671 research outputs found

    On the Classification of All Self-Dual Additive Codes over GF(4) of Length up to 12

    Get PDF
    We consider additive codes over GF(4) that are self-dual with respect to the Hermitian trace inner product. Such codes have a well-known interpretation as quantum codes and correspond to isotropic systems. It has also been shown that these codes can be represented as graphs, and that two codes are equivalent if and only if the corresponding graphs are equivalent with respect to local complementation and graph isomorphism. We use these facts to classify all codes of length up to 12, where previously only all codes of length up to 9 were known. We also classify all extremal Type II codes of length 14. Finally, we find that the smallest Type I and Type II codes with trivial automorphism group have length 9 and 12, respectively.Comment: 18 pages, 4 figure

    An efficient algorithm to recognize local Clifford equivalence of graph states

    Full text link
    In [Phys. Rev. A 69, 022316 (2004)] we presented a description of the action of local Clifford operations on graph states in terms of a graph transformation rule, known in graph theory as \emph{local complementation}. It was shown that two graph states are equivalent under the local Clifford group if and only if there exists a sequence of local complementations which relates their associated graphs. In this short note we report the existence of a polynomial time algorithm, published in [Combinatorica 11 (4), 315 (1991)], which decides whether two given graphs are related by a sequence of local complementations. Hence an efficient algorithm to detect local Clifford equivalence of graph states is obtained.Comment: 3 pages. Accepted in Phys. Rev.

    Edge local complementation for logical cluster states

    Full text link
    A method is presented for the implementation of edge local complementation in graph states, based on the application of two Hadamard operations and a single controlled-phase (CZ) gate. As an application, we demonstrate an efficient scheme to construct a one-dimensional logical cluster state based on the five-qubit quantum error-correcting code, using a sequence of edge local complementations. A single physical CZ operation, together with local operations, is sufficient to create a logical CZ operation between two logical qubits. The same construction can be used to generate any encoded graph state. This approach in concatenation may allow one to create a hierarchical quantum network for quantum information tasks.Comment: 15 pages, two figures, IOP styl

    On the Minimum Degree up to Local Complementation: Bounds and Complexity

    Full text link
    The local minimum degree of a graph is the minimum degree reached by means of a series of local complementations. In this paper, we investigate on this quantity which plays an important role in quantum computation and quantum error correcting codes. First, we show that the local minimum degree of the Paley graph of order p is greater than sqrt{p} - 3/2, which is, up to our knowledge, the highest known bound on an explicit family of graphs. Probabilistic methods allows us to derive the existence of an infinite number of graphs whose local minimum degree is linear in their order with constant 0.189 for graphs in general and 0.110 for bipartite graphs. As regards the computational complexity of the decision problem associated with the local minimum degree, we show that it is NP-complete and that there exists no k-approximation algorithm for this problem for any constant k unless P = NP.Comment: 11 page

    Minimum Degree up to Local Complementation: Bounds, Parameterized Complexity, and Exact Algorithms

    Full text link
    The local minimum degree of a graph is the minimum degree that can be reached by means of local complementation. For any n, there exist graphs of order n which have a local minimum degree at least 0.189n, or at least 0.110n when restricted to bipartite graphs. Regarding the upper bound, we show that for any graph of order n, its local minimum degree is at most 3n/8+o(n) and n/4+o(n) for bipartite graphs, improving the known n/2 upper bound. We also prove that the local minimum degree is smaller than half of the vertex cover number (up to a logarithmic term). The local minimum degree problem is NP-Complete and hard to approximate. We show that this problem, even when restricted to bipartite graphs, is in W[2] and FPT-equivalent to the EvenSet problem, which W[1]-hardness is a long standing open question. Finally, we show that the local minimum degree is computed by a O*(1.938^n)-algorithm, and a O*(1.466^n)-algorithm for the bipartite graphs

    Graph-Based Classification of Self-Dual Additive Codes over Finite Fields

    Full text link
    Quantum stabilizer states over GF(m) can be represented as self-dual additive codes over GF(m^2). These codes can be represented as weighted graphs, and orbits of graphs under the generalized local complementation operation correspond to equivalence classes of codes. We have previously used this fact to classify self-dual additive codes over GF(4). In this paper we classify self-dual additive codes over GF(9), GF(16), and GF(25). Assuming that the classical MDS conjecture holds, we are able to classify all self-dual additive MDS codes over GF(9) by using an extension technique. We prove that the minimum distance of a self-dual additive code is related to the minimum vertex degree in the associated graph orbit. Circulant graph codes are introduced, and a computer search reveals that this set contains many strong codes. We show that some of these codes have highly regular graph representations.Comment: 20 pages, 13 figure
    • …
    corecore