5,688 research outputs found

    Edge Detection: A Collection of Pixel based Approach for Colored Images

    Full text link
    The existing traditional edge detection algorithms process a single pixel on an image at a time, thereby calculating a value which shows the edge magnitude of the pixel and the edge orientation. Most of these existing algorithms convert the coloured images into gray scale before detection of edges. However, this process leads to inaccurate precision of recognized edges, thus producing false and broken edges in the image. This paper presents a profile modelling scheme for collection of pixels based on the step and ramp edges, with a view to reducing the false and broken edges present in the image. The collection of pixel scheme generated is used with the Vector Order Statistics to reduce the imprecision of recognized edges when converting from coloured to gray scale images. The Pratt Figure of Merit (PFOM) is used as a quantitative comparison between the existing traditional edge detection algorithm and the developed algorithm as a means of validation. The PFOM value obtained for the developed algorithm is 0.8480, which showed an improvement over the existing traditional edge detection algorithms.Comment: 5 Page

    A grid-based ant colony algorithm for automatic 3D hose routing

    Get PDF
    Ant Colony Algorithms applied to difficult combinatorial optimization problems such as the traveling salesman problem (TSP) and the quadratic assignment problem. In this paper we propose a grid-based ant colony algorithm for automatic 3D hose routing. Algorithm uses the tessellated format of the obstacles and the generated hoses in order to detect collisions. The representation of obstacles and hoses in the tessellated format greatly helps the algorithm towards handling free-form objects and speed up the computations. The performance of the algorithm has been tested on a number of 3D models

    An improved Ant Colony System for the Sequential Ordering Problem

    Full text link
    It is not rare that the performance of one metaheuristic algorithm can be improved by incorporating ideas taken from another. In this article we present how Simulated Annealing (SA) can be used to improve the efficiency of the Ant Colony System (ACS) and Enhanced ACS when solving the Sequential Ordering Problem (SOP). Moreover, we show how the very same ideas can be applied to improve the convergence of a dedicated local search, i.e. the SOP-3-exchange algorithm. A statistical analysis of the proposed algorithms both in terms of finding suitable parameter values and the quality of the generated solutions is presented based on a series of computational experiments conducted on SOP instances from the well-known TSPLIB and SOPLIB2006 repositories. The proposed ACS-SA and EACS-SA algorithms often generate solutions of better quality than the ACS and EACS, respectively. Moreover, the EACS-SA algorithm combined with the proposed SOP-3-exchange-SA local search was able to find 10 new best solutions for the SOP instances from the SOPLIB2006 repository, thus improving the state-of-the-art results as known from the literature. Overall, the best known or improved solutions were found in 41 out of 48 cases.Comment: 30 pages, 8 tables, 11 figure

    QoS multicast tree construction in IP/DWDM optical internet by bio-inspired algorithms

    Get PDF
    Copyright @ Elsevier Ltd. All rights reserved.In this paper, two bio-inspired Quality of Service (QoS) multicast algorithms are proposed in IP over dense wavelength division multiplexing (DWDM) optical Internet. Given a QoS multicast request and the delay interval required by the application, both algorithms are able to find a flexible QoS-based cost suboptimal routing tree. They first construct the multicast trees based on ant colony optimization and artificial immune algorithm, respectively. Then a dedicated wavelength assignment algorithm is proposed to assign wavelengths to the trees aiming to minimize the delay of the wavelength conversion. In both algorithms, multicast routing and wavelength assignment are integrated into a single process. Therefore, they can find the multicast trees on which the least wavelength conversion delay is achieved. Load balance is also considered in both algorithms. Simulation results show that these two bio-inspired algorithms can construct high performance QoS routing trees for multicast applications in IP/DWDM optical Internet.This work was supported in part ny the Program for New Century Excellent Talents in University, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/1, the National Natural Science Foundation of China under Grant no. 60673159 and 70671020, the National High-Tech Reasearch and Development Plan of China under Grant no. 2007AA041201, and the Specialized Research Fund for the Doctoral Program of Higher Education under Grant no. 20070145017

    Image Edge Detection Using Ant Colony Optimization

    Get PDF
    Ant colony optimization (ACO) is a population-based metaheuristic that mimics the foraging behavior of ants to find approximate solutions to difficult optimization problems. It can be used to find good solutions to combinatorial optimization problems that can be transformed into the problem of finding good paths through a weighted construction graph. In this paper, an edge detection technique that is based on ACO is presented. The proposed method establishes a pheromone matrix that represents the edge information at each pixel based on the routes formed by the ants dispatched on the image. The movement of the ants is guided by the local variation in the image’s intensity values. The proposed ACObased edge detection method takes advantage of the improvements introduced in ant colony system, one of the main extensions to the original ant system. Experimental results show the success of the technique in extracting edges from a digital image
    corecore