696 research outputs found

    A Parallel Ensemble of Metaheuristic Solvers for the Traveling Salesman Problem

    Full text link
    The travelling salesman problem (TSP) is one of the well-studied NP-hard problems in the literature. The state-of-the art inexact TSP solvers are the Lin-Kernighan-Helsgaun (LKH) heuristic and Edge Assembly crossover (EAX). A recent study suggests that EAX with restart mechanisms perform well on a wide range of TSP instances. However, this study is limited to 2,000 city problems. We study for problems ranging from 2,000 to 85,900. We see that the performance of the solver varies with the type of the problem. However, combining these solvers in an ensemble setup, we are able to outperform the individual solver's performance. We see the ensemble setup as an efficient way to make use of the abundance of compute resources. In addition to EAX and LKH, we use several versions of the hybrid of EAX and Mixing Genetic Algorithm (MGA). A hybrid of MGA and EAX is known to solve some hard problems. We see that the ensemble of the hybrid version outperforms the state-of-the-art solvers on problems larger than 10,000 cities.Comment: First submission was made to Europar, 2021. Paper Rejecte

    Generalized partition crossover for the traveling salesman problem

    Get PDF
    2011 Spring.Includes bibliographical references.The Traveling Salesman Problem (TSP) is a well-studied combinatorial optimization problem with a wide spectrum of applications and theoretical value. We have designed a new recombination operator known as Generalized Partition Crossover (GPX) for the TSP. GPX is unique among other recombination operators for the TSP in that recombining two local optima produces new local optima with a high probability. Thus the operator can 'tunnel' between local optima without the need for intermediary solutions. The operator is respectful, meaning that any edges common between the two parent solutions are present in the offspring, and transmits alleles, meaning that offspring are comprised only of edges found in the parent solutions. We design a hybrid genetic algorithm, which uses local search in addition to recombination and selection, specifically for GPX. We show that this algorithm outperforms Chained Lin-Kernighan, a state-of-the-art approximation algorithm for the TSP. We next analyze these algorithms to determine why the algorithms are not capable of consistently finding a globally optimal solution. Our results reveal a search space structure which we call 'funnels' because they are analogous to the funnels found in continuous optimization. Funnels are clusters of tours in the search space that are separated from one another by a non-trivial distance. We find that funnels can trap Chained Lin-Kernighan, preventing the search from finding an optimal solution. Our data indicate that, under certain conditions, GPX can tunnel between funnels, explaining the higher frequency of optimal solutions produced by our hybrid genetic algorithm using GPX

    A New Generalized Partition Crossover for the Traveling Salesman Problem: Tunneling Between Local Optima

    Get PDF
    Generalized Partition Crossover (GPX) is a deterministic recombination operator developed for the Traveling Salesman Problem. Partition crossover operators return the best of 2 k reachable offspring, where k is the number of recombining components. This paper introduces a new GPX2 operator, which finds more recombining components than GPX or Iterative Partial Transcription (IPT). We also show that GPX2 has O(n) runtime complexity, while also introducing new enhancements to reduce the execution time of GPX2. Finally, we experimentally demonstrate the efficiency of GPX2 when it is used to improve solutions found by multi-trial Lin-Kernighan-Helsgaum (LKH) algorithm. Significant improvements in performance are documented on large (n > 5000) and very large (n = 100, 000) instances of the Traveling Salesman Problem

    Metaheuristics and combinatorial optimization problems

    Get PDF
    This thesis will use the traveling salesman problem (TSP) as a tool to help present and investigate several new techniques that improve the overall performance of genetic algorithms (GA). Improvements include a new parent selection algorithm, harem select, that outperforms all other parent selection algorithms tested, some by up to 600%. Other techniques investigated include population seeding, random restart, heuristic crossovers, and hybrid genetic algorithms, all of which posted improvements in the range of 1% up to 1100%. Also studied will be a new algorithm, GRASP, that is just starting to enjoy a lot of interest in the research community and will also been applied to the traveling salesman problem (TSP). Given very little time to run, relative to other popular metaheuristic algorithms, GRASP was able to come within 5% of optimal on several of the TSPLIB maps used for testing. Both the GA and the GRASP algorithms will be compared with commonly used metaheuristic algorithms such as simulated annealing (SA) and reactive tabu search (RTS) as well as a simple neighborhood search - greedy search

    Perfect Edge-Transmitting Recombination of Permutations

    Full text link
    Crossover is the process of recombining the genetic features of two parents. For many applications where crossover is applied to permutations, relevant genetic features are pairs of adjacent elements, also called edges in the permutation order. Recombination of edges without errors is thought to be an NP-hard problem, typically approximated by heuristics that either introduce new edges or are only able to produce a small variety of offspring. Here, we derive an algorithm for crossover of permutations that achieves perfect transmission of edges and produces a uniform sampling of all possible offspring, in quadratic average computation time. The algorithm and its derivation reveal a link between cycle crossover (CX) and edge assembly crossover (EAX), offering a new perspective on these well-established algorithms. We also describe a modification of the algorithm that generates the mathematically optimal offspring for the asymmetric travelling salesman problem

    Shadow Price Guided Genetic Algorithms

    Get PDF
    The Genetic Algorithm (GA) is a popular global search algorithm. Although it has been used successfully in many fields, there are still performance challenges that prevent GA’s further success. The performance challenges include: difficult to reach optimal solutions for complex problems and take a very long time to solve difficult problems. This dissertation is to research new ways to improve GA’s performance on solution quality and convergence speed. The main focus is to present the concept of shadow price and propose a two-measurement GA. The new algorithm uses the fitness value to measure solutions and shadow price to evaluate components. New shadow price Guided operators are used to achieve good measurable evolutions. Simulation results have shown that the new shadow price Guided genetic algorithm (SGA) is effective in terms of performance and efficient in terms of speed

    Elitist Schema Overlays: A Multi-Parent Genetic Operator

    Get PDF
    Genetic Algorithms are programs inspired by natural evolution used to solve difficult problems in Mathematics and Computer Science. The theoretical foundations of Genetic Algorithms, the schema theorem and the building-block hypothesis, state that the success of Genetic Algorithms stems from the propagation of fit genetic subsequences. Multi-parent operators were shown to increase the performance of Genetic Algorithms by increasing the disruptivity of genetic operations. Disruptive genetic operators help prevent suboptimal genetic sequences from propagating into future generations, which leads to an improved fitness for the population over time. In this paper we explore the use of a novel multi-parent genetic operator, the elitist schema overlay, which propagates the matching segments in the genetic sequences of the elite subpopulation to bias the global search towards the best known solutions. We investigate the parameters that drive the behavior of elitist schema overlays to determine the most successful model, and we compare this to successful multi-parent and traditional genetic operators from the literature
    • …
    corecore