60 research outputs found

    Image Filtering Using Morphological Amoebas

    No full text
    International audienceThis article presents the use of anisotropic dynamic structuring elements, or amoebas, in order to build content-aware noise reduction filters. The amoeba is the ball defined by a special geodesic distance computed for each pixel, and can be used as a kernel for many kinds of filters and morphological operators. 1. Introduction Noise is possibly the most annoying problem in the field of image processing. There are two ways to work around it: either design particularly robust algorithms that can work in noisy environments, or try to eliminate the noise in a first step while losing as little relevant information as possible and consequently use a normally robust algorithm. There are of course many algorithms that aim at reducing the amount of noise in images. In mathematical morphology filters can be, broadly-speaking, divided into two groups: 1 alternate sequential filters based on morphological openings and clos-ings, that are quite effective but also remove thin elements such as canals or peninsulas. Even worse, they can displace the contours and thus create additional problems in a segmentation application

    Amoeba Techniques for Shape and Texture Analysis

    Full text link
    Morphological amoebas are image-adaptive structuring elements for morphological and other local image filters introduced by Lerallut et al. Their construction is based on combining spatial distance with contrast information into an image-dependent metric. Amoeba filters show interesting parallels to image filtering methods based on partial differential equations (PDEs), which can be confirmed by asymptotic equivalence results. In computing amoebas, graph structures are generated that hold information about local image texture. This paper reviews and summarises the work of the author and his coauthors on morphological amoebas, particularly their relations to PDE filters and texture analysis. It presents some extensions and points out directions for future investigation on the subject.Comment: 38 pages, 19 figures v2: minor corrections and rephrasing, Section 5 (pre-smoothing) extende

    Contents lists available at ScienceDirect Pattern Recognition

    Get PDF
    journal homepage: www.elsevier.com/locate/pr Edge-preserving smoothing using a similarity measure in adaptive geodesi

    Morphological bilateral filtering

    No full text
    International audienceA current challenging topic in mathematical morphology is the construction of locally adaptive operators; i.e., structuring functions that are dependent on the input image itself at each position. Development of spatially-variant filtering is well established in the theory and practice of Gaussian filtering. The aim of the first part of the paper is to study how to generalize these convolution-based approaches in order to introduce adaptive nonlinear filters that asymptotically correspond to spatially-variant morphological dilation and erosion. In particular, starting from the bilateral filtering framework and using the notion of counter-harmonic mean, our goal is to propose a new low complexity approach to define spatially-variant bilateral structuring functions. Then, in the second part of the paper, an original formulation of spatially-variant flat morphological filters is proposed, where the adaptive structuring elements are obtained by thresholding the bilateral structuring functions. The methodological results of the paper are illustrated with various comparative examples

    A graph-based mathematical morphology reader

    Full text link
    This survey paper aims at providing a "literary" anthology of mathematical morphology on graphs. It describes in the English language many ideas stemming from a large number of different papers, hence providing a unified view of an active and diverse field of research

    Direction-adaptive grey-level morphology. Application to 3D vascular brain imaging

    Get PDF
    International audienceSegmentation and analysis of blood vessels is an important issue in medical imaging. In 3D cerebral angiographic data, the vascular signal is however hard to accurately detect and can, in particular, be disconnected. In this article, we present a procedure utilising both linear, Hessian-based and morphological methods for blood vessel edge enhancement and reconnection. More specifically, multi-scale second-order derivative analysis is performed to detect candidate vessels as well as their orientation. This information is then fed to a spatially-variant morphological filter for reconnection and reconstruction. The result is a fast and effective vessel-reconnecting method

    Adaptive morphological filters based on a multiple orientation vector field dependent on image local features

    Get PDF
    This paper addresses the formulation of adaptive morphological filters based on spatially-variant structuring elements. The adaptivity of these filters is achieved by modifying the shape and orientation of the structuring elements according to a multiple orientation vector field. This vector field is provided by means of a bank of directional openings which can take into account the possible multiple orientations of the contours in the image. After reviewing and formalizing the definition of the spatially-variant dilation, erosion, opening and closing, the proposed structuring elements are described. These spatially-variant structuring elements are based on ellipses which vary over the image domain adapting locally their orientation according to the multiple orientation vector field and their shape (the eccentricity of the ellipses) according to the distance to relevant contours of the objects. The proposed adaptive morphological filters are used on gray-level images and are compared with spatially-invariant filters, with spatially-variant filters based on a single orientation vector field, and with adaptive morphological bilateral filters. Results show that the morphological filters based on a multiple orientation vector field are more adept at enhancing and preserving structures which contains more than one orientation

    General Adaptive Neighborhood Image Processing. Part II: Practical Applications Issues

    Get PDF
    23 pagesInternational audienceThe so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The General Adaptive Neighborhood (GAN) paradigm, theoretically introduced in Part I [20], allows the building of new image processing transformations using context-dependent analysis. With the help of a specified analyzing criterion, such transformations perform a more significant spatial analysis, taking intrinsically into account the local radiometric, morphological or geometrical characteristics of the image. Moreover they are consistent with the physical and/or physiological settings of the image to be processed, using general linear image processing frameworks. In this paper, the GANIP approach is more particularly studied in the context of Mathematical Morphology (MM). The structuring elements, required for MM, are substituted by GAN-based structuring elements, fitting to the local contextual details of the studied image. The resulting morphological operators perform a really spatiallyadaptive image processing and notably, in several important and practical cases, are connected, which is a great advantage compared to the usual ones that fail to this property. Several GANIP-based results are here exposed and discussed in image filtering, image segmentation, and image enhancement. In order to evaluate the proposed approach, a comparative study is as far as possible proposed between the adaptive and usual morphological operators. Moreover, the interests to work with the Logarithmic Image Processing framework and with the 'contrast' criterion are shown through practical application examples

    General Adaptive Neighborhood Image Processing. Part I: Introduction and Theoretical Aspects

    Get PDF
    30 pagesInternational audienceThe so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The Adaptive Neighborhood (AN) paradigm allows the building of new image processing transformations using context-dependent analysis. Such operators are no longer spatially invariant, but vary over the whole image with ANs as adaptive operational windows, taking intrinsically into account the local image features. This AN concept is here largely extended, using well-defined mathematical concepts, to that General Adaptive Neighborhood (GAN) in two main ways. Firstly, an analyzing criterion is added within the definition of the ANs in order to consider the radiometric, morphological or geometrical characteristics of the image, allowing a more significant spatial analysis to be addressed. Secondly, general linear image processing frameworks are introduced in the GAN approach, using concepts of abstract linear algebra, so as to develop operators that are consistent with the physical and/or physiological settings of the image to be processed. In this paper, the GANIP approach is more particularly studied in the context of Mathematical Morphology (MM). The structuring elements, required for MM, are substituted by GAN-based structuring elements, fitting to the local contextual details of the studied image. The resulting transforms perform a relevant spatially-adaptive image processing, in an intrinsic manner, that is to say without a priori knowledge needed about the image structures. Moreover, in several important and practical cases, the adaptive morphological operators are connected, which is an overwhelming advantage compared to the usual ones that fail to this property

    Machine Learning And Image Processing For Noise Removal And Robust Edge Detection In The Presence Of Mixed Noise

    Get PDF
    The central goal of this dissertation is to design and model a smoothing filter based on the random single and mixed noise distribution that would attenuate the effect of noise while preserving edge details. Only then could robust, integrated and resilient edge detection methods be deployed to overcome the ubiquitous presence of random noise in images. Random noise effects are modeled as those that could emanate from impulse noise, Gaussian noise and speckle noise. In the first step, evaluation of methods is performed based on an exhaustive review on the different types of denoising methods which focus on impulse noise, Gaussian noise and their related denoising filters. These include spatial filters (linear, non-linear and a combination of them), transform domain filters, neural network-based filters, numerical-based filters, fuzzy based filters, morphological filters, statistical filters, and supervised learning-based filters. In the second step, switching adaptive median and fixed weighted mean filter (SAMFWMF) which is a combination of linear and non-linear filters, is introduced in order to detect and remove impulse noise. Then, a robust edge detection method is applied which relies on an integrated process including non-maximum suppression, maximum sequence, thresholding and morphological operations. The results are obtained on MRI and natural images. In the third step, a combination of transform domain-based filter which is a combination of dual tree – complex wavelet transform (DT-CWT) and total variation, is introduced in order to detect and remove Gaussian noise as well as mixed Gaussian and Speckle noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on medical ultrasound and natural images. In the fourth step, a smoothing filter, which is a feed-forward convolutional network (CNN) is introduced to assume a deep architecture, and supported through a specific learning algorithm, l2 loss function minimization, a regularization method, and batch normalization all integrated in order to detect and remove impulse noise as well as mixed impulse and Gaussian noise. Then, a robust edge detection is applied in order to track the true edges. The results are obtained on natural images for both specific and non-specific noise-level
    • …
    corecore