines, but also 

represents a threat to data privacy if it is used for the wrong 

motives. However, the anonymization of graph data 

represents a challenge, given that anonymization techniques 

may impair essential structural information in the graph.  

Furthermore, it should be the user of the data who defines the 

utility requirements. These requirements can be expressed as 

constraints applied to the perturbation process. However, it is 

possible that the constraints increase the risk of disclosure by 

information leakage. Hence it is of interest to establish which 

perturbation method gives the best results for information loss 

(utility) and risk of disclosure, when the constraints are 

applied. 

The objective of the current work is to test two of the most 

used perturbation methods with and without constraints in 

order to evaluate their relative performance. 

In the literature, some authors have considered anonymization 

as a graph partitioning/clustering task based on an overall 

utility measure[1] or by modifying nodes using a cost 

function[2].  However, there is a lack of work in the graph 

anonymization field on benchmarking these methods together 

and under restricted conditions.  

The main contributions of the paper are: 

• A comparison of clustering and modification based graph 

perturbation methods. 

• The incorporation of restriction mechanisms in the 

perturbation methods, which act on the community structure 

and major hub nodes. 

• A comparison of restricted versus unrestricted perturbation 

methods. 

The structure of the paper is as follows: in Section 2 the state 

of the art is discussed; in Section 3 some preliminary concepts 

are presented; in Section 4 the anonymization methods are 

described; in Section 5 the metrics are described for 

information loss and adversary knowledge, and the privacy 

model is defined; in Section 6 the empirical results are 

presented for the different perturbation methods with and 

without restrictions; finally, in Section 7 the present work is 

summarized. 

2. RELATED WORK 
In the following sections, the theme of privacy preserving 

social network publishing is considered from two general 

perspectives: (i) adversary information and (ii) anonymization 

methods. 

2.1 Adversary Information 
Adversary information is a way of evaluating the disclosure 

risk and normally involves formulating and submitting 

informational queries on the data. These queries must take 

into account the type and amount of knowledge available to 

the adversary. In [1], Hay et al. consider what an adversary 

may know or deduce from a graph in terms of three different 

families of topological queries (as opposed to isomorphic 

properties). In general, the queries focus on eliciting 

information about the immediate or close neighborhood of a 

target node. Wondracek [3] presents a different approach, in 

which the adversary uses a malicious website to obtain 

information about users of an on-line social network.  

Backstrom et al. [4], on the other hand, consider active and 

passive adversary strategies. In active strategies, the adversary 

actively tries to affect the data to make it easier to decipher. In 

passive strategies, the adversary simply observes the data as it 

is presented. In [5], Cheng et al. consider a KIsomorphism 

approach to privacy preserving network publication which 
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protects against structural attacks. The authors refer to a 

popular type of attack described by Backstrom et al. in [4], 

which involves the use of embedded sub-graphs. They extend 

this idea by defining two realistic disclosure targets which are 

based on node information and link information, respectively. 

2.2 Anonymization Methods 
In the literature different methods have been used for graph 

anonymization and in particular, obtaining kanonymity of 

the vertices V in a graph G while minimizing information 

loss.  For the purposes of the current work, the methods will 

be divided into two groups: (a) node modification approaches 

and (b) node clustering approaches. In the context of data 

privacy in general, Sweeney's paper [6] was the first to define 

kanonymity, and more recently the paper by De Capitani et 

al. [7], gave key definitions for privacy levels, information 

loss and risk of disclosure. Also, in [8] Zhou considered 

ldiversity together with kanonymity to give a stronger 

anonymity guarantee. 

2.2.1 Node Modification Approaches 
Node modification approaches act by choosing similar nodes 

and making them identical. This can be done by adding nodes 

to make their degrees the same and by adding edges to make 

their immediate neighborhood connectivity the same. Using 

this method, kanonymity is achieved by obtaining that every 

node in the graph has at least k-1 other nodes which are 

indistinguishable from it. Zhou[2] presents a method which 

selects nodes based on a cost function and then anonymizes 

them by adding nodes and edges to their neighborhoods. In 

[9], Nettleton et al. compare two different types of online 

social network from a data privacy perspective, using 'add 

link' as the perturbation operator. In [10], Hay et al. presented 

a simple graph anonymization based on random addition and 

deletion of edges. The disclosure method attempts re-

identification using two types of queries, vertex refinement 

and sub-graph knowledge. 

2.2.2 Node Clustering Approaches 
Node clustering approaches act by choosing similar nodes and 

physically grouping them. This can be done by a kmeans 

type algorithm or by a similarity/distance metric to choose 

similar nodes. Using this method, kanonymity is achieved by 

obtaining that every node in the graph is incorporated into a 

cluster within which there are at least k-1 other nodes. 

Skarkala et al. [11] present an approach for node 

clustering/grouping which takes into consideration the privacy 

protection of the edge weights. Skarkala employs a similarity 

function to form clusters each containing at least k nodes. 

Nettleton in [12] applied a perturbation method based on node 

aggregation and a similarity metric with fixed weights for 

choosing node pairs. Different types of clustering, fuzzy 

(fuzzy c-Means) and crisp (kMeans) were applied to graph 

statistical data in order to evaluate the information loss due to 

perturbation. In [1], Hay presented an approach in which 

nodes are grouped into partitions based on a utility function 

incorporating a distance metric in terms of the number of 

edges. In order to settle the partitions, the entropy was 

calculated for the entire graph. Hay's method[1] is distinct to 

our approach given that Hay’s partitions are guaranteed as 

having at least k nodes but can have many more (e.g. 

hundreds, for k=16), whereas our method guarantees between 

k and 2k-1 nodes in each cluster. 

2.2.3 Other Approaches 
In [13], Bonchi et al. offer a somewhat different vision of 

graph anonymization, based on an entropy-based 

quantification of anonymity. It represents a global method 

which uses a local quantification based on a-posteriori belief. 

They also propose a controlled random edge removal (as 

opposed to adding edges) which they call 'random 

sparsification'. In [14], Ying and Wu present a spectrum 

preserving approach to randomizing social networks. The 

authors based their approach on the observation that many 

graph structures have a strong association with the spectrum. 

From this came the idea to define a perturbation strategy 

which minimizes the change in some given eigenvalues, while 

maintaining privacy protection. 

3. PRELIMINARIES 
A graph G is defined as a set of vertices V interconnected by a 

set of edges E, thus giving G = (V, E). In the current work 

each node has an arbitrary identifier for data processing 

purposes however it is assumed this identifier will have no 

meaning for the adversary and cannot be considered a label. 

Hence, the graph is considered as unlabeled. A neighborhood 

sub-graph Gn = (V', E') is a subset of G around a given 

reference node vr. Hence vr  V' and all other vertices v'  V' 

are adjacent vertices of vr.  

In G, a special set of vertices is defined as follows: a hub 

vertex vh is defined as being a node with a relatively high 

number of direct connections to other nodes, as quantified by 

Kleinberg’s metric [15] which is designated as a function h(v). 

The set of hub vertices is defined as Vh  V, and vh  Vh 

when h(vh) is in the top 12% percentile of all values for h(v). 

The top percentile value for hubs was chosen by empirical 

study of the respective metric distributions. 

Also, a partitioning is mapped onto G which is derived from 

the community structure identified by the Louvain Method 

[16]. The mapping of the vertices onto the community 

structure can be defined as a function Gc : vi  c . Hence, a 

given vertex vi will belong to one and only one community c. 

The anonymization method chooses pairs of nodes (vi, vj), 

based on a distance function D(vi, vj) and subject to the 

following restrictions: vi  Vh, vj  Vh, Gc (vi) = Gc (vj). 

These definitions implement the hub and community 

restrictions, respectively. 

4. DESCRIPTION OF 

ANONYMIZATION METHODS 
In this section the two anonymization methods will be 

described: clustering and modification. The constraints and 

the distance metric for sub-graph matching will also be 

described. Both methods are based on selecting the k most 

similar nodes and then perturbing them to make them 

identical, either by clustering or by modification.  Each 

method is applied with and without constraints. The methods 

are listed in Table 1, and will be explained in detail in the 

following Sections. 

4.1 Graph Alteration Methods – Clustering 

and Modification 
In order to compare the relative performance of the 

constrained and non constrained approaches, two of the most 

common state of the art graph alteration methods in the 

literature have been used: (i) node modification and (ii) node 

clustering. It is noted that both the methods use the same node 

matching function, which is described in Section 4.3. 

4.1.1 Node Modification 
For this method a technique has been implemented which is 

based on node addition and edge addition/deletion, obtaining 
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kanonymity using a cost function based on the expected 

perturbation. This method is similar to the one presented by 

Zhou in [2]. Due to the unavailability of the original code, a 

version was programmed and tested by the authors. The 

implementation uses the distance measure (see Section 4.3) as 

the cost function, and selects nodes for matching in 

descending order of degree, as indicated in [2]. Also, when a 

node is added to increase the degree, the smallest degree is 

chosen first, again following the guidelines of [2]. 
 

Table 1. Summary of anonymization methods 

Type Name Restrictions 

Cluster cluster_r Yes 

Cluster cluster No 

Modify modify No 

Modify modify_r Yes 

Finally, edges are added to obtain the same internal degree 

sequences and minimize the difference between the respective 

sub-graph clustering coefficients. For node modification, two 

sub-graphs G1 and G2 are considered equal when, for the 

reference node g1 of G1 and the reference node g2 of G2: 

degree(g1) = degree(g2), num_edges(G1) = num_edges(G2) 

and internal_degree_sequence(G1) = 

internal_degree_sequence(G2). It is noted that the adversary 

queries used (see Section 5.3) are based on the structural 

similarity of node neighborhoods [1] rather than on 

isomorphic properties[4]. Hence, this equality criterion is 

adequate for both the type of adversary queries considered in 

the current paper, and in order to compare the relative 

performance of the different methods under the same 

conditions. Two versions are implemented: the first has no 

restrictions so it can choose nodes to match anywhere in the 

graph. This is called 'modify'. The second is constrained by 

the community and hub nodes, and is called ‘modify_r’. 

4.1.2 Node Clustering 
For this method, a node aggregation method has been 

implemented which groups the nodes into super-nodes each of 

which contains at least k and at most 2k-1 of the original 

nodes. An optimum clustering is obtained by using a 

similarity function (see Section 4.3) to pair the most similar 

nodes for aggregation for each k value. Hence, for each node 

in the graph, the k-1 most similar nodes will be identified and 

these nodes will unified into one super-node. If there are 2k or 

more identical nodes (that is, taking into account that some 

nodes will already be identical in the graph), they will be 

grouped in super-nodes each containing at least k nodes and at 

most 2k-1. Two versions are implemented: the first has no 

constraints so it can choose nodes to match anywhere in the 

graph. This is called 'cluster'. The second is constrained by the 

community and hub nodes and is called 'cluster_r'. 

4.2 Search Constraints 
Two search strategies are considered: (i) no constraints, in 

which nodes can be searched for and matched anywhere in the 

graph; (ii) with constraints, in which node search and 

matching is restricted to node pairs in the same community 

and excludes top hub nodes. A search is performed for the best 

k-1 matches of a given reference node. For the constrained 

approach, a “Community Structure” algorithm is initially 

executed to partition the complete graph into “communities”. 

Blondel’s algorithm, also known as the Louvain Method[16], 

is used for this purpose. The top 12% percentile hub nodes are 

also identified by calculating their corresponding metrics 

using the HITS algorithm[15]. The percentile values were 

chosen by empirical study of the metric distributions. In 

practice, these top percentile proportions tend to represent a 

small number of high degree nodes in the graph. 

4.3 Similarity Metric for Sub-graph 

Matching 
In order to calculate the similarity between two node 

neighborhoods, computation cost is a key consideration. 

Hence, a similarity metric has been chosen which calculates a 

distance based on sub-graph characteristics which can be pre-

calculated. The sub-graph characteristics are the degree of the 

reference node, number of edges in the sub-graph, clustering 

coefficient and statistics of the degrees of the neighbor nodes. 

The former characteristics are designed to reflect the internal 

structure of the sub-graph, whereas the latter characteristics 

reflect a key descriptive feature of the neighbors (their 

degree), which effectively considers the neighborhood at a 

distance of 2 from the reference node. A weight vector is 

trained using a simulated annealing process with an exact 

isomorphism matcher as the target (optimum) value. The 

trained similarity metric approximates an isomorphism 

matcher and also takes into account the degrees of the 

neighbors of the reference node. The neighborhood sub-graph 

matching method used in this work was recently presented as 

a European Patent application[17]. The algorithm operates in 

two phases: (i) a 'training' phase in which the weights are 

learned for the distance metric from samples and (ii) a 

'runtime' phase which processes the complete dataset, 

matching nodes using the trained distance metric, and 

anonymizing their sub-graphs to obtain kanonymity. 

4.4 Pseudo-code of Data Processing 
In this section, the main procedures used for data processing 

are defined: “Pre-calculate”, "Train" and "Run" (the latter 

calls each of the four methods). 

Main Procedure 

Input: original graph G = (V, E), anonymization level k     

Output: anonymized graph G’  

1. Pre-calculate 

2.     Calculate statistics for each neighborhood sub-graph        

        G1 … Gn 

3.     Calculate hub metrics 

4.     Calculate communities c1 … ci using Louvain method 

5. Train 

6.     Apply simulated annealing process to find   

        optimum weights for distance function 

7. Run 

8.     Let H be the set of hub nodes h above the hub percentile 

threshold 

9.     Let k be the privacy level 

10.   For each (g)  (G) , g H do 

11.       Let ci be the community to which node g belongs 

12.       Let Gg1 be the neighborhood sub-graph for g 

13.       Call methods 

14.           Clustering methods: 

15.               Find k-1 nodes most similar to g ‡ 

16.                   cluster_r(graph Gg1 , ci, k)  //  restricted 

17.                   cluster(graph Gg1 , k)           // unrestricted 

18.                Aggregate the k neighborhood sub-graphs Gg and  

                                  [Gg2 ... Ggk] by calling  

                     Aggregate(vector of sub-graphs[Gg1 ... Ggk]) 

19.           Modification methods: 

20.               Find k-1 nodes most similar to g ‡ 

21.                   modify_r(graph Gg1 , ci, k)  // restricted 

22.                   modify(graph Gg1 , k)           // unrestricted 

23.               Modify the k neighborhood sub-graphs             

                    [Gg2 ... Ggk] to make them the same as Gg1 by   

                    calling  



International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.20, June 2014 

34 

                    Modify(vector of sub-graphs[Gg1 ... Ggk]) 

24.   End for each  

        ‡Each method returns the best k-1 matches [Gg2 ... Ggk] 

which comply with restrictions 

5. METRICS FOR INFORMATION 

LOSS, PRIVACY LEVEL AND RISK OF 

DISCLOSURE 
In this Section, the definitions are given for information loss 

and risk of disclosure. Information loss is defined in the 

habitual manner, as the change in correlation between the 

variable in the original file and the corresponding variable in 

the perturbed file.  For risk of disclosure, a set of candidate 

anonymity queries are defined, similar to those of Hay[1]. 

5.1 Information Loss 
Four metrics are used in order to evaluate information loss. 

The first two are basic graph statistics (degree, clustering 

coefficient), and the last two are related to the community 

structure of the graph (hub value and number of 

communities). The distribution of each variable in the original 

data file is correlated with that of the same variable in the 

perturbed file, and the deviation from 1 is the information 

loss. 

inf loss1  degree 

inf loss2  clustering coefficient 

inf loss3  hub value† 

inf loss4  number of communities‡ 
                      †As calculated by HITS algorithm; ‡as calculated by Louvain method 

The clustering coefficient calculation has been implemented 

in Java. The hub value (HITS) and the community partitioning 

have been calculated using the Gephi software[18]. Hub 

metric (HITS hub): A hub node is characterized by having a 

large number of direct connections to other nodes. In order to 

quantify the hub value of a node, the popular HITS algorithm 

has been used, as defined by Kleinberg in [15]. 

Communities: The community partitioning is a key 

characteristic of the graph that is to be preserved. Information 

loss is measured by the number of communities into which the 

graph is partitioned, as calculated by the Louvain method 

[16]. In the following, the four information loss metrics are 

designated as m1 to m4. If G is the original graph, G' the 

perturbed graph, m1 the degree values for the original graph, 

and m1' the degree values for the perturbed graph, then the 

information loss will be: 

IL(G, G', m1) = 1 - corr(m1, m1')                                 (1) 

where IL is the information loss function and corr is a 

correlation function. The information loss for metrics m2 and 

m3 would follow in a similar manner. In the case of m4, the 

absolute difference is taken between the number of 

communities Nc in G and the number of communities Nc' in 

G', thus:  

  IL(G, G', m4) = |diff(m4, m4')|                                (2) 

The value obtained from equation (2) can be normalized in 

order to compare between different benchmark datasets. 

5.2 Definition of Privacy for Clustering 

and Modification Approaches 
The objective of anonymization is to obtain a given 

anonymity level of k. The clustering algorithm is given the 

parameter k and produces a graph consisting of super-nodes 

which contain a minimum of k and a maximum of 2k-1 basic 

nodes. If a super-node reaches a size of 2k nodes, it will be 

divided into two super-nodes, each containing k nodes. Nodes 

are grouped based on similarity using the distance metric 

described in Section 4.3.  Hence, nodes are grouped into 

partitions so that an adversary will be unable to distinguish 

between the nodes in a partition. The probability that an 

adversary successfully re-identifies a node will be between 1/k 

and 1/(2k-1), divided by the number of super-nodes created 

for the given reference node. For the modification algorithm, 

an approximation of Zhou’s method[2] has been implemented 

which, for a given node, modifies k-1 other nodes to make 

them the same (using our distance based similarity metric). 

That is, for each node there will be k-1 other nodes with the 

same degree, number of edges in the neighborhood  sub-

graph, and same clustering coefficient (that is, the 

connectivity between neighbors). Hence, the probability of an 

adversary re-identifying a node will be at least 1/k. It is noted 

that nodes which are already identical will not be modified 

and there will probably be nodes in the graph which already 

have more than k identical nodes (especially those with a low 

degree). An anonymity model is employed in which a graph 

satisfies kcandidate anonymity if for every structural query 

over the graph, there exist at least k nodes that match each 

adversary query. 

5.3 Adversary Knowledge – Structural 

Queries 
In order to evaluate what the adversary knows or can deduce 

from the graph, similar lines to Hay[1] have been followed. 

Firstly, vertex refinement will be considered, followed by the 

hub fingerprint. 

Vertex refinement: H1 (x) returns the degree of x, H2 (x) 

returns the multi-set of each neighbors’ degree, and so on. In 

general, Hi(x) returns the multi-set of values which are the 

result of evaluating Hi−1 on the set of nodes adjacent to x. In 

the present work, up to two levels of query, H1 and H2 are 

considered, as defined in [1]. 

Hub fingerprint: a hub fingerprint query Fi(x, HB) gives a 

list of the shortest paths from node x to each of the hub nodes 

defined in the vector HB. Hay defines HB as the five highest 

degree nodes for the Enron dataset and the ten highest degree 

nodes for the HepTh and Net-trace datasets. Following Hay[1] 

it is assumed that the value i designates the maximum distance 

of visible hub connections. If the shortest path to a hub 

exceeds the 'visibility horizon' then the distance is assigned a 

value of zero (open world assumption). Hence, query F1(x, 

HB) returns the list for x with a visibility horizon of 1, and 

F2(x, HB) returns the list for x with a visibility horizon of 2. 

As an example, consider F2(x, HB), HB = {a, b, c} which 

gives a resulting distance vector of {2, 2, 0}. This means that 

node x is at distance 2 from hubs 'a' and 'b', and at a distance 

greater than 2 (beyond the visibility horizon) from hub 'c'.  
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Fig 1: Information Loss: effect of anonymization on metrics for different datasets and perturbation methods. The figures show 

the degree of correlation (y-axis) between the original data and perturbed data for different values of k (x-axis). 

 

Fig 2: Information Loss: effect of anonymization on metrics for different datasets and perturbation methods. For communities, 

the figures show the raw data values (y-axis) for different values of k (x-axis). 

 

6. EMPIRICAL TESTING AND 

RESULTS 
In this Section, the results for information loss and risk of 

disclosure are presented for the different methods, metrics and 

datasets.  

6.1 Datasets 
The Ca-HepTh[19], Enron [20] and WikiVote [21] datasets 

have been used for empirical testing. These datasets offer 

distinct statistical characteristics and are widely used in the 

graph privacy literature, which allows other researchers to 

compare results.  In the remainder of the paper, these datasets 

will be referred to as 'HepTh', 'Enron' and 'WikiVote', 

respectively. The 'HepTh' and 'WikiVote' datasets were taken 

directly from the Stanford Large Network Dataset Collection 

(SNAP) website (available at http://snap.stanford.edu/data/). 

In the case of the 'Enron' dataset, the data was processed by 

the authors from the mysql dump file available at 

http://www.isi.edu/~adibi/Enron/Enron.htm. 

6.2 Information Loss vs. Anonymization 

Level (k) 
For the metrics of Figure 1 (degree and cc) and the first metric 

of Figure 2 (hub), the information loss is quantified by first 

calculating the graph metrics for the different graph datasets 

corresponding to k=0, k=2, k=4, k=8 and k=16. Then, the 

value was correlated for each metric for the k=0 dataset with 

each of the other datasets (k=2 to k=16). The difference 

between the correlations is then interpreted as the information 

loss. For the second metric of Figure 2, ‘number of 

communities’, the absolute values are plotted and compared. 
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In Figures 1 and 2, the information loss is depicted for 

progressively increasing anonymization levels. That is, 

increasing values of k. 

Tables 2 and 3 show a quantified summary of the relative 

performance of the methods, in terms of the number of times 

they were first, second, third or fourth best in each of the 

cases shown in Figures 1 and 2. A lower overall score means 

a better relative performance. For example, in Table 2 

‘modify’ came first for the ‘degree’ metrics for all three 

datasets (first row of Figure 1). Hence its score is (1+1+1)/3 = 

1.0. ‘cluster’, on the other hand, came equal second for 

‘degree-Enron’, equal third for ‘degree-WikiVote’ and third 

for ‘degree-HepTh’. Hence its score is (2+3+3)/3=2.7. If two 

methods gave a tie, for example, for first position in a given 

case, both methods were awarded one point for first position. 

It is concluded that ‘modify_r’ is the overall winner (rank=1), 

followed by ‘modify’ However, for the ‘NC’ and ‘hub’ 

metrics, ‘cluster_r’ came first and second, respectively.  

Hence, it can be concluded that the restrictions (community, 

hub) mitigated the information loss as expected. It can also be 

observed that some of the relative performances are dataset 

and metric dependent. 

Table 2. Information loss: relative performance of 

methods by metric 

 cluster_r modify cluster modify_r 

degree 3.3 1.0 2.7 2.0 

cc 2.7 1.0 4.0 2.3 

hub 1.7 3.0 3.7 1.3 

NC 1.0 2.7 3.0 1.3 

Rank 3 2 4 1 
 

Table 3. Information loss: relative performance of 

methods by dataset 

 cluster_r modify cluster modify_r 

Enron 2.0 1.7 3.0 1.7 

WikiVote 2.2 2.2 3.5 1.7 

HepTh 2.2 1.7 3.5 1.7 

Rank 3 2 4 1 

 

6.3 Risk (Adversary Information) vs. 

Anonymization Level (k) 
The risk is quantified by applying three different adversary 

queries, which have been previously described in Section 5.3. 

The risk is measured in terms of candidate set sizes, following 

the guidelines of Hay[1]. That is, the highest risk exists for 

nodes for the lowest candidate set size (=1), whereas the 

lowest risk exists for nodes for the highest candidate set size. 

In Figures 3 and 4 the risk is plotted for each of the adversary 

queries, for each dataset and for increasing values of k. For 

space restrictions, only the lowest risk candidate set is shown 

for each adversary query. The proportion of nodes in the 

lowest risk candidate set is a key indicator of risk and was the 

candidate set which best characterized the adversary queries 

and methods. The candidate sets for adversary queries 1, 2, 4 

and 5 were defined with the following frequencies: ‘=1’, ‘2-

4’, ‘5-10’, ’11-20’ and ‘>20’. It was observed that candidate 

sets with frequencies less than k (the privacy level) had zero 

members in all cases, thus confirming that kanonymity was 

achieved. 

6.3.1 Adversary Query 1: vertex refinement H1(x) 
Figure 3 (row 1) shows the trends for the different candidate 

sets, datasets and values of k, for the first adversary query, 

vertex refinement H1(x). This query simply returns the degree 

of a given node. In Figure 3 (row 1), which shows the 

proportion of nodes in the candidate set, it can be observed for 

all original datasets (k=0) that the great majority (90%) of the 

degree values are in the highly frequent candidate set ('>20', 

low risk). The remaining 10% are distributed through the 

other higher risk candidate sets: '=1', '2-4', '5-10' and '11-20'. 

Looking at Figure 3 (row 1), it can be seen that all methods 

follow a similar trend, with the exception of 'cluster' which 

shows a lower proportion of nodes in the '>20' bucket, with 

respect to the other methods. 

6.3.2 Adversary Query 2: vertex refinement H2(x) 
Figure 3 (row 2) shows the trends for the different candidate 

sets, datasets and values of k, for the second adversary query, 

vertex refinement H2(x). This query returns the degrees (in a 

vector) of each of the immediate neighbors of a given node. In 

terms of the datasets, all methods follow a similar trend 

except for the 'HepTh' dataset. In this last case the 'cluster' 

method displays a significantly smaller proportion in contrast 

to the other three methods. Also, it can be seen that the 

'modify_r' method displays a slightly higher relative 

proportion of nodes for the 'WikiVote' and 'HepTh' datasets. 

6.3.3 Adversary Query 3: hub fingerprint F2(x, H) 
Figure 4 shows the trends for the different candidate sets, 

datasets and values of k, for the third adversary query, hub 

fingerprint (See Section 5.3). It is recalled that this query 

returns a vector of the shortest path length to a set of 10 top 

hubs in the graph. The ‘hub’ value for each node is quantified 

by calculating the HITS 'Hub Update Rule’ metric, as 

commented in Section 5.1. With respect to the original 

datasets (k=0), it can be observed that the majority of the 

vector frequencies are in the '>20' candidate set. This set 

initially contained approx. 69% of the nodes for 'Enron', 63% 

for 'WikiVote' and 92% for 'HepTh'. As a result of 

anonymization up to k=16, in general an increase can be seen 

in the '>20' low risk set. In Figure 4, it can be seen that 

'modify' shows the highest relative proportion for all datasets, 

followed by ‘modif_r’, whereas 'cluster' has the lowest or 

equal lowest. 

6.3.4 Summary of the adversary query results 
In this Section an overall picture will be presented of the 

results of the different adversary queries, taking into account 

the detailed analysis which has already been seen in Sections 

6.3.1 to 6.3.3. In order to synthesize the results in a 

quantitative manner, the methods and datasets will be ranked 

in terms of their performance for increasing values of k and 

adversary query type. The candidate set with the highest 

number of candidates (lowest risk) will be used as the 

benchmark. If more candidates fall into this category then the 

overall identification risk will be lower. The scoring scheme 

for Tables 4 and 5 is calculated in the same way as for Tables 

2 and 3 in Section 6.2. 

Tables 4 and 5 contain a quantified summary of the relative 

performance of the methods, based on the number of times 

they were first, second, third or fourth best in each of the 

cases shown in Figures 3 and 4. It can be seen that 'modify_r' 

and ‘modify’ are the winning methods. It can also be noted 

that ‘cluster_r’ always has a better score than ‘cluster’. For the 

three adversary queries (first three rows of Table 4), the 

modification and restricted methods gave the lowest risk. 

Hence it can be concluded that even though the perturbation is 

restricted, the constrained methods have the lowest risk.  
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Fig 3: Risk, Adversary Queries on degree (vertex refinement H1(x)) and degrees of neighbors (vertex refinement H2(x)). Effect 

of anonymization on risk for candidate sets '>20' (degrees and degrees of neighbors) for three different datasets. The figures 

show the percentage of nodes (y-axis) in the candidate set for different values of k (x-axis). 

 

Fig 4: Risk, Hub Fingerprint with visibility horizon of 2. Effect of anonymization on risk for candidate set '>20', for three 

different datasets. The figures show the percentage of nodes (y-axis) in the candidate set for different values of k (x-axis). 

 

Table 4. Risk: relative performance of methods by 

adversary query 

 cluster_r modify cluster modify_r 

H1(x) 1.7 1.7 2.7 1.0 

H2(x) 3.0 2.7 3.3 1.0 

F2(x, H) 3.3 1.0 3.67 2.0 

Rank 3 2 4 1 

 

 

Table 5. Risk: relative performance of methods by dataset 

 cluster_r modify cluster modify_r 

Enron 2.7 2.3 3.0 1.3 

WikiVote 3.0 1.7 3.3 1.3 

HepTh 2.3 1.3 3.3 1.7 

Rank 3 2 4 1 

 

Table 6. Graph characteristics vs. best performing 

methods 

 Enron HepTh WikiVote 

Dataset  

character-

istics 

High D, high 

CC, low NC, v. 

high ACS 

High D, low 

CC,  

low NC, high 

ACS 

Low D, high 

CC,  

high NC, low 

ACS 

Risk  

minimization 

 ‘modify_r’ (H1, 

H2) 

 ‘modify’ (F2)  ‘modify_r’ (H1, 

H2) 

Information 

loss  

minimization 

'modify_r' 

(Hub); 'modify' 

(D, CC); 

'cluster_r' (NC) 

'modify_r' 

(Hub); 

'modify' (D, 

CC); 

 'cluster_r' 

(NC) 

'modify_r' 

(Hub); 

'modify' (D, 

CC); 

'cluster_r' (NC) 

D=degree; CC=Clustering Coefficient; NC=number of communities; ACS=average 

community size; H
1
, H

2
 and F

2
 are the adversary queries 

7. SUMMARY AND CONCLUSIONS 
The node modification and node clustering methods for graph 

perturbation have been implemented with specific constraints 

(on community structure and hubs) which mitigate the effect 

of the perturbation and hence the information loss. It has been 

seen that the constrained methods have not incurred an 

increase in risk with respect to the non-constrained methods. 



International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.20, June 2014 

38 

In terms of information loss, the best method varies depending 

on the metric used, and in some cases on the dataset 

characteristics.  The 'modify' (unrestricted) method was best 

for the degree and clustering coefficient metrics, for all 

datasets. 'modify_r' was best for the Hub metric and 

‘cluster_r’ was best for the ‘NC’ (number of communities) 

measure. Overall, ‘modify_r’ and ‘modify’ gave the lowest 

overall information loss. A general summary can be seen in 

Table 6. 
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