
Reverse-Safe Data Structures for Text Indexing∗

Giulia Bernardini † Huiping Chen ‡ Gabriele Fici § Grigorios Loukides ‡

Solon P. Pissis ¶

Abstract

We introduce the notion of reverse-safe data structures.
These are data structures that prevent the reconstruc-
tion of the data they encode (i.e., they cannot be easily
reversed). A data structure D is called z-reverse-safe
when there exist at least z datasets with the same set
of answers as the ones stored by D. The main challenge
is to ensure that D stores as many answers to useful
queries as possible, is constructed efficiently, and has
size close to the size of the original dataset it encodes.
Given a text of length n and an integer z, we propose an
algorithm which constructs a z-reverse-safe data struc-
ture that has size O(n) and answers pattern matching
queries of length at most d optimally, where d is max-
imal for any such z-reverse-safe data structure. The
construction algorithm takes O(nω log d) time, where ω
is the matrix multiplication exponent. We show that,
despite the nω factor, our engineered implementation
takes only a few minutes to finish for million-letter texts.
We further show that plugging our method in data anal-
ysis applications gives insignificant or no data utility
loss. Finally, we show how our technique can be ex-
tended to support applications under a realistic adver-
sary model.

1 Introduction

Data structures organize data allowing for their efficient
access and modification. They are thus the workhorse
of many data analysis applications, such as clustering
and outlier detection (e.g., through indexes for k-nearest
neighbors join queries [9]), frequent pattern mining
(e.g., through FP-trees [31]), document retrieval (e.g.,
through inverted indexes [48]), graph pattern matching
(e.g., through graph indexes [68]), and range search in

∗GB was partially supported by a research internship at CWI.
HC was supported by a CSC scholarship. GF was partially
supported by the Italian MIUR project PRIN 2017K7XPAN.
†Università di Milano - Bicocca, Italy and CWI, The Nether-

lands. giulia.bernardini@unimib.it
‡King’s College London, United Kingdom.

{huiping.chen,grigorios,loukides}@kcl.ac.uk
§Università degli Studi di Palermo, Italy. gabriele.fici@unipa.it
¶CWI, The Netherlands. solon.pissis@cwi.nl

databases (e.g., through R-trees [29]).
These applications are often fueled by data collected

from individuals, such as location, genomic, or customer
data, and have led to justified privacy concerns [59].
To alleviate these concerns and comply with legislation
such as HIPAA [19] in the US and GDPR [52] in the
EU, it is necessary to guarantee that using data struc-
tures does not lead to the reconstruction of the stored
individuals’ data. This is a fundamentally different pri-
vacy goal than that of existing privacy-preserving tech-
niques, such as anonymization [16, 15, 72, 32], saniti-
zation [67, 25, 30, 10, 46, 6], query auditing [51], or
access control [7]. Anonymization aims at preventing
the disclosure of individuals’ identities and/or sensitive
information. Sanitization aims at preventing the mining
of confidential knowledge. Query auditing aims at pre-
venting answering aggregate queries that leak private
information. Access control is the selective restriction
of access to some parts of a database. Our privacy goal
is also different from that of encryption techniques, such
as searchable encryption [8, 43, 54], which aim at pre-
venting unauthorized parties from accessing the data.

We consider a setting where a large group of users
want to query a dataset directly via a data structure
which prevents the reconstruction of the data. To
this end, we introduce a novel encoding model that
enables the construction of reverse-safe data structures
(RSDSs). The ultimate aim of an RSDS is to make
the reconstruction of a dataset sufficiently unlikely, so
that an adversary cannot infer the dataset based on the
query answers, but at the same time the RSDS stores
as many answers to useful queries as possible in order
to support applications. In addition, the RSDS should
be constructed efficiently and have size close to the size
of the original dataset it encodes. Our idea is inspired
by encoding data structures (EDSs) [55]. The ultimate
aim of an EDS is to break the information-theoretical
lower bound, which is required to store a dataset, by
storing only the answers to useful queries (e.g., range
queries [22, 27] or nearest largest value queries [33]).

Given a data structure D, we denote by AD its
set of consistent datasets: all datasets with the same
set of answers as the answers stored by D. Let us

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

199

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Palermo

https://core.ac.uk/display/286528426?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


denote αD = |AD|. Given an integer threshold z > 1,
which we call the privacy threshold, we say that D is
z-RSDS if and only if αD ≥ z. A large z implies strong
data privacy because an adversary cannot distinguish
between the αD ≥ z consistent datasets, which implies
that it is less likely that the adversary infers the dataset
used to construct D in the first place. Still, it could be
the case that D stores answers to many useful queries.

In this work, we consider string data (sometimes
called text, word, or document depending on the con-
text). A string is a sequence of letters from an alphabet.
A string may represent various types of confidential in-
formation about individuals, including their movement
history [65], diagnosed diseases [60], purchased prod-
ucts [63], or DNA sequence [47]. Our goal is to con-
struct a z-RSDS for string data which allows for deci-
sion and counting pattern matching queries to be ac-
curately and efficiently answered. Decision queries are
fundamental for intrusion detection [44], activity mon-
itoring [67], as well as for cataloguing human genetic
variation [5], while counting queries are fundamental for
pattern mining that is central in application domains
ranging from bioinformatics [58] to marketing [46] and
to public health [4].

Pattern matching queries in strings are answered ef-
ficiently by means of indexing data structures. These
structures enable fast access to the substrings of a
string, which is important in many data analysis ap-
plications [28]. The main idea behind indexing a string
S for efficient substring querying is that every substring
of S is a prefix of some suffix of S. Indexing data struc-
tures thus arrange the suffixes of S lexicographically in
an ordered tree data structure. One popular such data
structure is the suffix tree [69]. The suffix tree of S is
the compacted trie of all the suffixes of S. The term
compacted refers to the fact that it reduces the num-
ber of nodes by replacing each maximal branchless path
segment with a single edge, and it uses intervals over
S to store the labels of these edges. This ensures that
the suffix tree has size linear in |S|: it has no more
than 2|S| nodes. Importantly, the suffix tree answers
several types of pattern matching queries over S in op-
timal time; see [28] for a nice exposition.

However, the suffix tree of S, which provides (ran-
dom) access to all substrings of S, is not a z-RSDS,
because it uniquely represents S. The privacy-utility
trade-off we consider here is thus to provide access only
to the substrings of S whose length is at most d, for
some d ∈ [1, |S|). In particular, we want our z-RSDS to
support the following types of on-line queries.

Decision Query: check if a string P of length m ≤ d
is a substring of S.

Counting Query: count the occurrences of a string P
of length m ≤ d in S.

Given a string S and a privacy threshold z, the
computational challenge is to compute the maximal d
for which a z-RSDS for indexing S can be constructed.
The maximality of d offers data utility, since any query
for a substring of S of length d or less has the same
answer, irrespectively of whether it is posed on S or
on the z-RSDS. The fact that the data structure is
z-reverse-safe offers data privacy, since the probability
that an adversary infers S, based solely on knowledge
of the z-RSDS, is no more than 1/z.

We are now in a position to formally define the main
computational problem considered in this paper1.

Problem 1. Given a string S of length n and a privacy
threshold 1 < z ≤ nc, for some constant c ≥ 1, construct
a z-RSDS that answers decision and counting pattern
matching queries for any pattern of length m ≤ d, such
that d is maximal, or output FAIL if no such d exists.

Our Contributions
The main theoretical result of this paper is the fol-

lowing (ω denotes the matrix multiplication exponent2).

Theorem 1.1. Given a string S of length n, there
exists an O(nω log d)-time algorithm to construct an
O(n)-sized z-RSDS over S for a maximal d that answers
decision and counting pattern matching queries, for any
pattern of length m ≤ d, in the optimal O(m) time per
query. The algorithm outputs FAIL if no such d exists.

The main ingredients of our construction algorithm
include (truncated) suffix trees [50, 69], a combinatorial
theorem on de Bruijn graphs [34, 36], and fast matrix
multiplication [70, 41]. To the best of our knowledge we
are the first to combine these ingredients. We show that,
despite the nω factor, our engineered implementation
can construct z-RSDSs over million-letter texts in only
a few minutes. To achieve this practical performance,
we rely on further theoretical insight. We also show that
plugging our method in data analysis applications gives
insignificant or no data utility loss. Finally, we show
how our technique can be extended at no extra cost to
construct a z-RSDS that supports applications under a
realistic adversary model, in which the adversary knows
an arbitrary-length substring of S.

Organization of the Paper

1The problem of inferring a string from a text indexing data

structure (see [38] and references therein) is conceptually related
but fundamentally different to the problem investigated here.

2At the time of writing this paper, ω < 2.373 [70, 41].

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

200

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



The basic definitions and notation are introduced
in Section 2. In Section 3, we propose a z-RSDS for
text indexing. In Section 4, we present our construction
algorithm. We then describe a series of practical
improvements in Section 5. In Section 6, we present
our implementation and extensive experimental results.
In Section 7, we discuss how to construct an adapted
version of our z-RSDS under an adversary model.
We conclude this paper in Section 8 with some open
questions.

2 Definitions and Notation

An alphabet Σ is a finite non-empty set whose elements
are called letters. A string is a sequence of letters from
Σ. We fix a string S = S[0] · · ·S[n − 1] over Σ =
{1, . . . , nO(1)}. The length of S is denoted by |S| = n.
We also assume that S contains at least two different
letters, otherwise the problem considered in this paper
is trivial. By S[i . . j] = S[i] · · ·S[j], we denote the
substring of S starting at position i and ending at
position j of S. A substring S[i . . j] is called a prefix if
i = 0; it is called a suffix if j = n− 1. Given a positive
integer k, we denote by (S)k,i the length-k substring of
S starting at position i, i.e., (S)k,i = S[i . . i + k − 1],
for all 0 ≤ i < n− k + 1. A string P has an occurrence
in S or, more simply, it occurs in S if P = (S)|P |,i, for
some i. An occurrence of P is thus characterized by its
starting position i in S.

The weighted de Bruijn graph of order k over a
string S of length n is a directed multigraph GS,k =
(VS,k, ES,k), where the set of vertices VS,k is the set of
length-(k − 1) substrings of S and ES,k is the multiset
of edges from vertex u to vertex v for every occurrence
of u and v as consecutive length-(k−1) substrings of S.
More formally, there is a multi-edge (u, v) ∈ ES,k with
multiplicity m if and only if u[0] · v = u · v[k − 2] and
this string occurs in S exactly m times. Thus GS,k has
exactly n − k + 1 edges; in general, GS,k contains self-
loops and multi-edges (inspect Fig. 3 for an example).

3 A z-RSDS for Text Indexing

Let S be a string of length n. For a positive integer d,
we define a d-substring of S as a substring of length d
of S, or a suffix of S whose length is less than d.

The d-truncated suffix tree of a string S, denoted
by Td(S), is a path-compacted trie representing every
d-substring of S [50]. We make use of a terminating
letter # /∈ Σ for technical purposes. Formally, Td(S)
is a rooted tree satisfying the following conditions (see
Fig. 1 for an example):

1. Each edge is labeled with a non-empty substring of
string S# encoded as an [i, j] interval over [0, n].

2. Each internal node v, except possibly the root, has
at least two children. The labels of edges from v to
its children start with distinct letters.

3. Let L(v) denote the string obtained by concatenat-
ing labels on the path from the root to node v.
For every d-substring U , there is exactly one leaf
w such that U = L(w) (if |U | = d) or U# = L(w)
(if |U | < d). For each leaf w, there is at least one
d-substring U such that L(w) = U or L(w) = U#.

4. Each node v other than the root has a counter that
stores the number of substrings of string S# that
are equal to L(v).

Therefore, the number of leaves is at most n and
the total number of nodes is less than 2n. Recall that
the label of the edge between node u and its child v,
denoted by label(u, v), is represented implicitly by an
interval over [0, n]. Thus the space occupied by Td(S)
is O(n). The children of internal nodes are indexed
by the alphabet letters using perfect hashing to ensure
O(1)-time access [23]. Importantly, Td(S) supports the
following on-line pattern matching operations:

Decision Query: Check if a string P of length m ≤ d
is a substring of S in O(m) time.

Counting Query: Count the occurrences of a string
P of length m ≤ d in S in O(m) time.

Theorem 3.1. ([50, 14]) Given a string S of length n
and 0 < d ≤ n, Td(S) has size O(n) and it can be
constructed in O(n) time. Td(S) answers decision and
counting pattern matching queries, for any pattern of
length m ≤ d, in the optimal O(m) time per query.

The following off-line operations are also supported:

Frequent Substrings: Find all most frequent sub-
strings, for all lengths 1, 2, . . . , d, in O(n) time.

Repeated Substrings: Find all longest repeated sub-
strings of length at most d in O(n) time.

Unique Substrings: Find all shortest unique sub-
strings of length at most d in O(n) time.

We next consider a different representation of Td(S)
towards defining the notion of z-reverse-safe data struc-
ture. If label(u, v) is represented explicitly by a string
we denote the resulting data structure by TRIEd(S). In
this case, string S is not part of the data structure, and
thus TRIEd(S) does not, generally, define S uniquely.

Definition 3.1. (d-Equivalent Strings) Given the
set of all possible strings of length n over an alphabet Σ

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

201

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Figure 1: Td(S) for S = abaabbabba and d = 3. We
omit edges whose labels start with letter # for clarity.

Figure 2: Let S = abaabbabba and S′ = abbaabbaba.
S ∼3 S

′ ⇐⇒ TRIE3(S) = TRIE3(S′).

and an integer d, string S is d-equivalent to string S′

if and only if TRIEd(S) = TRIEd(S′). In this case, we
write S ∼d S

′ and say that S′ is consistent with Td(S).

See Fig. 2 for an example. We can now formally
define a z-reverse-safe data structure for text indexing.

Definition 3.2. (z-RSDS for Text Indexing)
Given an integer z > 1, Td(·) is called z-reverse-safe
if and only if there exist at least z distinct strings that
are consistent with Td(·).

In what follows, we denote the set of strings that are
consistent with Td(S) by Ad(S), and |Ad(S)| by αd(S),
for d ∈ [1, n]. We omit (S) when this is clear from the
context, and we also set α0(S) =∞ for completeness.

4 Constructing z-RSDS

Clearly, Tn(S), the (non-truncated) suffix tree of S, has
αn = 1 (i.e., it uniquely represents S), so it can never
be a solution to Problem 1 since z > 1, by definition.

The following lemma is important for efficiency.

Lemma 4.1. The sequence α0, α1, . . . , αn is monotoni-
cally non-increasing.

Proof. Let Ad be the set of strings consistent with Td,
d ∈ [1, n], and αd = |Ad|. Further let S be any element

of Ad. By construction, if U is a d-substring of S,
then U = L(w) or U# = L(w), for some leaf w of
Td. Every (d − 1)-substring S[i . . i + d − 2] of S is a
prefix of the d-substring S[i . . i + d − 1] of S. Thus
string S is consistent with Td−1, the path-compacted
trie that represents every such (d − 1)-substring, and
thus S ∈ Ad−1. This implies the following relation:
An ⊆ An−1 ⊆ · · · ⊆ A1. The statement follows directly
from this relation and the fact that α0 =∞.

By Lemma 4.1, for increasing d, Td(S) generally
decreases αd and increases utility. We thus need an
algorithm to compute the maximum possible d that
results in a z-RSDS. We next provide an algorithm,
called z-RC (for z-RSDS Construction), to find this d.

Algorithm: z-RC

Input: string S of length n and integer z > 1

Output: d and Td(S′), for some S′ ∈ Ad, or FAIL
1 `← 0; r ← n;

2 if ` ≥ r then

3 go to Line 10;

4 d← b `+r
2
c;

5 if αd(S) ≥ z then

6 `← d+ 1;
7 else

8 r ← d;

9 go to Line 2;
10 if ` > 0 then

11 output d← `− 1 and Td(S′), for some S′ ∈ Ad

12 else
13 output FAIL

As can be seen in the pseudocode, z-RC performs
binary search on n (the length of S), computing αd until
d results in a z-RSDS and d is maximal. At this point,
the z-RSDS Td(S′) is output, where S′ is an element of
Ad chosen at random, and the algorithm terminates. If
` > 0 and α`−1 = z, then α`−1 is the rightmost element
that equals z. Even if such an element is not found,
n− ` is the number of elements that are smaller than z.

The computational challenge is thus to implement
the check of Line 5 efficiently and to find a consistent
S′ when this is possible (Line 11). To this end, we start
with the following simple yet crucial observation.

Observation 1. Given two strings X and Y , X is d-
equivalent to Y if and only if X and Y have the same
multisets of substrings of length i, for every i ∈ [1, d].

In the terminology of combinatorics on words, d-
equivalence is known as d-abelian equivalence [37]. We
report a lemma from [37], which gives several equivalent
conditions that characterize d-equivalence.

Lemma 4.2. ([37]) Let X and Y be two strings of
length at least d that have the same multiset of sub-
strings of length d. The following are equivalent:

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

202

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



1. X and Y have the same multiset of substrings of
length i for every 1 ≤ i ≤ d;

2. X and Y have the same prefix of length d − 1 and
the same suffix of length d− 1;

3. X and Y have the same prefix of length d− 1;

4. X and Y have the same suffix of length d− 1.

Lemma 4.2 tells us that we should rely on the
construction of weighted de Bruijn graphs over string
S in order to compute αd(S). The weighted de Bruijn
graph of order d over string S is denoted by GS,d =
(VS,d, ES,d). Recall that its set of vertices VS,d is the set
of distinct substrings of S of length d− 1 (we implicitly
identify a vertex by the string it represents) and there
is an edge (u, v) ∈ ES,d with multiplicity m if and only
if u[0] ·v = u ·v[d−2] and this string occurs in S exactly
m times. We borrow the terminology used in [39]. Let
d−(u) and d+(u) be, respectively, the in- and out-degree
of vertex u of GS,d. Let s and t be the vertices of
GS,d corresponding, respectively, to the prefix and to
the suffix of length d − 1 of S. Since any weighted
de Bruijn graph is either Eulerian (if s = t) or semi-
Eulerian (if s 6= t), we have that d+(u) = d−(u) for all
u with the possible exception of the two nodes s and
t for which d−(s) = d+(s) − 1 and d+(t) = d−(t) − 1,
if s 6= t. Clearly, S corresponds to an Eulerian path
in GS,d that starts at s and ends at t 6= s (if s = t,
then it corresponds to an Eulerian cycle starting from
s). The graph GS,d may contain other Eulerian paths
(resp. cycles). Notice, however, that if two distinct
Eulerian paths (resp. cycles) traverse the vertices of
GS,d in the same order, but the edges in different order,
then they give rise to the same string. We call these
Eulerian paths (resp. cycles) equivalent. We summarize
these observations into the following statement, which
is crucial for the correctness of the z-RC algorithm.

Observation 2. (a) If S ∼d S
′, then S′ corresponds to

an Eulerian path in GS,d that starts from vertex s and
ends at vertex t 6= s (if s = t, then it corresponds to
an Eulerian cycle starting from s). (b) The number of
distinct strings that are d-equivalent to S is the number
of non-equivalent Eulerian paths (resp. cycles) in GS,d.

The number of non-equivalent Eulerian paths
(resp. cycles) in GS,d can be computed via the following
theorem, which is attributed to Hutchinson [34].

Theorem 4.1. ([34], cf. [39, 36]) Let A = (auv) be
the adjacency matrix of the weighted de Bruijn graph
GS,d = (VS,d, ES,d), with both auv > 1 (multi-edges) and
auu > 0 (self-loops) allowed. Let ru = d+(u)+1 if u = t
or ru = d+(u) otherwise. The number of non-equivalent

Figure 3: GS,d with S = abaabbabba and d = 3 (on the
left); and the set of d-equivalent strings (on the right).

Eulerian paths starting at s and ending at t (resp. the
number of non-equivalent Eulerian cycles starting at s,
when t = s) is given by

(4.1) (detLS,d) ·

( ∏
u∈VS,d

(ru − 1)!

)
·

( ∏
(u,v)∈ES,d

auv!

)−1

,

where LS,d = (luv) is the |VS,d| × |VS,d| matrix with
luu = ru − auu and luv = −auv.

Let us denote by |S|x the number of occurrences
of a string x in S. Since, by definition, ru = |S|u and
auv = |S|u·v[k−2] = |S|u[0]·v, Eq. 4.1 is equivalent to

(4.2) (detLS,d) ·

( ∏
u∈VS,d

(|S|u − 1)!

)
·

(∏
a∈Σ

|S|ua!

)−1

.

Eq. 4.2, together with a combinatorial study of the
strings that belong to the same d-equivalence class, can
be found in [36]. An example is provided with Fig. 3.

It is, however, not immediate that Eq. 4.1 (or the
equivalent Eq. 4.2), involved in the check of Line 5 in
algorithm z-RC, can be computed efficiently. We show
this next starting with a known fact on de Bruijn graphs.

Fact 4.1. ([13]) Given a string S of length n and d <
n, its weighted de Bruijn graph GS,d can be constructed
in O(n) time.

Lemma 4.3. detA of an n × n non-singular matrix A
can be computed in O(nω) time.

Proof. The decomposition of a non-singular matrix A =
LU , where L and U is a lower and upper triangular
matrix, respectively, is known as LU decomposition
and can be computed in the same time as matrix
multiplication [11]. Given this decomposition, the
determinant can be computed as detA = detL ·detU =∏n

i=1 lii ·
∏n

i=1 uii. This is because the determinant of
any triangular matrix (such as L and U) is the product
of its diagonal entries.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

203

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



Lemma 4.4. Given detLS,d, the check of Line 5 in
algorithm z-RC can be performed in O(n log n) time.

Proof. We unfold all factorials involved in the two prod-
ucts of Eq. 4.1. Let us first consider the leftmost
product. Observe that the total number of multipli-
cations involved is no more than n because the sum
of out-degrees over all nodes of GS,d is no more than
n. Moreover, observe that each factor of the prod-
uct is represented by log n bits because its value is
no more than n. We assume a word-RAM algorithm
that takes O(n1 + n2) arithmetic operations to multi-
ply an n1-bit integer by an n2-bit integer [40] resulting
in an (n1 + n2)-bit integer. Using a log n-depth divide
and conquer, we can multiply these n integers in time
O( n

21 20 log n + n
22 21 log n + . . . + n

2log n 2log n−1 log n) =
O(n log n). Using an analogous argument, the rightmost
product can be computed in O(n log n) time, because
GS,d has no more than n edges, which implies that the
product has at most n factors.

The leftmost product results in an (n log n)-bit in-
teger (we multiply n log n-bit integers). By Hadamard’s
inequality [26] an upper bound on the value of detLS,d

is Bn · nn/2, where B is an upper bound on the val-
ues in LS,d. Since here B ≤ n, an upper bound on
detLS,d is nn · nn/2 = n3n/2, which can be expressed
using log(n3n/2) = 1.5n log n bits. Multiplying detLS,d

by the leftmost product is thus done in O(n log n) time.
The rightmost product also results in an (n log n)-bit in-
teger, which we multiply by z. Since z ≤ nc is a c log n-
bit integer, this is done in O(n log n) time. Thus, Line 5
is checked in O(n log n) time if detLS,d is known.

We arrive at the main theoretical result.

Theorem 4.2. Given a string S of length n, there
exists an O(nω log d)-time algorithm to construct an
O(n)-sized z-RSDS over S for a maximal d that answers
decision and counting pattern matching queries, for any
pattern of length m ≤ d, in the optimal O(m) time per
query. The algorithm outputs FAIL if no such d exists.

Proof. The correctness of z-RC algorithm follows by
Lemma 4.1 and Observation 2. The correctness of
querying follows by the definition of d-equivalent strings.

The construction time follows by Fact 4.1, Lem-
mas 4.3-4.4, Theorem 3.1, and the binary search cost
over [0, n]. Specifically, the check of Line 5 is imple-
mented in O(nω) time by Fact 4.1 and Lemmas 4.3-4.4.
If we find a valid d, we choose an Eulerian path (resp. cy-
cle) of GS,d to construct a string S′ and then construct
Td(S′) using Theorem 3.1 in O(n) time (Line 11). The
z-RSDS size and the time per query follow by Theo-
rem 3.1. If no such d exists the algorithm outputs FAIL.

If we apply exponential search (instead of binary
search), we get an O(nω log d)-time construction.

Colbourn et al. [17] gave an algorithm allowing for
sampling of a random arborescence rooted at a given
node to be carried out in the same time as counting
all such arborescences, which forms the basis of count-
ing Eulerian paths and cycles in directed multigraphs.
Hence, by plugging the algorithm of Colbourn et al. in
our construction algorithm (Line 11), we can also choose
a string S′ ∼d S randomly in the same time complexity.

5 Engineering the z-RC Algorithm

In what follows we describe a series of practical improve-
ments, which are based on theoretical insight.

5.1 Improvement I: Reducing the BS Interval.

Lemma 5.1. Let S be a string and r(S) be the length
of a longest substring of S occurring at least twice in S.
Td(S) cannot be a z-RSDS over S if d ≥ r(S) + 2.

Proof. Let I be the set of substrings of length r(S) + 2
of string S. Having set I is a sufficient condition for the
unique reconstruction of S from I [21, 12]. This implies
that, if d ≥ r(S) + 2, Td(S) defines S in a unique way
(i.e., αd = 1), and thus Td(S) cannot be a z-RSDS (since
by definition z > 1).

Note that the upper bound of r(S) + 1 can be
computed in O(n) time using the suffix tree of S [20],
which is much faster than computing the bounds found
by an exponential search. This is because exponential
search takes O(nω) time for each of its iterations. As
a consequence of Lemma 5.1, we can reduce the binary
search interval from [0, n] to [0, r(S) + 1] in O(n) time.
Furthermore, it is known that r(S) tends to log|Σ| n as n
tends to infinity under a Bernoulli i.i.d. model (cf. [21]).

5.2 Improvement II: Checking Prefixes of S.

Lemma 5.2. Let S be a string and P be a prefix of S.
Further, let Ad(P ) (respectively, Ad(S)) be the set of
strings that are consistent with Td(P ) (respectively, with
Td(S)). It holds that αd(P ) ≤ αd(S).

Proof. We show the lemma by showing that for any
string X and any letter a, αd(X) ≤ αd(Xa). This
implies that αd(P ) ≤ αd(S). Indeed, by Lemma 4.2,
it follows that if X ′ is d-equivalent to X, then X ′a is
d-equivalent to Xa.

Lemma 5.2 lets us implement the check in Line 5
of the z-RC algorithm by operating on the prefixes of
S. The length of a longest substring of every prefix P

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

204

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



of S occurring at least twice in P can be computed by
means of the longest previous factor (LPF) array [18].
The LPF array gives, for each position i in S, the length
of a longest substring occurring both at i and to the left
of i in S. We can thus construct an array R, where R[i]
stores the length of a longest substring occurring at least
twice in the prefix P = S[0 . . i] of S, by traversing the
LPF array. Then, we only need to perform the check
αd(P ) ≥ z when d < R[i] + 2. This is because of
applying Improvement I on P . The LPF array, and
thus array R, can be computed both in O(n) time [18].
Note that R[i] ≤ R[i+ 1]. Thus, having R, we can find
(whether there exists) a prefix P = S[0 . . i] satisfying
d < R[i] + 2, for all d, in O(n) time in total.

5.3 Improvement III: Sparse LU Decomposi-
tion. Let GS,d = (VS,d, ES,d) be the weighted de Bruijn
graph for which we must compute the determinant
detLS,d. LS,d is a |VS,d| × |VS,d| non-singular ma-
trix, where |VS,d| is the number of distinct substrings
of length d − 1 occurring in S. Hence we have that
|VS,d| ≤ min(|Σ|d−1, n − d + 1). If |VS,d| = O(n1/ω),
then detLS,d is computed in O(n) time by Lemma 4.3.
If |VS,d| = Θ(n), then LS,d is sparse: it has no more than
|VS,d|+n−d+1 non-zero elements, because in the worst
case there is a non-zero element for each edge and there
are n − d + 1 edges with multiplicity 1. Thus, in any
case, LS,d cannot contain more than 2n−d+1 non-zero
elements. We can therefore employ highly-optimized al-
gorithms for sparse LU decomposition (e.g., [24, 35]) to
compute detLS,d efficiently. Let flops(XY ) be the num-
ber of multiplications of non-zero elements performed
while computing the product XY by conventional ma-
trix multiplication. The algorithm of [24], for instance,
takes O(flops(LU)+m) time to compute the LU decom-
position of a matrix with m non-zero elements. Thus,
in our case, computing detLS,d takes O(flops(LU) + n)
time.

6 Implementations and Experiments

6.1 Implementations. We have implemented the
following algorithms in C++: (I) z-RC with Improve-
ment III; (II) z-RCB (for Binary search interval reduc-
tion), which implements Improvements I and III; and
(III) z-RCBP (for Binary search interval reduction and
Prefix checking), which implements Improvements I, II,
and III. We have omitted the results of the versions of
the algorithms without Improvement III, because they
were too slow to be practical.

For Improvement II, we have combined the idea
described in Section 5.2 with exponential search: we
start from an initial prefix P0 of S that has length
|P0| = κ and use it to perform the check in Line 5

Dataset Data Total Alphabet
domain length n size |Σ|

MSN Web 4,698,764 17
EC Genomic 4,641,652 4
PR Genomic 446,246 (27 strings) 4

SYN50M Synthetic 50,000,000 10

Table 1: Characteristics of datasets used.

of our algorithm in Section 4. Due to Lemma 5.2, we
know that αd(P0) ≥ z implies αd(S) ≥ z; we thus check
if αd(P0) ≥ z, because this is clearly more efficient than
checking αd(S) ≥ z. If αd(P0) < z, αd(S) ≥ z may
or may not hold. In this case, we consider a longer
prefix of S that has length |P1| = 21 · κ and proceed
similarly. Clearly, significant computational savings can
be brought when the last considered prefix Pi has small
length |Pi| = 2i · κ, while in the worst case Pi = S,
and the total cost of our algorithm with Improvement
II is twice the cost of the algorithm without it due
to doubling. We also apply Improvement I on these
prefixes: if d ≥ R[i] + 2 for prefix Pi, we do not check
αd(Pi) ≥ z, because Lemma 5.1 already ensures that
αd(Pi) = 1 < z.

For Improvement III, we used the Sparse LU de-
composition function of the open-source Eigen library
(v. 3.3.7) [1], which is based on the algorithm of [35], to
compute detLS,d.

6.2 Experimental Setup and Datasets. We have
evaluated z-RC, z-RCB, and z-RCBP in terms of data
utility and efficiency. We do not compare our methods
to existing approaches, because they are not alternatives
to our work as mentioned in Section 1.

We used the following publicly available datasets:
MSNBC (MSN), which contains page categories visited
by users on msnbc.com over a 24-hour period; the com-
plete genome of Escherichia coli (EC); and a dataset
containing 27 Primate mitochondrial genomes (PR).
MSN was used in [25, 30, 46], EC was used in [6],
and PR was used in [64]. We also generated a uni-
formly random string of length 50M over an alphabet of
size 10, and used its prefixes of length 1M, . . . , 50M as
synthetic datasets, referred to as SYN1M, . . . ,SYN50M,
respectively. Each dataset contains a single string, ex-
cept for PR which contains 27 strings (one for each mi-
tochondrial genome). In PR, we applied our methods
to each string independently. Table 1 summarizes the
characteristics of the datasets.

To evaluate data utility, we report the length d
found by our methods for different values of z, and
also investigate the accuracy of performing two classes
of data analysis applications: pattern mining [73] and
phylogenetic tree reconstruction [64]. Unlike decision
and counting pattern matching queries of length at

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

205

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

msnbc.com


0

500

1000

10
1

10
2

10
3

10
4

10
5

z

d

z−RCBP

(a) EC

0

200

400

10
1

10
2

10
3

10
4

10
5

z

d

z−RCBP

(b) MSN

1195

1197

1197

1197

1e+02

1e+05

1e+08

1e+11

0 1 2 3
w

#
 f
re

q
. 
p
a
tt
e
rn

s
 l
o
g
 s

c
a
le

z−RCBP

(c) EC

37

38
41

41

1e+02

1e+05

1e+08

1e+11

0 1 2 3
w

#
 c

lo
s
e
d
 f
re

q
. 
p
a
tt
e
rn

s
 l
o
g
 s

c
a
le

z−RCBP

(d) EC

Figure 4: Length d for different z values for (a) EC and (b) MSN. Number of (c) frequent patterns and (d) closed
frequent patterns with up to w ∈ [0, 3] wildcards mined from EC using minSup = 1.8 · 10−6. The length of the
longest mined pattern is on the top of each bar.

most d, which are answered exactly using the z-RSDS
constructed by our methods, these applications are
not guaranteed to be performed accurately on the
output encoding. Yet, we show that plugging in our
approach gives insignificant or no data utility loss in
these applications.

We now discuss each of these applications.
(Closed) Frequent Pattern Mining. Frequent patterns
and closed frequent patterns in string datasets model
knowledge that aids decision making [2, 58] and can be
used for data classification and clustering [73]. Given
a string S and a user-specified threshold minSup, a
pattern is frequent if its relative frequency in S, also
referred to as support, is at least minSup. A frequent
pattern of S is closed if none of its superstrings has the
same relative frequency in S. Closed frequent patterns
are typically fewer than the frequent ones and they
are mined much more efficiently. Their benefit is that
they uniquely determine the set of frequent patterns
and their exact frequency. Our methods allow mining
the frequent and closed frequent patterns of length at
most d and only those. Thus, our methods preserve
data utility well when the d computed is sufficiently
large for low minSup values. In our experiments, we
used the algorithm of [2] to mine a more general class
of frequent and closed frequent patterns having up
to w ∈ [0, 3] occurrences of a wildcard letter �. A
pattern with wildcards occurs in a string S if it is
a subtring of S after replacing the wildcard letters
with alphabet letters (e.g., pattern a��e occurs in
S = babdeb). Mining patterns with wildcards poses
a further challenge to our approach, since (closed)
frequent patterns with wildcards are a superset of the
(closed) frequent patterns and are typically longer.
Phylogenetic Tree Reconstruction. A phylogenetic tree
illustrates the evolutionary relationships among a set of
species. To reconstruct phylogenetic trees, we applied

the methodology in [64] on the PR dataset. That is, we
compute the pairwise Average Common Substring with
k mismatches (k-ACS) distance [66, 42] between the 27
strings in PR, using the ALFRED-G [64] algorithm,
and then apply the neighbor-joining (NJ) algorithm [57]
to reconstruct the phylogenetic tree. We apply the
methodology to S and to S′ ∼d S, S′ 6= S: intuitively,
data utility is preserved well when the phylogenetic
tree for S is similar to the one for S′. Following [64],
we measured similarity using the normalized Robinson-
Foulds (nRF) distance [56].

Unless otherwise stated, we used z = 100 and
κ = 1000. All experiments ran on a machine with an
Intel Xeon E5-2640 at 2.66GHz and 160GB RAM.

6.3 Data Utility. Recall that our approach allows
for answering pattern matching queries of length at
most d in optimal time, and at the same time it prevents
the reconstruction of the original dataset. In this
section, we demonstrate that z-RCBP (and z-RC, z-
RCB, which by design create the same output as z-
RCBP), allow for other meaningful data analysis tasks
to be applied with insignificant or no utility loss.

6.3.1 Length d. We first show that z-RCBP pro-
vides access to very long substrings of the original
dataset (i.e., the output length d is large). Figs. 4a
and 4b show d for different values of the privacy thresh-
old z in EC and MSN, respectively. As expected, d
decreases when z increases. However, d is in the or-
der of several hundreds, even when z is set to 100, 000.
This implies (I) no accuracy loss for applying the pat-
tern matching queries described in Section 3 on very
long substrings and (II) strong privacy against dataset
reconstruction.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

206

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



280

280

280

281

1e+02

1e+05

1e+08

0 1 2 3
w

#
 f
re

q
. 
p
a
tt
e
rn

s
 l
o
g
 s

c
a
le

z−RCBP

(a) MSN

280

280

280

281

1e+02

1e+05

1e+08

0 1 2 3
w

#
 c

lo
s
e
d
 f
re

q
. 
p
a
tt
e
rn

s
 l
o
g
 s

c
a
le

z−RCBP

(b) MSN

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 5 6 7 8 9

k

n
R

F
 d

is
ta

n
c
e

z−RCBP

(c) PR

Figure 5: Number of (a) frequent patterns and (b) closed frequent patterns with up to w ∈ [0, 3] wildcards mined
from MSN using minSup = 3.1 · 10−3. The length of the longest mined pattern is on the top of each bar. (c) nRF
distance vs. k between phylogenetic trees constructed for S and for S′ ∼d S, S′ 6= S, using the k-ACS distance.

6.3.2 Frequent Pattern Mining. We demonstrate
that z-RCBP allows for accurately mining frequent and
closed frequent patterns with up to w ∈ [0, 3] wildcard
letters at very low minSup values. To this aim, we have
computed the smallest possible value of minSup such
that the mined frequent and closed frequent patterns
have length no more than d. We denote this value by
τ . Clearly, our method has no data utility loss for any
minSup ≥ τ . For EC, the smallest such minSup value
(up to 8 decimal digits) was τ = 1.8 · 10−6. Figs. 4c
and 4d show the number and the maximal length of
the mined patterns with minSup = τ = 1.8 · 10−6 for
EC. For MSN, the smallest such minSup value (up to 4
decimal digits) was τ = 3.1·10−3. The results for mining
MSN with minSup = τ = 3.1 · 10−3 in Figs. 5a and 5b
are qualitatively similar to those in Figs. 4c and 4d,
respectively. The plots show that a large number of
(potentially interesting) patterns can still be mined from
the randomly selected S′, even if some of them occur a
small number of times in S (since τ was very low). Thus,
our method permits the fundamental task of frequent
pattern mining to be performed accurately.

6.3.3 Phylogenetic Tree Reconstruction. We
next demonstrate that z-RCBP leads to phylogenetic
trees constructed from S′ ∼d S, S′ 6= S, which are ei-
ther the same or very similar with respect to the nRF
distance to the phylogenetic trees constructed from S.
Fig. 5c shows the nRF distance between these trees. The
trees were obtained using the k-ACS distance for differ-
ent k values in [0, 9] and the NJ algorithm as in [64].
Note that the tree constructed from S was the same to
the one constructed from S′ in six out of ten cases, im-
plying no data utility loss, and in the remaining four
cases the nRF had a very small value of 0.04, imply-
ing insignificant data utility loss for this fundamental
bioinformatics task.

6.4 Runtime. In this section, we show that, despite
the nω factor, z-RCBP takes only a few minutes to
finish for million-letter texts. Fig. 6a shows the runtime
of z-RC, z-RCB, and z-RCBP using the synthetic
datasets as input. Recall that the largest synthetic
dataset is SYN50M and the other datasets are prefixes
of SYN50M. z-RCBP was substantially more efficient
than both z-RC and z-RCB and scaled better with the
dataset size, confirming the necessity of Improvements I
and II for being able to apply our methodology to large
texts. On the other hand, z-RC did not finish within 48
hours for SYN10M, . . . ,SYN50M. In addition, z-RCB
did not finish within 48 hours for SYN50M, although
it was slightly faster than z-RCBP for SYN10M and
SYN40M because z-RCBP had to apply exponential
search several times (see Section 6.1).

We also measured the runtime of z-RCB and z-
RCBP for different z values (see Fig. 6b). We do not
report the runtime of z-RC because it did not finish
within 48 hours. The runtime of z-RCBP is much
less when z is small, because z-RCBP considered fairly
short prefixes. Specifically, z-RCBP was two times
faster than z-RCB on average, and three times faster
when z = 10. The runtime of z-RCB was not affected
substantially by z. This is because z-RCB outputs the
same d as z-RCBP does for all z values (i.e., constructs
the same output) but it operates on the entire string S.

Next, we studied the impact of the initial prefix
length κ on the runtime of z-RCBP, the only method
that uses Improvement II (see Fig. 6c). The runtime
of z-RCBP decreased when κ increased, but up to
κ = 1000. Until then, prefixes were too short (i.e., the
condition αd(S′) ≥ z did not hold), so longer prefixes
were considered. For κ > 1000, z-RCBP took more
time because it is more expensive to check the condition
on longer prefixes (e.g., z-RCBP took 40% more time
when κ = |S| compared to when κ = 1000).

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

207

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



(a) SYN1M, . . . ,SYN50M

0

500

1000

10
1

10
2

10
3

10
4

10
5

10
6

z

R
u

n
ti
m

e
(s

)

z−RCBP
z−RCB

(b) SYN20M

0

200

400

600

10
1

10
2

10
3

10
4

10
5

2 ⋅ 10
7

κ

R
u

n
ti
m

e
(s

)

z−RCBP

(c) SYN20M

0.0

0.1

0.2

0.3

0.4

10
1

10
2

10
3

10
4

10
5

z

d
is

re
g

a
rd

e
d
 p

re
fi
xe

s

MSN 
EC

(d) MSN and EC

Figure 6: Runtime vs. (a) n (z-RC and z-RCB did not finish within 48 hours for SYN10M, . . . ,SYN50M and
SYN50M, respectively). Runtime vs. (b) z and (c) κ. (d) Ratio of disregarded prefixes vs. z.

Similar results were observed for MSN, PR, and
EC (e.g., z-RCBP finished in less than 436 seconds).

6.5 Disregarded Prefixes. Last, we demonstrate
that, applying Improvement I on the prefixes of S, which
are used in Improvement II, allows for disregarding a
large ratio of them from the computation. That is, we
often avoid computing αd(P ) for a prefix P of S, because
when d ≥ r(P ) + 2, we have that αd(P ) = 1 < z
by Lemma 5.1. Specifically, Fig. 6d shows that the
ratio of disregarded prefixes over all prefixes considered
for MSN and EC is at least 0.38. The benefit of the
improvement when this ratio is large is time efficiency,
since computing αd(P ) to check whether αd(P ) ≥ z can
be expensive particularly for a long prefix P of S.

7 Application to an Adversary Model

In this section, we discuss an adapted version of our z-
RSDS that can be applied to an adversary model alike
those considered in [62, 45, 53, 49, 61].

7.1 Adversary Model. Our privacy goal is to limit
the probability of inferring string S when the adversary
possesses the following knowledge.

Definition 7.1. (Adversarial Knowledge) A
pair K = (Td(S′), S̃), where S′ ∼d S and S̃ is a
(possibly empty) substring of S.

The adversarial knowledge K is comprised of Td(S′),
which is accessible by the adversary, and of S̃ which
is the adversary’s background knowledge. Background
knowledge is obtained by an adversary, typically from
external data sources and/or communication with indi-
viduals represented in the input dataset [62, 45, 53, 49,
61]. As it will become clear later, such knowledge may
make a z-RSDS more likely to be reversed. Thus, when
certain background knowledge is known or can be as-
sumed, it should be modeled and taken into account in

the construction of a z-RSDS to ensure that the z-RSDS
remains sufficiently unlikely to reverse.

We model the background knowledge as a substring
to capture manifested attacks [45, 61] in which the ad-
versary observes an individual’s actions within a time-
frame. The actions are represented by S̃. For example,
when S models the diagnoses in an individual’s elec-
tronic health record, S̃ models the diagnoses assigned
to the individual during a hospital visit, which may be
known by a hospital employee [45]. Similarly, when S
models an individual’s credit card purchases, S̃ models
the products purchased by the individual during a visit
to a shop, which may be known by a shop employee [61].
S̃ may be specified by the data provider [6] or the data
custodian [63], according to policies. Note that from
Td(S′), the adversary can also learn (see Fig. 1): the
length n = |S|, the maximal string depth d, and the
suffixes of S of length at most d− 1. Thus, we did not
include such information in K explicitly.

An adversary may not be able to uniquely infer S,
based on their knowledge K. This is because they have
to distinguish S among the set of strings that are d-
equivalent to S and have S̃ as substring. In fact, the
probability that the adversary infers S, based solely on
their knowledge K, is defined as follows.

Definition 7.2. (Inference Probability of S)
The inference probability of S, based on the knowledge
K, is defined as P(IS | K) = 1/|AK|, where IS is the
event “the adversary infers S” and AK is the set of
strings consistent with Td(S′) having S̃ as substring.

P(IS | K) is defined based on: (I) The fact that the
adversary can construct all strings that are consistent
with Td(S′) and contain S̃ as substring (see Section 7.2).
(II) The random worlds assumption [3] (i.e., each such
instance is equally likely). This assumption is followed
by most related works (see [71] and references therein).

We aim at constructing a Td(S′), for some S′ ∼d S

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

208

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



chosen at random, that an adversary cannot use to
infer S with sufficiently large P(IS | K). We also
require Td(S′) to have maximal d in order to support the
operations discussed in Section 3 on larger substrings,
thereby providing higher utility. This leads to the
following computational problem.

Problem 2. Given a string S of length n, a substring
S̃ of S, and a privacy threshold 1 < z ≤ nc, for
some constant c ≥ 1, construct a Td(S′) such that: (I)
S′ ∼d S, (II) d is maximal, and (III) P(IS | K) ≤ 1

z ,

for K = (Td(S′), S̃); or output FAIL if no such d exists.

7.2 Construction Algorithm. We next show how
the z-RC algorithm for constructing a z-RSDS can be
applied in an extended way to solve Problem 2. In this
case, we need to account for AK, a modified version of
Ad: a string S′ is in AK if and only if it is d-equivalent
to S and contains S̃ as a substring. In the graph
formulation of the problem, we need to ensure that a
path representing S̃ must always be visited. Thus, we
modify the z-RC algorithm as follows.

Let αK = |AK|. Consider a binary search iteration
for some value of d, in which we must check whether
αK ≥ z. We first construct the weighted de Bruijn
graph GS,d. If |S̃| ≤ d all strings in Ad contain S̃ as
a substring by construction and so we do not need to
modify the algorithm for such an S̃. Intuitively, in this
case, knowledge of S̃ is of no use to the adversary. We
thus consider the case when |S̃| > d. A path v1v2 . . . vh
inGS,d represents a substring of length h−1. We remove
the edges of a path v1v2 . . . vh in GS,d representing

some occurrence of S̃ in S, |S̃| > d. (There may be
multiple such paths). We add a shortcut edge eS̃ =
(v1, vh) directed from node v1 to node vh to represent
an occurrence of string S̃. Let us denote the resulting
graph by GS,d,S̃ (see Fig. 7 vs. Fig. 3).

Lemma 7.1. (a) If S ∼d S′ and S̃ is a substring of
S′, then S′ corresponds to an Eulerian path in GS,d,S̃

that starts from vertex s and ends at vertex t 6= s (if
s = t, then it corresponds to an Eulerian cycle starting
from s). (b) αK is equal to the number of non-equivalent
Eulerian paths (resp. cycles) in GS,d,S̃.

Proof. (a) Trivial. (b) We first observe that GS,d,S̃ is
Eulerian (resp. semi-Eulerian) by construction, because
GS,d is Eulerian (resp. semi-Eulerian) and the procedure
above does not change the parity of any vertex. Indeed,
consider path v1v2 . . . vh in GS,d representing the string

S̃, which we replace with a shortcut edge eS̃ . Exactly
one outgoing and one incoming edge is removed from
each v2, . . . , vh−1; one outgoing edge is removed from
v1 and replaced with outgoing edge eS̃ , one incoming

Figure 7: GS,d,S̃ with S = abaabbabba, d = 3, S̃ =
baba, and αK = 2.

edge is removed from vh and replaced with eS̃ incoming.
Moreover, since the multiplicity of any substring U of
length d is given by the multiplicity of the edge from
node U [0 . . d−2] to node U [1 . . d−1], the multiplicities
of d-substrings are not affected by this transformation.

To show that the number of non-equivalent Eulerian
paths (resp. cycles) in GS,d,S̃ is at most αK, consider
any Eulerian path (resp. cycle) in GS,d,S̃ . By definition,

there is at least one occurrence of S̃ given by edge
eS̃ , and it thus represents a string that belongs to
AK. Symmetrically, to show that αK is at most the
number of non-equivalent Eulerian paths (resp. cycles)
in GS,d,S̃ , consider a string U ∈ AK. Among the
(possibly multiple) Eulerian paths (resp. cycles) in GS,d

that represent U , consider one that has v1v2 . . . vh as
subpath as representative of its equivalence class: such
path exists because of Observation 2 and the properties
of weighted de Bruijn graphs. This path corresponds
to the path in GS,d,S̃ , where v1v2 . . . vh is replaced with
v1vh.

Theorem 7.1. Problem 2 can be solved in O(nω log d)
time.

Proof. The correctness of the construction algorithm
follows by Lemma 7.1 and the fact that it is correct
to apply binary or exponential search due to the mono-
tonicity of αK (the monotonicity proof is almost identi-
cal to that of Lemma 4.1 and is thus omitted).

For a given d, finding a path v1v2 . . . vh in GS,d and
replacing it with v1vh can be done while constructing
GS,d at no extra cost. Recall that v1v2 . . . vh represents

some occurrence of string S̃ in S, and that all occur-
rences of S̃ in S can be found in O(n) time using the
suffix tree of S [69]. The time complexity thus follows
from the proof of Theorem 1.1.

8 Final Remarks

We have introduced the notion of z-reverse-safe data
structures and presented such a data structure for text

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

209

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



indexing. Let us remark that our encoding model can
be used in conjunction with other privacy-preserving
techniques to ensure that certain privacy-utility trade-
offs are maintained.

There are at least three open questions:

1. Can we improve the time complexity of the con-
struction?

2. Can we have a faster construction algorithm for
certain values of z?

3. Can we efficiently generalize the construction algo-
rithm for the case when the adversary knows of a
set of substrings of S (instead of a single substring)?

References

[1] Eigen library. http://eigen.tuxfamily.org.

[2] Hiroki Arimura and Takeaki Uno. An efficient
polynomial space and polynomial delay algorithm
for enumeration of maximal motifs in a sequence.
Journal of Combinatorial Optimization, 13(3):243–
262, 2007.

[3] Fahiem Bacchus, Adam J. Grove, Joseph Y.
Halpern, and Daphne Koller. From statistical
knowledge bases to degrees of belief. Artificial In-
telligence, 87(1-2):75–143, 1996.

[4] Imon Banerjee, Kevin Li, Martin Seneviratne,
Michelle Ferrari, Tina Seto, James D Brooks,
Daniel L Rubin, and Tina Hernandez-Boussard.
Weakly supervised natural language processing
for assessing patient-centered outcome follow-
ing prostate cancer treatment. Journal of the
American Medical Informatics Association Open,
2(1):150–159, 2019.

[5] David R. Bentley. Whole-genome re-sequencing.
Current Opinion in Genetics & Development,
16(6):545–552, 2006.

[6] Giulia Bernardini, Huiping Chen, Alessio Conte,
Roberto Grossi, Grigorios Loukides, Nadia Pisanti,
Solon P. Pissis, and Giovanna Rosone. String
sanitization: A combinatorial approach. In
ECML/PKDD, 2019.

[7] Elisa Bertino, Gabriel Ghinita, and Ashish Kamra.
Access Control for Databases: Concepts and Sys-
tems. Now Foundations and Trends, 2011.

[8] Bruhadeshwar Bezawada, Alex X. Liu, Bargav
Jayaraman, Ann L. Wang, and Rui Li. Privacy
preserving string matching for cloud computing. In
ICDCS, pages 609–618, 2015.

[9] Christian Böhm and Florian Krebs. The k-nearest
neighbour join: Turbo charging the kdd process.
Knowledge and Information Systems, 6(6):728–
749, 2004.

[10] Luca Bonomi, Liyue Fan, and Hongxia Jin. An
information-theoretic approach to individual se-
quential data sanitization. In WSDM, pages 337–
346, 2016.

[11] James R. Bunch and John E. Hopcroft. Triangular
factorization and inversion by fast matrix multipli-
cation. Mathematics of Computation, 28(125):231–
236, 1974.

[12] Arturo Carpi and Aldo de Luca. Words and
special factors. Theoretical Computer Science,
259(1-2):145–182, 2001.

[13] Bastien Cazaux, Thierry Lecroq, and Eric Ri-
vals. Linking indexing data structures to de bruijn
graphs: Construction and update. Journal of Com-
puter and System Sciences, 104:165–183, 2019.

[14] Panagiotis Charalampopoulos, Costas S. Iliopou-
los, Chang Liu, and Solon P. Pissis. Property suffix
array with applications. In LATIN, pages 290–302,
2018.

[15] Rui Chen, Gergely Acs, and Claude Castelluccia.
Differentially private sequential data publication
via variable-length n-grams. In CCS, pages 638–
649, 2012.

[16] Rui Chen, Benjamin C.M. Fung, Bipin C. Desai,
and Nériah M. Sossou. Differentially private transit
data publication: A case study on the montreal
transportation system. In KDD, pages 213–221,
2012.

[17] Charles J. Colbourn, Wendy J. Myrvold, and Eu-
gene Neufeld. Two algorithms for unranking ar-
borescences. Journal of Algorithms, 20(2):268–281,
1996.

[18] Maxime Crochemore, Lucian Ilie, Costas S. Il-
iopoulos, Marcin Kubica, Wojciech Rytter, and
Tomasz Walen. Computing the longest previous
factor. Eur. J. Comb., 34(1):15–26, 2013.

[19] U.S. Department of Health & Human Services.
Health Insurance Portablility and Accountability
Act. https://aspe.hhs.gov/report/health-
insurance-portability-and-accountability-

act-1996, 1996.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

210

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://eigen.tuxfamily.org
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996
https://aspe.hhs.gov/report/health-insurance-portability-and-accountability-act-1996


[20] Martin Farach-Colton. Optimal suffix tree con-
struction with large alphabets. In FOCS, pages
137–143, 1997.

[21] Gabriele Fici, Filippo Mignosi, Antonio Restivo,
and Marinella Sciortino. Word assembly through
minimal forbidden words. Theoretical Computer
Science, 359(1-3):214–230, 2006.

[22] Johannes Fischer and Volker Heun. Space-efficient
preprocessing schemes for range minimum queries
on static arrays. SIAM Journal on Computing,
40(2):465–492, 2011.

[23] Michael L. Fredman, János Komlós, and Endre
Szemerédi. Storing a sparse table with O(1) worst
case access time. Journal of the ACM, 31(3):538–
544, 1984.

[24] John R. Gilbert and Tim Peierls. Sparse partial
pivoting in time proportional to arithmetic oper-
ations. SIAM Journal on Scientific Computing,
9(5):862–874, 1988.

[25] Aris Gkoulalas-Divanis and Grigorios Loukides.
Revisiting sequential pattern hiding to enhance
utility. In KDD, pages 1316–1324, 2011.

[26] Izrail S. Gradshteyn and Iosif M. Ryzhik. Table of
integrals, series, and products. Elsevier/Academic
Press, Amsterdam, seventh edition, 2007.

[27] Roberto Grossi, John Iacono, Gonzalo Navarro,
Rajeev Raman, and S. Rao Satti. Asymptotically
optimal encodings of range data structures for
selection and top-k queries. ACM Transactions on
Algorithms, 13(2):28:1–28:31, 2017.

[28] Dan Gusfield. Algorithms on Strings, Trees, and
Sequences–Computer Science and Computational
Biology. Cambridge University Press, 1997.

[29] Antonin Guttman. R-trees: A dynamic index
structure for spatial searching. In SIGMOD, pages
47–57, 1984.

[30] Robert Gwadera, Aris Gkoulalas-Divanis, and
Grigorios Loukides. Permutation-based sequential
pattern hiding. In ICDM, pages 241–250, 2013.

[31] Jiawei Han, Jian Pei, and Yiwen Yin. Mining
frequent patterns without candidate generation.
SIGMOD Record, 29(2):1–12, May 2000.

[32] Raymond D. Heatherly, Grigorios Loukides,
Joshua C. Denny, Jonathan L. Haines, Dan M.
Roden, and Bradley A. Malin. Enabling genomic-
phenomic association discovery without sacrificing
anonymity. PLOS ONE, 8:1–13, 02 2013.

[33] Michael Hoffmann, John Iacono, Patrick K. Nichol-
son, and Rajeev Raman. Encoding nearest larger
values. Theoretical Computer Science, 710:97–115,
2018.

[34] Joan P. Hutchinson. On words with prescribed
overlapping subsequences. Utilitas Mathematica,
7:241–250, 1975.

[35] John R. Gilbert Xiaoye S. Li James Weldon Dem-
mel, Stanley C. Eisenstat and Joseph W. H. Liu.
A supernodal approach to sparse partial pivoting.
SIAM Journal on Matrix Analysis and Applica-
tions, 20(3):720–755, 1999.

[36] Juhani Karhumäki, Svetlana Puzynina, Michaël
Rao, and Markus A. Whiteland. On cardinalities
of k-abelian equivalence classes. Theoretical Com-
puter Sciene, 658:190–204, 2017.

[37] Juhani Karhumäki, Aleksi Saarela, and Luca Q.
Zamboni. On a generalization of abelian equiv-
alence and complexity of infinite words. Journal
of Combinatorial Theory, Series A, 120(8):2189–
2206, 2013.

[38] Juha Kärkkäinen, Marcin Piatkowski, and Si-
mon J. Puglisi. String Inference from Longest-
Common-Prefix Array. In ICALP, pages 62:1–
62:14, 2017.

[39] Carl Kingsford, Michael C. Schatz, and Mihai Pop.
Assembly complexity of prokaryotic genomes using
short reads. BMC Bioinformatics, 11(1):21, 2010.

[40] Donald Ervin Knuth. The art of computer pro-
gramming, Volume II: Seminumerical Algorithms,
3rd Edition. Addison-Wesley, 1998.

[41] François Le Gall. Powers of tensors and fast matrix
multiplication. In ISSAC, pages 296–303, 2014.

[42] Chris-Andre Leimeister and Burkhard Morgen-
stern. Kmacs: the k-mismatch average com-
mon substring approach to alignment-free sequence
comparison. Bioinformatics, 30(14):2000–2008, 05
2014.

[43] Jin Li, Qian Wang, Cong Wang, Ning Cao, Kui
Ren, and Wenjing Lou. Fuzzy keyword search over
encrypted data in cloud computing. In INFOCOM,
pages 1–5, 2010.

[44] Po-Ching Lin, Ying-Dar Lin, Yuan-Cheng Lai, and
Tsern-Huei Lee. Using string matching for deep
packet inspection. IEEE Computer, 41(4):23–28,
2008.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

211

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



[45] Grigorios Loukides, Aris Gkoulalas-Divanis, and
Bradley Malin. Anonymization of electronic medi-
cal records for validating genome-wide association
studies. Proceedings of the National Academy of
Sciences USA, 107(17):7898–7903, 2010.

[46] Grigorios Loukides and Robert Gwadera. Optimal
event sequence sanitization. In SDM, pages 775–
783, 2015.

[47] Bradley Malin and Latanya Sweeney. Determining
the identifiability of DNA database entries. In
AMIA, pages 537–541, 2000.

[48] Christopher D. Manning, Prabhakar Raghavan,
and Hinrich Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[49] Noman Mohammed, Benjamin C. M. Fung, Patrick
C. K. Hung, and Cheuk-Kwong Lee. Cen-
tralized and distributed anonymization for high-
dimensional healthcare data. ACM Transactions
on Knowledge Discovery from Data, pages 18:1–
18:33, 2010.

[50] Joong Chae Na, Alberto Apostolico, Costas S. Il-
iopoulos, and Kunsoo Park. Truncated suffix trees
and their application to data compression. Theo-
retical Computer Science, 304(1):87–101, 2003.

[51] Shubha U. Nabar, Krishnaram Kenthapadi, Nina
Mishra, and Rajeev Motwani. A survey of query
auditing techniques for data privacy. In Charu C.
Aggarwal and Philip S. Yu, editors, Privacy-
Preserving Data Mining: Models and Algorithms,
pages 415–431. Springer US, 2008.

[52] European Parliament. General Data Protection
Regulation. http://data.consilium.europa.eu/
doc/document/ST-9565-2015-INIT/en/pdf.

[53] Giorgos Poulis, Spiros Skiadopoulos, Grigorios
Loukides, and Aris Gkoulalas-Divanis. Apriori-
based algorithms for km-anonymizing trajectory
data. Transactions on Data Privacy, 7(2):165–194,
2014.

[54] Hong Qin, Hao Wang, Xiaochao Wei, Likun Xue,
and Lei Wu. Privacy-preserving wildcards pattern
matching protocol for iot applications. IEEE Ac-
cess, 7:36094–36102, 2019.

[55] Rajeev Raman. Encoding data structures. In
WALCOM, pages 1–7, 2015.

[56] David F. Robinson and Les R. Foulds. Comparison
of phylogenetic trees. Mathematical Biosciences,
53(1):131–147, 1981.

[57] Naruya Saitou and Masatoshi Nei. The neighbor-
joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolu-
tion, 4(4):406–425, 07 1987.

[58] Jingbo Shang, Jian Peng, and Jiawei Han. Macfp:
Maximal approximate consecutive frequent pattern
mining under edit distance. In SDM, pages 558–
566, 2016.

[59] Henry J. Smith, Tamara Dinev, and Heng Xu.
Information privacy research: An interdisciplinary
review. MIS Quarterly, 35(4):989–1015, 2011.

[60] Acar Tamersoy, Grigorios Loukides, Mehmet Er-
can Nergiz, Yücel Saygin, and Bradley Malin.
Anonymization of longitudinal electronic medical
records. IEEE Transactions on Information Tech-
nology in Biomedicine, 16(3):413–423, 2012.

[61] Manolis Terrovitis and Nikos Mamoulis. Privacy
preservation in the publication of trajectories. In
MDM, pages 65–72, 2008.

[62] Manolis Terrovitis, Nikos Mamoulis, and Panos
Kalnis. Local and global recoding methods for
anonymizing set-valued data. The VLDB Journal,
20(1):83–106, 2011.

[63] Manolis Terrovitis, Giorgos Poulis, Nikos
Mamoulis, and Spiros Skiadopoulos. Local
suppression and splitting techniques for privacy
preserving publication of trajectories. IEEE
Transactions on Knowledge and Data Engineering,
29(7):1466–1479, 2017.

[64] Sharma V. Thankachan, Sriram P. Chockalingam,
Yongchao Liu, Ambujam Krishnan, and Srinivas
Aluru. A greedy alignment-free distance estimator
for phylogenetic inference. BMC Bioinformatics,
18(8):238:1–238:8, 2017.

[65] George Theodorakopoulos, Reza Shokri, Carmela
Troncoso, Jean-Pierre Hubaux, and Jean-Yves
Le Boudec. Prolonging the hide-and-seek game:
Optimal trajectory privacy for location-based ser-
vices. In WPES, pages 73–82, 2014.

[66] Igor Ulitsky, David Burstein, Tamir Tuller, and
Benny Chor. The average common substring ap-
proach to phylogenomic reconstruction. Journal of
Computational Biology, 13(2):336–350, 2006.

[67] Di Wang, Yeye He, Elke Rundensteiner, and Jef-
frey F. Naughton. Utility-maximizing event stream
suppression. In SIGMOD, pages 589–600, 2013.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

212

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf
http://data.consilium.europa.eu/doc/document/ST-9565-2015-INIT/en/pdf


[68] Jing Wang, Nikos Ntarmos, and Peter Triantafil-
lou. Indexing query graphs to speedup graph query
processing. In EDBT, pages 41–52, 2016.

[69] Peter Weiner. Linear pattern matching algorithms.
In SWAT, pages 1–11, 1973.

[70] Virginia Vassilevska Williams. Multiplying matri-
ces faster than Coppersmith-Winograd. In STOC,
pages 887–898, 2012.

[71] Xiaokui Xiao, Yufei Tao, and Nick Koudas. Trans-
parent anonymization: Thwarting adversaries who
know the algorithm. ACM Transactions on
Database Systems, 35(2):8:1–8:48, 2010.

[72] Shengzhi Xu, Xiang Cheng, Sen Su, Ke Xiao, and
Li Xiong. Differentially private frequent sequence
mining. IEEE Transactions on Knowledge and
Data Engineering, 28(11):2910–2926, 2016.

[73] Mohammed J. Zaki, Wagner Meira Jr, and Wagner
Meira. Data mining and analysis: fundamental
concepts and algorithms. Cambridge University
Press, 2014.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

213

D
ow

nl
oa

de
d 

01
/0

9/
20

 to
 9

3.
44

.1
95

.1
54

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p


	Introduction
	Definitions and Notation
	A z-RSDS for Text Indexing
	Constructing z-RSDS
	Engineering the z-RC Algorithm
	Improvement I: Reducing the BS Interval.
	Improvement II: Checking Prefixes of S.
	Improvement III: Sparse LU Decomposition.

	Implementations and Experiments
	Implementations.
	Experimental Setup and Datasets.
	Data Utility.
	Length d.
	Frequent Pattern Mining.
	Phylogenetic Tree Reconstruction.

	Runtime.
	Disregarded Prefixes.

	Application to an Adversary Model
	Adversary Model.
	Construction Algorithm.

	Final Remarks



