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Abstract
Genetic Algorithms are programs inspired by natural evolution used to

solve difficult problems in Mathematics and Computer Science. The the-
oretical foundations of Genetic Algorithms, the schema theorem and the
building-block hypothesis, state that the success of Genetic Algorithms
stems from the propagation of fit genetic subsequences. Multi-parent op-
erators were shown to increase the performance of Genetic Algorithms by
increasing the disruptivity of genetic operations. Disruptive genetic op-
erators help prevent suboptimal genetic sequences from propagating into
future generations, which leads to an improved fitness for the population
over time. In this paper we explore the use of a novel multi-parent ge-
netic operator, the elitist schema overlay, which propagates the matching
segments in the genetic sequences of the elite subpopulation to bias the
global search towards the best known solutions. We investigate the pa-
rameters that drive the behavior of elitist schema overlays to determine
the most successful model, and we compare this to successful multi-parent
and traditional genetic operators from the literature. Both elitist schema
overlays and multi-parent Genetic Algorithms were found to perform bet-
ter than traditional Genetic Algorithms in our experiments, but elitist
schema overlays degraded performance when used in conjunction with
other multi-parent Genetic Algorithms.

1 Introduction
Optimization problems are some of the most difficult problems to solve exactly;
however, checking how good a particular solution is usually involves a fairly
inexpensive computation. Thus, a natural strategy for problems like this would
be to generate a large, random pool of solutions and use information from a
quality check to find better solutions. This is central to how Genetic Algorithms
operate. We can encode solutions to these problems as genetic sequences and
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then replicate the process of natural evolution on them. The quality checks,
performed by the fitness function, let us score a solution’s fitness, or quality.
The selection operator uses these scores to determine which solutions performed
well and should be kept for additional processing and those that did poorly and
need to be discarded. We then derive additional potential solutions from those
that were kept, which is done by a recombination operator. Finally, it is helpful
to change small components in these new solutions to expand our search with
a mutation operator [4].

This methodology lets us quickly generate approximate solutions to these
problems. Genetic Algorithms are not guaranteed to find the optimum solu-
tion, but they are able to find good approximations very efficiently [22]. Much
research has gone into improving these approximations by modifying the strate-
gies and heuristics used, and this paper aims to do the same.

Historically, Genetic Algorithms have been modeled closely after observa-
tions from Biology. For example, both biological reproduction and recombina-
tion in traditional Genetic Algorithms always occur with either 1 or 2 parent(s)
involved; however, this is only a restriction in Biology [10]. For Genetic Algo-
rithms, the number of parents used during recombination can easily be expanded
beyond 2. Papers describing techniques for multi-parent recombination started
appearing as early as 1966, but little was reported about their behavior early
on [6]. The strategies investigated showed promise, and they have since drawn
more attention and research[8].

Curiously, many of these new operators were extensions of traditional re-
combination operators modified only to accommodate for more parents. In this
paper, we follow the trend of diverging from the restrictions of Biology by intro-
ducing a new genetic operator, the elitist schema overlay, and the more general
concept of a genetic overlay. This operator attempts to amplify the benefits of
both crossover and fitness-based scanning by attempting to identify and prop-
agate the genes correlated with the most successful solutions that have been
discovered [22].

In the next section, we will define the core terminology of Genetic Algo-
rithms. Section 3 covers traditional genetic operators and two of the most
successful genetic operators from the literature, diagonal crossover, or diagonal-
ization, and fitness-based scanning. In Section 4, definitions for both genetic
overlays and elitist schema overlays are given. Additionally, we have also pre-
sented the case for why this methodology is successful and how it follows from
Genetic Algorithms theory. In Section 5, we define the numerical optimiza-
tion functions and NP-Hard problems that we will test against. The encoding
formats and support functions used to compute these are also defined in that
section. Section 6 details how our experiments were set up, and an analysis of
the data from those experiments.
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2 Terminology
Genetic Algorithm research borrows terms from both Biology and Computer
Science, so we have set several conventions on terminology for this paper. A
Genetic Algorithm is a local search technique that simulates biological evolution
on solutions to a given problem [22]. A genetic sequence gk, often also called an
individual, is a sequence of values a1a2 . . . an that represents a potential solution
to a particular problem. Each value ai within a genetic sequence is referred to
as an allele and can take on values from a specified domain Di, commonly the
set {0, 1}. A population refers to the set G whose elements are the genetic
sequences for a given instance. A schema, pluralized as schemata, is a partial
genetic sequence where each ai can be left unspecified and is not required to
take any value [22]. In this paper, the character ‘-’ will represent a value that
has been left unspecified, which is commonly called a don’t care value [14].

Genetic Algorithms have two distinct phases, recombination and selection,
which occur every iteration, also called a generation. During the selection phase,
a fitness function takes a gk ∈ G as input and returns an x ∈ R. This x, or
fitness value, measures how well gk solves a given problem instance. Elitism is a
strategy that takes the individual with the highest fitness value in a population
and copies it into the next generation.

Recombination utilizes genetic operators, which are functions from genetic
sequences to genetic sequences. The probability of a particular genetic sequence
being chosen for selection is typically determined by its fitness value. Genetic
operators of arity n take n parent genetic sequences to produce m new, child,
genetic sequences. It should be noted that m and n are two not necessarily dis-
tinct natural numbers. Historically, the phrase mutation operator has referred
to the case where n = 1, recombination operator has specified n = 2, and multi-
parent recombination operator was reserved for n > 2 [8]. These operators are
defined in greater detail in the following section.

3 Current Genetic Operators
Traditional Genetic Operators
Genetic Algorithms were designed to emulate evolution by natural selection,
and traditional genetic operators closely resemble their biological counterparts.
Crossover, mutation, and selection build the core of many Genetic Algorithms,
and are direct translations of biological processes into the computational world.
[22]. For the rest of this paper, the term “traditional Genetic Algorithm” will
be used to refer to 1-point crossover and mutation together.

1-Point Crossover

1-point crossover is the computational analog to sexual reproduction. This
binary genetic operator takes two genetic sequences, and then chooses a splitting
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point in their genetic sequences. In the example below, the splitting point is
between the fourth and fifth alleles:

Parent 1 : 0 1 1 0 | 1 0 1 1 0
Parent 2 : 0 1 0 0 | 0 0 1 0 1

The alleles that occur after the splitting point are then swapped between the
two parents to create two new child genetic sequences. The parents from the
example above would produce the children below:

Child 1 : 0 1 1 0 0 0 1 0 1
Child 2 : 0 1 0 0 1 0 1 1 0

Uniform Mutation

Mutation is a unary genetic operator designed to help Genetic Algorithms break
out of local optima [22]. This operator scans through a genetic sequence of
length n, and at each point will change that allele to another value in that
position’s domain with a given probability p. This probability is typically set
to 1

n , but further research has demonstrated that a dynamically set p produces
better behavior [2]. An example has been provided below:

Before Mutation : 0 1 1 0 0 0 1 0 1
After Mutation : 0 1 1 1 0 0 1 0 1

Swapping Mutation

Problems that require their genetic sequences to be permutations, like the Trav-
eling Salesman Problem, utilize swapping, instead of uniform, mutation. Both
operators scan through their respective genetic sequences, but the difference
occurs when a change is made in the case of permutations. These mutation
operators choose a random point in the rest of the genetic sequence and swap
the values at these two locations. An example can be seen below:

Before Mutation : 8 4 2 1 9 7 3 5 6
After Mutation : 8 7 2 1 9 4 3 5 6

Steady-State Selection

Steady-state selection is used to ensure that underperforming genetic sequences
are eliminated from the population, thus preventing their genes from propagat-
ing further. Once recombination and mutation have finished adding individuals
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to the population for a particular generation, this operator assigns each indi-
vidual a fitness value with the fitness function for the current problem. The
individuals are then sorted in descending order with respect to their fitness val-
ues. The first k individuals in this list become the population operated upon in
the next generation.

Multi-Parent Genetic Operators
The literature concerning multi-parent genetic operators highlighted two central
operators: fitness-based scanning and diagonal crossover. These two strategies
have shown success as multi-parent genetic operators, and are the direct con-
ceptual descendants of traditional genetic operators. Both of these operators
will be tested independently, as well as in conjunction with each other. This
mixed-operator methodology has shown performance gains in previous research
[25].

Fitness-Based Scanning

The first operator from the literature that has been implemented and tested is
fitness-based scanning as proposed by Eiben, et al [8]. The generalized form of
scanning iterates through the empty genetic sequence of a child and determines
its value based upon the values present in n selected parents [5]. Fitness-based
scanning makes a roulette wheel selection to choose each allele. At each allele,
the probability that a parent, from the sub-population, consisting of the parent
genetic sequences selected for this recombination, S, named i with a fitness value
of f(i), will donate its allele to the child’s genetic sequence has probability P (i)
as described below [8]:

P (i) = f(i)∑
i∈S

f(i)

Thus, the expected number of alleles inherited from a parent i is E(i) [8]:

E(i) = P (i) ∗ ( Chromosome length )

In previous studies, fitness-based scanning had mixed results across several
numeric optimization functions, and performed well on the Traveling Salesman
Problem [8, 10]. Overall, fitness-based scanning managed to surpass the results
of traditional crossover and other multi-parent genetic operators [8].

Diagonal Crossover

Diagonal crossover was introduced by Eiben, et al. to extend the concept
of crossover into the realm of multi-parent genetic operators [6]. A diagonal
crossover of arity n can be described easily. Take n individuals from a popula-
tion, select n − 1 crossover points, and create n children by selecting one sub-
sequence from each piece of the genetic sequences given [10]. Figure 1 depicts

5



how this would work [10]. Note that ai, bi, ci, and di are genetic subsequences
of arbitrary length.

a1 a2 a3 a4 parent a
b1 b2 b3 b4 parent b
c1 c2 c3 c4 parent c
d1 d2 d3 d4 parent d

→

a1 d2 c3 b4 child a
b1 a2 d3 c4 child b
c1 b2 a3 d4 child c
d1 c2 b3 a4 child d

Figure 1: Diagonal crossover applied to four parents

The rationale behind expanding this operator into the realm of multi-parenthood
was to increase the disruptiveness, and by extension the explorativity, of tradi-
tional crossover [7]. This meant that the population would need a large degree
of similar genetic sequences before the search would narrow and converge [10].
It should also be noted that in the special case of n = 2 is identical to traditional
1-point crossover [10]. High arity versions of this operator increased the per-
formance of Genetic Algorithms in research, though they were ultimately less
successful than scanning operators; however, it was also noted that it is much
less expensive to compute, meaning that larger populations could be processed
in the same time [10]. In our research, the population sizes are set to be equal
across all operators.

Now that we have defined each of the genetic operators from the literature,
we will define our contribution: the genetic overlay and its concrete implemen-
tation, the elitist schema overlay.

4 Genetic Overlays
Fitness values are the determining force behind whether or not the genetic se-
quence of an individual will survive and propagate. The selection phase of
Genetic Algorithms determines the probability of a given individual being cho-
sen for recombination. The technique to ensure the survival of good genes was
conceptually expanded upon with elitism, which allows the best performing in-
dividual to survive into the next generation. Elitist schema overlays ingrain this
concept within a genetic operator, and are a special instance of genetic overlays:

Definition 1. Genetic Overlay - A genetic operator which modifies an indi-
vidual’s genetic sequence to match the specified alleles of a given schema, while
leaving the unspecified alleles at their original values.

The following is an example of a genetic overlay that operates upon binary
genetic sequences. The defining length of a schema is defined to be the number
of specified values in an overlay, in the case of the provided example, we have
the value 4.

6



Initial Individual : 0 1 0 0 1 0
Genetic Overlay : 1− 0 1− 0

Resultant Individual : 1 1 0 1 1 0

This operator allows us to quickly give a set of individuals very similar
genetic sequences, thus allowing us to search the neighborhood of the provided
schema. The choice and density of the schema that we use is very important.
If our schema is very dense, i.e. it consists of mostly specified alleles, then
the population will converge very quickly. Early convergence is problematic
because it lessens the probability that the optimal solution has been found [4].
Likewise, a very sparse schema will spend excess computation cycles applying
very few changes. Additionally, we want to ensure that our schema consists of
alleles that yield high fitness values. Each of these factors must be carefully
considered when developing a strategy for creating genetic overlays.

Elitist Schema Overlays
There are many reasonable methodologies that we could utilize to build effective
genetic overlays. The central focus of this paper is the use of elitist schema
overlays, and they are defined below.

Definition 2. Elitist Schema Overlay - A genetic overlay that is built from the
matching alleles of the elite sub-population.

To define this formally, let P = {p1, p2, . . . , pn} be a set of n individuals
selected for recombination. Consider T = {t1, t2, . . . , tk} as the set of the k
individuals with the highest fitness rankings in P . We will now construct the
genetic overlay, named s, from the genetic sequences in T . We want our genetic
overlay to have specified values only where every individual in T has the same
value at that same position. The notations s[i], tj [i], and p[i] represent the
value, or lack-thereof in the case of the schema, at position i.

s[i] =
{
t1[i] if t1[i] = t2[i] = . . . = tk[i]
− if otherwise

Below is an example for k = 3.

Elite Individual 1 : 0 1 0 0 1 0 1 1 0
Elite Individual 2 : 0 1 0 0 0 0 1 0 0
Elite Individual 3 : 1 1 0 1 1 0 1 1 0

Resultant Genetic Overlay : −1 0−−0 1− 0

From here, we will apply s as a genetic overlay to each individual in P . An
application of the example elitist schema overlay created before can be seen
below:
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Unmodified Individual : 1 0 0 1 1 0 1 1 1
Elitist Schema Overlay : −1 0−−0 1− 0

Resultant Individual : 1 1 0 1 1 0 1 1 0

At this point, we may continue to apply additional genetic operators to P
as need be, or continue to the next generation. If our best performing indi-
viduals all have the same values at various alleles, this may hint that these
assignments are correlated with success. Thus, it would be reasonable to search
the neighborhood of this partial solution more thoroughly.

It should be noted that the members of the set P can be selected from the
unmodified population or from the population resulting from the application of
any other genetic operator. This was done intentionally to explore the behavior
of elitist schema overlays as both a mutative and reproductive genetic operator.

Admittedly, the effects of this method will depend greatly upon our choice
of k. For instance, the choice k = 1 will replace every individual that has the
genetic overlay applied with the highest ranked member of the population. This
is problematic, since it will instantly lead us to convergence. Likewise, a large
value of k will greatly reduce the probability that t1[i] = t2[i] = . . . = tk[i]
is true. This would lead us to checking a large number of alleles and, in the
likeliest case, doing little to nothing with that information.

To determine reasonable values for k, it is helpful to know what the probabil-
ity of an allele being specified in an elitist schema overlay is. We will denote αi

to be this probability, and xi to represent the size of the domain of the ith allele
for a genetic sequence of length n. Note that this assumes that each value for
an allele has an equal probability of showing up in a selected genetic sequence
at allele i. Given that this assumption is rarely true, as more successful alleles
should be present with a higher frequency, the following is a lower bound of the
probability of a matching allele over k parents.

αi = P (k parents matching ith allele) =
(

1
xi

)k−1

With this, we can easily derive the probabilities of having no matches and a
total match for a chromosome of length n in terms of αi.

P (No matches) =
n∏

i=1
(1− αi)

P (All matches) =
n∏

i=1
(αi)

Thus, our choice of k should be made carefully, but there are a large number
of possibilities that we could easily consider. Large values for k will make αi

small, and thus the probability that no matches have been found will be high.
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Likewise, low values for k increase the value of αi, making the probability of
every allele matching high. We need to find a methodology for selecting k that
balances these two extremes. Else, we run the risk of wasting computations
looking for very unlikely matches or causing our population to converge prema-
turely. A fixed and predetermined k could be chosen, k could be randomized
for each generation, or k could be set to the number of individuals above a
certain fitness threshold; however, the probabilities mentioned above lead to an
alternative approach. We can create an inverse linear relationship between k
and the number of generations remaining. By changing the value of k over time,
we hope to achieve the following properties:

1. Narrowing Search - Since the initial k values will be very large, it is unlikely
that t1(i) = t2(i) = . . . = tk(i), and so we will not disturb the initial
natural diversity with the operator. Likewise, as our k drops, our genetic
overlay has a higher chance to be mostly specified, meaning that we will
probably be searching a progressively narrowing neighborhood based upon
the best performing solutions discovered so far [20].

2. Bounded Convergence - We can control how quickly k decreases, and by
this, how quickly our population will converge towards the best known
solutions. When we set k = 1 we will instantly converge the entire target
population of this operator, and so we have a bound for the minimum
convergence rate.

Our tests compare how well elitist schema overlays perform with a random k
being selected each generation, k being set as a fixed percent of the population,
and k being set by a linear inverse relationship with the number of generations
remaining.

Rationale
Elitist schema overlays with an effective choice of k are intentionally related to
the theoretical bases of Genetic Algorithms [12, 14]. The schema theorem, in
Holland’s own words, states, “The adaptive system must, as an integral part of
its search of a, persistently test and incorporate structural properties associated
with better performance [14].” Likewise, the building block hypothesis states
that the propagation of building blocks, high fitness schemata with low defining
lengths, are integral to the successes of Genetic Algorithms [12]. Thus, if we can
identify the alleles associated with high performance, then we can use a genetic
overlay to incorporate them into our entire population. This will lead to the
identified schemata being tested by the fitness function more often since it is
present in more individuals. Since premature convergence will prevent solutions
from improving much more, we should be careful to only build genetic overlays
that are correlated with high fitness values while leaving ample room to search
[1].

Strangely, when Forrest and Mitchell tested the performance of Genetic Al-
gorithms against Hill-Climbing Algorithms on the Royal Road function, whose
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definition is tightly coupled with the building-block hypothesis, Genetic Algo-
rithms were out-performed by Random Hill-Climbing Algorithms [11]. Results
like this have lead to criticism of the strength of the underlying assumptions and
the narrowness over which the schema theorem and building-block hypothesis
could be applied [3, 23]. This has lead to the use of effective fitness measures
and coarser graining on the size of building-block schemata to describe the evo-
lutions of schemata over time [26].

The underlying mechanics of successful Genetic Algorithms are still being
debated, but the exploitation of current, successful genetic sequences is still
fundamental to the field as a whole [22, 23]. Genetic overlays were designed
to speed up the propagation of schemata in a population, and elitist schema
overlays search the fittest individuals for useful schemata to propagate. This
operator will be explored as an addition to current models, modifying the popu-
lation between the recombinant operators, fitness-based scanning and diagonal
crossover, and the mutation operator.

This decision was made because elitist schema overlays act similar to both
recombinant and mutative operators. Since they are produced from k genetic
sequences, we can consider them as multi-parent operators; however, the appli-
cation of a genetic overlay is a unary procedure. Thus, we utilize elitist schema
overlays as an addition to, not a replacement for, current genetic operators. To
determine the effects of including elitist schema overlays in Genetic Algorithms,
we will now define the test problems used for our experimentation.

5 Testing Benchmarks
Improvements to Genetic Algorithms are frequently compared based upon their
abilities to solve various benchmark numerical functions and real world problems
like the Traveling Salesman and Job Scheduling problems [19]. In order to get
a good grasp on the general behavior of elitist schemata overlays in comparison
to the other tested operators, we have chosen a variety of problems from both
of these fields.

Our research found a set of common minimization functions used as bench-
marks of the performance of new Genetic Algorithms [4, 10, 28]. These functions
should give us a picture of how well our algorithm compares to more traditional
ones. In order to make some reasoning about the behavior of elitist schemata
overlays on real world problems, we will also test performance on several in-
stances of the Knapsack and Traveling Salesman problems. Finally, each of the
genetic operators will be run on several NK-Landscapes, a common testing tool
for Genetic Algorithms. Definitions for each of these can be found below.

Minimization Functions
Definitions

The functions below display a wide array of properties as a group that will
test each of the behavior of the genetic operators in different ways. By varying

10



levels of ruggedness, how much values differ from those in their neighborhood,
and deceptiveness, the number of local optima, we get a broad picture how our
operators will behave under certain conditions. The definitions for each of these
numerical optimization problems can be found in the literature [19, 32].

The De Jong hypersphere function is both convex and unimodal with a
global minimum of 0 located at (0, 0, . . . , 0). The n-dimensional version of the
hypersphere function is as defined:

f(x1, x2, . . . , xn) =
n∑

i=1
x2

i for − 5.12 ≤ xi ≤ 5.12

The De Jong hyper-ellipsoid function is defined similarly, and maintains the
global minimum of 0 located at (0, 0, . . . , 0).:

f(x1, x2, . . . , xn) =
n∑

i=1
ix2

i for − 5.12 ≤ xi ≤ 5.12

We also selected the closely related sum of different powers function, whose
minimum is also of 0 located at (0, 0, . . . , 0):

f(x1, x2, . . . , xn) =
n∑

i=1
|xi|i+1 for − 1 ≤ xi ≤ 1

The Griewank function is known for its multi-modality and also has its global
minimum of 0 located at (0, 0, . . . , 0):

f(x1, x2, . . . , xn) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos
(
xi√
i

)
+ 1 for − 600 ≤ xi ≤ 600

Rastrigin’s Function is another highly multi-modal function with a global min-
imum of 0 at (0, 0, . . . , 0) :

f(x1, x2, . . . , xn) =
n∑

i=1

(
x2

i − 10 cos(2πxi)
)
for − 600 ≤ xi ≤ 600

Rosenbrock’s function has a global minimum of 0 at (1, 1, . . . , 1) :

f(x1, x2, . . . , xn) =
n−1∑
i=1

((xi − 1)2 + 100(xi+1 − x2
i )2) for − 5 ≤ xi ≤ 5

The two dimensional Michaelwicz function has a global minimum approximately
equal to −1.8013 at the approximate points (2.2032, 1.5705) and is defined be-
low:

f(x, y) = − sin(x) sin20
(
x2

π

)
− sin(y) sin20

(
2y2

π

)
for 0 ≤ x, y ≤ 5
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The two-dimensional six-hump camel back function has a global minimum of ap-
proximately−1.0316 at the coordinates (0.0898,−0.7126) and (−0.0898, 0.7126):

f(x, y) = x6

3 − 2.1x4 + 4x2 + xy + 4y4 − 4y2

Schubert’s function is multi-modal and has 18 global minima of approximate
value −186.7309 in the given search domain :

f(x, y) =
( 5∑

i=1
i cos(i+ ix+ x)

)
∗

( 5∑
i=1

i cos(i+ iy + y)
)

for − 10 ≤ x, y ≤ 10

As a side note, the JGAP version used for our testing disallowed for negative
fitness values [17]. To account for this, a constant offset was added to each of the
fitness scores returned for the Michaelwicz, six-hump camel back, and Schubert
functions to ensure that only non-negative results were returned.

Numerical Encoding

Genetic sequences have traditionally been encoded as both traditional binary
strings and Binary Reflective Gray Codes [31]. Gray Codes are modified inter-
pretations of bit strings that minimize the variation in representation of adjacent
values [2]. In the traditional binary system, the unsigned values of 2n and 2n−1
have no bits in common over the first n places, even though their values only
differ by 1. In a Gray Coding, all adjacent values differ by exactly one bit [18].
Given a bit string a = a1a2 . . . an, we can described the translation between
traditional binary strings and Binary Reflective Gray Codes mathematically.
The traditional binary bit string a can be rewritten as a Binary Reflective Gray
Code bit string b = b1b2 . . . bn with the following function [2]:

bi =
{

a1 if i = 1
(ai−1 + ai) mod 2 if i > 1

Likewise, we can translate between a Binary Reflective Gray Code bit string
b to the traditional binary bit string a with this procedure [2]:

ai =
{

b1 if i = 1
(ai−1 + bi) mod 2 if i > 1

Empirically, Genetic Algorithms that employ Gray Codes have outperformed
those using traditional binary genetic sequences [2]. For that reason, we have
implemented Gray Codes in our research. This gives us a good means of rep-
resenting integers, but our numerical optimizations are defined over the real
numbers.

To describe continuous domains, like those in the test functions presented,
we must map our genetic sequences of discrete values to the real numbers.
Suppose we wish to operate on a variable x whose domain D = [a, b] ⊆ R,
and that we require k decimal places of precision for x. To accomplish this, we
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need to partition D into 10k(b− a) ranges of equivalent length. So we find the
smallest n ∈ N such that 10k(b − a) ≤ 2n − 1. To assign values to x given a
genetic sequence g and a decoding function d, which takes a genetic sequence
and evaluates it to its decimal equivalent, we use the following formula [18]:

x = a+ d(g)
(
b− a

2n − 1

)
This methodology is also used in our research.

0-1 Knapsack Problem
Definition

The 0-1 Knapsack Problem is an NP-Hard optimization problem. Let X be the
set of items {x1, x2, . . . , xn}, C be the set of cost values {c1, c2, . . . , cn}, and
B be the set of benefit values {b1, b2, . . . , bn}. Each item xi, with the domain
{0, 1}, has an associated cost ci and benefit bi, where each bi, ci ∈ R+. Given
a cost limit L we want to maximize the sum of the benefit values while not
allowing the sum of our cost values to exceed L:

max

(
n∑

i=1
bixi

)
subject to

n∑
i=1

cixi ≤ L

Encoding

The 0-1 Knapsack Problem is typically also represented with bit strings, but
these are not evaluated in the same manner as those for continuous domains.
For a genetic sequence g = g1g2 . . . gn, each gi, where 1 ≤ i ≤ n, represents
the value of the corresponding xi in the item set X for a given instance of the
problem.

Traveling Salesman Problem
Definition

The Traveling Salesman Problem is another NP-Hard problem. Let V be a set
of vertices v1, v2, . . . vr of a graph G. The set of edges E is defined such that
each ei ∈ E is an ordered tuple of the form (vj , vk), j 6= k where vj , vk ∈ V are
the vertices that ei connects. For each en ∈ E, there is an associated wn ∈ W
where wn is a positive real number that is the weight of the edge en. The
goal of a given Traveling Salesman Problem instance is to find the Hamiltonian
Circuit that has the minimum total weight. In other words, we must find a
series of connected edges T = e1, e2, . . . , er, where r is the number of vertices,
that minimizes the following [13]: ∑

ei∈T

wi
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Where wi is the weight of the edge ei. Additionally, to ensure that each of our
generated graphs has a Hamiltonian circuit, we force them to satisfy Dirac’s
Theorem, which states:

Theorem 1. Every simple, connected graph with n ≥ 3 vertices that satisfies
degree(n) ≥ n

2 has a Hamilton circuit [30].

Encoding

Permutation based problems, like the Traveling Salesman Problem, break away
from the tradition of utilizing binary values to build genetic sequences. Naïve
bit string representations create long genetic sequences that commonly encode
infeasible solutions, those that do not meet the constraints of the problem in-
stance, or incorrect genetic sequences, those that are not permutations [21]. To
help correct this, Traveling Salesman Problems of size n can be encoded as a se-
quence of integers from the set {1, 2, . . . , n} to minimize the length of the genetic
sequences. Another common optimization is to fix a single point in all genetic
sequences to reduce the number of representations of an identical solution, and
we have followed this trend in our work.

Permutation Repair Algorithm

For most applications, the described genetic operators will function correctly
unmodified; however, for permutation based problems that allow for only one
instance of a given allele, like the Traveling Salesman Problem, a slight change
is necessary. For instance, the application of an overlay might leave identical
values in multiple positions in the genetic sequence. Many genetic operators
have this effect, and two main solutions are utilized in practice: New genetic
operators tailored to these problems, and repair algorithms [16]. To keep our
choice of operators consistent, we have devised a repair algorithm to use in every
necessary case.

Genetic Overlay : −1 3−−6 2− 9
New Individual : 2 1 3 4 5 7 6 8 9

Resultant Individual : 2 1 3 4 5 6 2 1 9

As we can see above, the application of the genetic overlay results in an
individual that contains two instances of both 2 and 1 in its genetic sequence.
Since this is no longer a permutation, it cannot be a potential solution to the
Traveling Salesman Problem. Thus, we need a repair algorithm can be used to
correct this example, while maintaining the given genetic overlay.

Our repair algorithm, whose pseudocode can be found in Figure 2, iterates
through a genetic sequence and counts how often each value is used. On the
second pass, we check each value to see if it has been used exactly once in the
permutation. If this is true, then we advance to the next allele. We will also skip
alleles that are defined in the given genetic overlay. If neither of these conditions
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are true, we replace the current allele with a value that is not already in the
permutation. With this structure, we maintain the invariant that the genetic
subsequence from the beginning up to the point we are operating on is a valid
permutation.

In order to guarantee that we both do not disturb a given genetic overlay
and that our end result is a permutation, we must require that every genetic
overlay is a permutation. This constraint is feasible in practice, and we have
proven below that no elitist schema overlay will ever contain a duplicated value
if the population consists of permutations only.

Theorem 2. An elitist schema overlay will contain no duplicated elements,
given that all members of the population are k-permutations of n elements where
k ≤ n.

To begin, let e be an elitist schema overlay created from a population P . Let
us assume towards a contradiction that e contains at least one value that has
been duplicated. Thus, the must exist distinct alleles ep, eq, such that ep = eq.
So, for each individual I used to construct e, we know that Ip = ep = eq = Iq

by the definition of elitist schema overlays. However, Ip = Iq implies that I is
not a k-permutations of n elements. This contradicts our assumption that every
individual in the population must be a k-permutations of n elements, and so
each e must only contain distinct elements. �

Given the code in Figure 2, we will now demonstrate that this approach will
always return permutations given that our genetic overlays contain no dupli-
cated elements.

Theorem 3. The result of applying the permutation repair algorithm on a ge-
netic sequence, s, and an overlay, o, of length k is always a genetic sequence,
with o intact, that is a k-permutation of the n possible values for each allele,
given that k ≤ n and that the genetic overlay contains no duplicated elements.

To prove this theorem via weak induction, we shall begin with the base case
of genetic sequences of length 1. Thus, neither s nor a o can have any duplicated
values. Thus, applying o to s will create no duplicate elements and will leave o
intact.

Now we assume that the permutation repair algorithm will work on any
genetic sequence and genetic overlay of length k − 1, and will return a (k − 1)-
permutation of n − 1 elements with the genetic overlay intact. From here,
we show that the case of k ≤ n follows. For this proof, assume that the n
permutable values are contained in a set N . We must consider the following
cases:

1. The first value of the genetic overlay is defined. To begin, we have already
applied o to s. Now we apply the inductive hypothesis to the subsequence
s2 . . . sk and set of values N ′ = N \ {o1}. Thus, s2 . . . sk is a (k − 1)
permutation of the n−1 elements ofN ′ with o2 . . . ok intact. Since, o1 = s1
we know that o is intact with respect to s. Further, since s1 6= ni,∀ni ∈ N ′,
we know that s can contain no duplicate values.

15



input : A genetic sequence, seq, of permutable values and a genetic
overlay, g

output: seq, with values that form a permutation.
// Find out how many times each value is used in seq
for value ∈ seq do1

use[value]← use[value] + 12
end3

// Correct the sequence
for i← 0 to seq.length do4

value← seq[i]5
// Only check undefined locations in the overlay
if g[i] = defined then6

continue7
end8

// Check if the value has been reused
if use[value] > 1 then9

// Find an unused value
for j← 0 to use.length do10

// Update the usage array and genetic sequence
if use[j] = 0 then11

seq[i]← j12
use[j]← 113
use[value]← use[value]− 114
break15

end16

end17

end18

end19

Figure 2: Permutation Repair Algorithm Pseudocode

2. The first value of the genetic overlay is undefined. Consider the set
N ′ = N \ {ot|∀ot ∈ o where ot is defined}. Since o1 is undefined and
the length of o is less than or equal to n, we know that at least one ele-
ment exists in N ′. We now set s1 to be an arbitrary member of N ′. Now
we apply the inductive hypothesis to the subsequence s2 . . . sk and set of
values N ′′ = N \ {s1}. By the inductive hypothesis and the assumption
that o1 is undefined, o must be intact with respect to s. Additionally,
because s2 . . . sk cannot contain duplicate values and cannot contain s1,
since s2 . . . sk is a (k− 1) permutation of N ′′, we know that s contains no
duplicate values.

In either case, we are left with a genetic sequence that is a k permutation of
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n elements with our genetic overlay, o, intact. �

NK-Landscapes
NK-Landscapes are mathematical models that have appeared in many disci-
plines, and finding the global minimum or maximum of one of these models has
been demonstrated to be in NP-Hard [29].

NK-Landscapes assign values to bit strings of length N by applying a func-
tion f to each allele and its K neighbors [15]. A string S, consisting of the bits
b1, b2, . . . , bN has a fitness value V defined to be:

V =
N∑

i=0
f(S, i)

The function f takes the string and evaluates the necessary number of bits
using the function g.

f(S, i) = g(bi, bi+1 mod N , . . . , bi+K mod N )

Larger values of K increase the ruggedness of a model by increasing the
interplay between the bits, and lower values of K make for smoother landscapes
[15]. Rugged models have large numbers of local optima, and so tuning K gives
us varying degrees of difficulty for local search methods like Genetic Algorithms
[22, 24]. Likewise, larger values for N lead to search spaces of exponentially
increasing size. Since multi-parent genetic operators have had success on NK-
Landscapes in previous studies, we will test each genetic operator on several
NK-Landscapes of varying size and ruggedness [9, 24].

6 Experimentation
Now that the operators and benchmark problems have been identified and de-
fined, we will empirically test the performance of elitist schema overlays, multi-
parent genetic operators, multi-operator strategies, and traditional Genetic Al-
gorithms. We seek to compare each of these configurations in terms of their
solutions found and runtime; additionally, we seek to verify previous results
in multi-parent operator research. These results and experiments will help us
answer the following questions:

• Do fitness-based scanning and diagonal crossover perform as previously
reported, with more parents tending to higher success rates?

• Do fitness-based scanning and diagonal crossover perform better when
used separately or in conjunction with each other?

• Which of the three methods of selecting k, assigning random values, se-
lecting a fixed percentage, or by computing a linear relationship with
generations left, performs best?
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• How do each of the above methods of k selection affect the convergence
rates of their respective populations?

• With which genetic operator(s) does the best performing elitist schema
overlay configuration perform best?

• Do elitist schema overlays improve solution quality?

• How efficiently can elitist schema overlays be computed and applied in
relation to other genetic operators?

Each of the operators and benchmarks were implemented with the JGAP
framework. JGAP is an open source Genetic Algorithms package for the Java
programming language developed by Meffert et al [17]. This work is built upon
JGAP version 3.6.2, which was the latest stable release at the time this paper
was written.

To determine how well any Genetic Algorithm performs, it is important to
know what parameters were used for testing. To reduce the number of variables
in our experiments, the same setup was used for each experiment measuring
solution quality, as outlined in Figure 3. While measuring runtime, the number
of generations was decreased from 500 to 150. These parameters are similar
to those found in the literature to ensure that our results are comparable to
previous research [27, 10, 9].

problem type minimization
parents used for recombination 2-10, by steps of 2
selection type steady-state
selection mechanic best first
diagonal crossover rate 70 %
fitness-based scanning rate 70 %
elitist schema overlay rate 100 %
mutation rate dynamic [2]
population size fixed at 200
termination condition 500 generations elapsed
trials per configuration 100

Figure 3: Parameters used for testing

All of our experiments measuring runtime were executed on an Intel Core
i5-2500 processor clocked at 3.30 gigahertz to ensure that the data gathered
was comparable. The computer also had 16 gigabytes of RAM and was running
version 5.5 of the CentOS operating system. The full data set generated from
these experiments can be provided by the author at request.
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Benchmark Parameters

To ensure that our tests are reproducible, the parameters used to generate
each of our test cases have also been included. The n-dimensional numerical
optimization problems were tested on genetic sequences of length 100, split into
4 dimensions of 25 boolean alleles: For reference, they have been listed below:

• De Jong’s Hypersphere Function

• De Jong’s Hyper-ellipsoid Function

• The Sum of Powers Function

• Griewank’s Function

• Rastrigin’s Function

• Rosenbrock’s Function

The 2-dimensional functions were tested on genetic sequences of length 62,
with the boolean alleles split evenly between the two dimensions. These func-
tions have also been listed below for reference:

• Michaelwicz’s Function

• The Six-Hump Camel Back Function

• Schubert’s Function

Both the Knapsack and the Traveling Salesman problems were tested on
several randomly generated instances of size 50 to 500 by increments of 50.
10 instances of each size were generated to help prevent against a particular
operator having an advantage over another due to its ability to exploit a feature
of a given instance. NK-Landscapes were similarly generated for N = 50 to
N = 250 with increments of 50. 20 instances were generated for each size,
10 with K = 5 and the remainder with K = 10. Both NK-Landscapes and
Knapsack Problem instances were tested using boolean alleles, and the Traveling
Salesman Problem utilized chromosomes built of integer alleles.

Results
To determine the usefulness of elitist schema overlays as a genetic operator, we
compared our work to current successful operators. To do so, we have analyzed
both how efficient our operator is and how well it contributes to solution quality.

To measure solution quality for each operator, we measured the average
fitness of the most fit solution found for each of the numerical optimization
problems. To measure the solution quality of problems in NP-Hard, we mea-
sured the average fitness found by an operator at a given arity and compared it
to best known solution across the problems all operators with the following:
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averageFitness
bestFoundFitness ∗ 100%

It should be noted that the best found solutions during experimentation for
k-value selection were only compared against other methodologies in that sec-
tion; the best found solutions during experiments comparing elitist schema over-
lays to multi-parent operators were drawn from across both of these datasets.
We tested several instances of each size of each problem to reduce error, and
collected frequency data to allow us to compare solutions of different instances
that were the same size. Multiple instances were used because internal features
of a given instance may play a role in how well a particular operator performs.

Since each of the problems was tested as a minimization task (as shown in
Figure 3), we wish for our reported fitness values to be as low as possible. For the
charts measuring solution quality by problem, our y-axes on the provided charts
always measures the average fitness value while the x-axes provide information
on operator arity. For numerical optimization problems, this is the direct result
of the mathematical formulas provided. In the cases of problems from NP-Hard,
the fitness value as a percent of best found solution is provided.

To answer our research questions, we will first explore the genetic operators
from the literature. Secondly, we compare the various methodologies used to
select a k-value for elitist schema overlays to determine which we will test in
conjunction with existing genetic operators. Finally, we will analyze how eli-
tist schema overlays perform when used in conjunction with existing genetic
operators.

Existing Genetic Operators

To determine if elitist schema overlays improve the overall performance of Ge-
netic Algorithms, we must first establish a performance baseline from the ex-
isting research. To do so, we have tested both existing operators, diagonal
crossover and fitness-based scanning, individually and in conjunction with each
other against our benchmarks. Diagonal crossover and fitness-based scanning
were both tested with arities of 2, 4, 6, 8, and 10. When combined, both oper-
ators were set to the same arity from the previous list. These experiments will
help to verify the previous experimental results from multi-parent and multi-
operator research [25, 10].

Each of the operator configurations consistently found the same minima
for 6 of the 9 optimization problems. Since these data do not differentiate the
operators, we will focus upon the remaining three functions: Griewank’s (shown
in Figure 4), Rastrigin’s (Figure 5), and Rosenbrock’s (Figure 6).

In these cases, traditional Genetic Algorithms consistently performed worse
than multi-parent strategies. As a general trend, both utilizing more operators
and increasing the arity of those operators increased performance, but there were
exceptions. Fitness-based scanning saw performance degradation with arity 10
on the Rastrigin function, as did mixed operator usage on the Griewank func-
tion. Utilizing several operators performed the best on the Griewank and Ras-
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Figure 4: Multi-Parent Performance on Griewank’s Function
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Figure 5: Mulit-Parent Performance on Rastrigin’s Function

trigin functions, and was outperformed on the Rosenbrock function by fitness-
based scanning.

We also observed that diagonalization was consistently outperformed on both
the Rosenbrock and Griewank functions; however, diagonalization did outper-
form fitness-based scanning on the Rastrigin function. Each of these findings
were in line with the literature on fitness-based scanning and diagonalization
[8, 10]. We will now investigate how these operators performed on the NP-Hard
test problems.
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Figure 6: Multi-Parent Performance on Rosenbrock’s Function
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Figure 7: Multi-Parent Performance on the Knapsack Problem

For the Knapsack Problem (shown in Figure 7), diagonalization consistently
performs worse than all other configurations; however, in the worst case, the
instances with 500 objects, its average best solution was only 1.39% higher
than the best found solution across all configurations, where the best strategy
found solutions 0.01% greater than the optimal when averaging over all instances
of all sizes. Within that range of performance, our previous observation that
increasing the arity of the operators improved performance held true.
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Figure 8: Multi-Parent Performance on the Traveling Salesman Problem

Within the tested instances of the Traveling Salesman Problem (shown in
Figure 8), high-arity diagonalization outperformed fitness-based scanning, but
was outperformed by mixed operator strategies. Mixed operator strategies per-
formed the best with arity 4, but across the other two strategies, more parents
typically increased performance. Once again, traditional Genetic Algorithms
performed the worst, and found solutions 216.52% greater than the best found
when averaged across all instances for all problem sizes, where the best averaged
performance was 31.47% greater than the best found on average.

As previously found, multi-parent strategies performed the best when tested
on NK-Landscapes [9]. For each problem instance, the best found solution was
always found by each operator configuration.

Overall, this data supports previous conclusions about the success of genetic
operators with arities greater than 2. Increasing the number of parents involved
in recombination improved the success of both diagonalization and fitness-based
scanning. Additionally, utilizing both of these operators in conjunction with
each-other further increased performance on both the numerical optimization
and NP-Hard test problems. Now we will compare the various methodologies
of k selection used to build elitist schema overlays, and compare the best found
strategy to the multi-parent operators tested here.

k-Value Selection Methodologies

Each of our k selection methodologies was used in addition to a traditional Ge-
netic Algorithm to determine which methodology performed the best. When
using k as a fixed percentage of the population, we ran tests with k set to
10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, and 90%. During our tests with k
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chosen as a linear relationship with the number of generations remaining, we
determined k with the following formula:

k =
⌊
generationsLeft

totalGenerations
∗ populationSize

⌋
As before, 6 of the 9 numerical optimization problems lead to each of the op-

erators converging to the same solution. The solution quality information from
these cases does not help us differentiate these operators, but the convergence
information from these tests will be explored later. The remaining functions
to be analyzed for solution quality information are the following: Griewank’s
(shown in Figure 9), Rastrigin’s (Figure 10), and Rosenbrock’s (Figure 11).
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Figure 9: Elitist Schema Overlay Performance on Griewank’s Function

Across each of these functions, no single methodology consistently domi-
nated the others. Further, when analyzing the data across the percentage based
selection methods, the percent used and the overall performance did not ap-
pear to be correlated. Selecting k randomly consistently converged the slowest,
taking 153.28 generations on average, and selecting k = 30%, the fastest con-
verging methodology, lead to convergence after 130.7 generations on average.
We will now investigate the behavior of traditional Genetic Algorithms with
elitist schema overlays on problems in NP-Hard.

The solution quality data gathered from the Knapsack Problem (referenced
in 12) is almost indistinguishable, much like the numerical optimization data
was. Every methodology found on average a solution that was between 100.19%
and 100.21% of the best found solution for that given instance. The convergence
data was more varied. Selecting k = 20% converged on average after 161.78
generations, and k = 40% converged the fastest, taking 142.09 generations on
average.
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Figure 10: Elitist Schema Overlay Performance on Rastrigin’s Function
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Figure 11: Elitist Schema Overlay Performance on Rosenbrock’s Function

Data gathered for the Traveling Salesman Problem (referenced in 13) showed
more variation in solution quality. The best average solutions were found by
k = 40%, and found solutions 125.77% of the best found solutions on aver-
age. k = 40% also converged the quickest on average, usually converging after
339.69 generations. The worst average solutions were found by k = 30%, which
were on average 133.08% of the best found solutions. The slowest converging
methodology was k = 90%, which took on average 364.85 generations.

As was the case with multi-parent Genetic Algorithms, our tests with elitist
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Methodology Solution Quality Average Generations to Convergence
Random 100.20% 144.84
Linear 100.19% 157.24
10% 100.19% 146.54
20% 100.19% 161.78
30% 100.21% 147.94
40% 100.19% 142.09
50% 100.19% 149.27
60% 100.19% 143.39
70% 100.19% 150.19
80% 100.19% 143.47
90% 100.19% 151.64

Figure 12: Elitist Schema Overlay Performance on the Knapsack Problem

Methodology Solution Quality Average Generations to Convergence
Random 127.25% 349.77
Linear 126.30% 353.50
10% 126.34% 350.03
20% 126.29% 355.57
30% 133.08% 353.42
40% 125.77% 339.69
50% 129.55% 355.16
60% 125.33% 342.35
70% 128.00% 357.78
80% 126.29% 342.98
90% 127.40% 364.85

Figure 13: Elitist Schema Overlay Performance on the Traveling Salesman Prob-
lem

schema overlays on NK-Landscape instances gave us little data to differentiate
methodologies (referenced in 14). Following the trend of the other problems in
NP-Hard, k = 20% converged the slowest, taking 33.97 generations on average,
and k = 40% converged the fastest, taking 22.48 generations on average. We
now combine the convergence data from the problems in NP Hard and the
numerical optimization problems to determine the overall convergence behavior
of our k-value selection methodologies.

To gather generalized convergence rate data, we averaged the number of
generations to convergence across all runs of all problem instances (Referenced in
Figure 15). There appears to be no correlation between the number of parents in
fixed percentage methodologies and the average rate of convergence. As was the
case before, k = 20% converged the slowest on average while k = 40% converged
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Methodology Average Generations to Convergence
Random 26.29
Linear 29.18
10% 27.18
20% 33.97
30% 27.95
40% 22.48
50% 28.64
60% 24.30
70% 29.38
80% 25.34
90% 30.07

Figure 14: Elitist Schema Overlay Convergence on NK-Landscapes
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Figure 15: Elitist Schema Overlay Rates of Convergence

the quickest. This data helped us select a k-value selection methodology to
utilize with both traditional Genetic Algorithms and multi-parent operators to
determine empirically how they affect performance.

Elitist Schema Overlays with Existing Operators

We chose to run our further experiments with k set to be a fixed 20% of our
population. The rationale behind this choices was based upon the observed con-
vergence rates in our experiments. Since most of the solutions were comparable
in quality, we focused upon the methodology that converged the slowest. This
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decision was made in an attempt to help prevent premature convergence [1]. We
also aimed to maintain the disruptiveness of diagonalization and fitness-based
scanning, which is thought to be central to the successes of multi-parent oper-
ators [10]. This was used in conjunction with the 15 different genetic operator
configurations used in the experiments with the existing genetic operators. We
will begin by comparing performance on the numerical optimization functions.
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Figure 16: Comparative Performance on Griewank’s Function
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Figure 17: Comparative Performance on Rastrigin’s Function
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Figure 18: Comparative Performance on Rosenbrock’s Function

As before, the observed performance on the numerical optimization problems
only deviated during tests on Griewank’s function (shown in Figure 16), Rastri-
gin’s function (Figure 17), and Rosenbrock’s function (Figure 18). Across these
tests, multi-parent operators without elitist schema overlays tend to outperform
those with elitist schema overlays. The tests run with elitist schema overlays
show similar relative behavior when compared to each other as the multi-parent
operators without elitist schema overlays; that is, diagonalization was usually
outperformed by fitness-based scanning, which was in turn out performed by
a multiple-operator strategy. In contrast to the previous experiment, increas-
ing the number of parents no longer resulted in improved performance in the
average case.

Within the data gathered for the Knapsack Problem (shown in Figure 19),
the use of elitist schema overlays decreased the average performance of all op-
erators by an average 0.05 percentage points; however, when utilized with tra-
ditional Genetic Algorithms, elitist schema overlays increased performance by
0.18%. Overall, the range of performance was small, with the worst average
solution found evaluated at 0.51% above optimal. As before, the worst perfor-
mance for any singular problem size were traditional Genetic Algorithms with
instances of 500 items. Additionally, our previous observation that increasing
the arity of the operators improved performance continued to hold true. The
only exception to this trend occurred when higher arity operators were used in
conjunction with each other and elitist schema overlays.

The Traveling Salesman Problem instances tested showed similar trends to
the experiments with the Knapsack Problem (shown in Figure 20). When eli-
tist schema overlays were used, the solutions found by traditional Genetic Al-
gorithms were 78.03 percentage points closer to the best found solution when
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Figure 19: Comparative Performance on the Knapsack Problem
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Figure 20: Comparative Performance on the Traveling Salesman Problem

averaged across all instances and problem sizes. Diagonalization with arity 4
also had significant gains when utilizing elitist schema overlays, with solutions
improving on average by 70.75 percentage points; however, on average perfor-
mance dropped by 5.92 percentage points.

NK-Landscape problem instances generated the same behavior as before,
and elitist schema overlays consistently converged to the best found solution
across all trials, regardless of which operator it was used in conjunction with.
Thus, little more can be gained from examining that data. Now that we have
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finished analyzing the data concerning solution quality, we will examine how
elitist schema overlays affect the runtime of Genetic Algorithms empirically.
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Figure 21: Comparative Runtime Analysis

The efficiency data in Figure 21 is drawn from runtimes while minimizing
instances of increasing size of the first De Jong function over 150 generations.
A numerical optimization function was chosen to limit error stemming from
variance in the time required to read the input files that stored instances of NP-
Hard problems. De Jong’s Hypersphere function was specifically selected since
the population converged to the optimal solution in each of our experiments.
This allowed us to account for variance in the time necessary to construct eli-
tist schema overlays with respect to the similarity of high performing genetic
sequences. Along the x-axis, we have listed the sizes of the genetic sequences
tested, and along the y-axis we measure the average runtime. This data gives
us a look at how our choice of operators impact the overall runtime with respect
to the size of the problem.

To determine if elitist schema overlays are prohibitively expensive in practice,
we compared the runtimes of traditional Genetic Algorithms and multi-parent
operators of arity 4 both with and without elitist schema overlays on instances of
increasing size of De Jong’s Hypersphere Function (shown in Figure 21). This
data illuminates the cost of utilizing elitist schema overlays, and also shows
how expensive traditional and multi-parent operators are in relation to each
other. Traditional Genetic Algorithms ran the quickest in all instances, narrowly
outperforming diagonalization. Fitness-based scanning took significantly longer
than both of these, and multi-operators naturally took longer still. In each
instance, the addition of elitist schema overlays slowed genetic algorithms down,
but only slightly. Increasing the number of parents used in diagonalization from
2 to 4 had no major impact on the runtime; this indicates that the type of
operators used has the strongest effect on runtime. Now that we have analyzed
all of the data collected, we will draw our final conclusions.

31



7 Conclusions and Further Work
In this paper, we have introduced elitist schema overlays and their conceptual
basis, genetic overlays. We tested this new genetic operator against two multi-
parent genetic operators from the literature, diagonal crossover and fitness-based
scanning [8]. We have also utilized the multi-parent operators in multi-operator
configurations, a concept that has also been supported by the literature [25].

Our data supports the hypothesis that multi-parent strategies are an im-
provement upon traditional Genetic Algorithms. When paired with traditional
Genetic Algorithms, elitist schema overlays improved performance in most cases,
especially while testing instances of the Traveling Salesman Problem. Tradi-
tional Genetic Algorithms were also out performed by the operators from the
literature: n-arity diagonalization, fitness-based scanning, and multi-operator
strategies.

While elitist schema overlays increased the performance of traditional Ge-
netic Algorithms, this effect did not carry over when elitist schema overlays
were used with multi-parent operators. In most of the observed cases, adding
elitist schema overlays to other n-arity genetic operators degraded performance;
however, they still outperformed traditional Genetic Algorithms in most cases.
While elitist schema overlays could not match the successes of other multi-parent
operators, they provide another method to improve upon traditional paradigms.

Further Research
During our research, we came across and developed several unanswered ques-
tions that could be the focus of further research into elitist schema overlays and
multi-parent Genetic Algorithms.

• What do these results tell us about the building block hypothesis and the
schema theorem?

• What other ways of choosing and modifying the k value in an elitist schema
overlay will produce better behavior, and why?

• What other strategies exist for creating effective genetic overlays?

• Why do the different percent values for k perform so differently from each
other, especially in terms of convergence?

• Why do elitist schema overlays only produce gains when used in conjunc-
tion with traditional Genetic Algorithms, and degrade performance when
used with other multi-parent genetic operators?

• How do high arity operators, with arities set close to the size of the genetic
sequence, behave?

• What can be done to improve the computational performance of fitness-
based scanning?

32



Acknowledgments
I would like to thank Professor Mark Liffiton for guiding me through this re-
search project. Additionally, I would also like to Illinois Wesleyan University for
providing both Professor Liffiton and Professor Andrew Shallue the resources
to fund the cluster used for this research, and for allowing me to utilize it. I
would also like to extend thanks to Professor Pablo Moscato and Professor Gusz
Eiben for their time and for suggesting additional readings. Klaus Meffert and
the team behind JGAP were also very helpful and generous for releasing their
code as open source software.

References
[1] J. Andre, P. Siarry, and T. Dognon. An improvement of the standard ge-

netic algorithm fighting premature convergence in continuous optimization.
Advances in Engineering Software, 32(1):49 – 60, 2001.

[2] T. Bäck. Optimal mutation rates in genetic search. 1993.

[3] K. Burjorjee. The fundamental problem with the building block hypothesis.
arXiv preprint arXiv:0810.3356, 2008.

[4] K. Deb and S. Agrawal. Understanding interactions among genetic al-
gorithm parameters. Foundations of Genetic Algorithms, pages 265–286,
1999.

[5] A.E. Eiben. A method for designing decision support systems for opera-
tional planning. PhD Thesis, 1991.

[6] A.E. Eiben. Multiparent recombination in evolutionary computing. Ad-
vances in evolutionary computing, pages 175–192, 2003.

[7] A.E. Eiben and T. Bäck. Empirical investigation of multiparent recombina-
tion operators in evolution strategies. Evolutionary Computation, 5(3):347–
365, 1997.

[8] A.E. Eiben, P. Raué, and Zs. Ruttkay. Genetic algorithms with multi-
parent recombination. In Yuval Davidor, Hans-Paul Schwefel, and Rein-
hard Männer, editors, Parallel Problem Solving from Nature — PPSN III,
volume 866 of Lecture Notes in Computer Science, pages 78–87. Springer
Berlin / Heidelberg, 1994.

[9] A.E. Eiben and C. Schippers. Multi-parent’s niche: n-ary crossovers on
nk-landscapes. Parallel Problem Solving from Nature-PPSN IV, pages 319–
328, 1996.

[10] A.E. Eiben, C. van Kemenade, and J. Kok. Orgy in the computer: Multi-
parent reproduction in genetic algorithms. In Federico Morán, Alvaro

33



Moreno, Juan Merelo, and Pablo Chacón, editors, Advances in Artificial
Life, volume 929 of Lecture Notes in Computer Science, pages 934–945.
Springer Berlin / Heidelberg, 1995.

[11] S. Forrest and M. Mitchell. Relative building-block fitness and the building-
block hypothesis. Ann Arbor, 1001:48109, 1993.

[12] D.E. Goldberg. Genetic algorithms in search, optimization, and machine
learning. Addison-Wesley Professional, 1989.

[13] Y. Haxhimusa, E. Carpenter, J. Catrambone, D. Foldes, E. Stefanov,
L. Arns, and Z. Pizlo. 2d and 3d traveling salesman problem. Journal
of Problem Solving, 3(2):167–193, 2011.

[14] J. Holland. Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control and Artificial Intelligence.
University of Michigan Press (Ann Arbor), 1975.

[15] S.A. Kauffman. The origins of order: Self-organization and selection in
evolution. Oxford University Press, USA, 1993.

[16] P. Larranaga, C.M.H. Kuijpers, R.H. Murga, I. Inza, and S. Dizdarevic.
Genetic algorithms for the travelling salesman problem: A review of rep-
resentations and operators. Artificial Intelligence Review, 13(2):129–170,
1999.

[17] K. Meffert. Jgap - java genetic algorithms and genetic programming pack-
age. http://jgap.sf.net/, 2012.

[18] Z. Michalewicz. Genetic algorithms+ data structures= evolution programs.
Springer, 1998.

[19] M. Molga and C. Smutnicki. Test functions for optimization needs. Test
functions for optimization needs, 2005.

[20] F. Neri, C. Cotta, and P. Moscato. Handbook of memetic algorithms.
Springer, 2011.

[21] J Potvin. Genetic algorithms for the traveling salesman problem. Annals
of Operations Research, 63:337–370, 1996.

[22] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, third edition, 2010.

[23] N.I. Senaratna. Genetic algorithms: The crossover-mutation debate. Degree
of Bachelor of Computer Science of the University of Colombo, 2005.

[24] B. Skellett, B. Cairns, N. Geard, B. Tonkes, and J. Wiles. Maximally
rugged nk landscapes contain the highest peaks. In Proceedings of the
2005 Conference on Genetic and Evolutionary Computation, pages 579–
584. Association for Computing Machinery, 2005.

34

http://jgap.sf.net/


[25] S. Smith. Using multiple genetic operators to reduce premature convergence
in genetic assembly planning. Computers in Industry, 54(1):35–49, 2004.

[26] C. Stephens and H. Waelbroeck. Schemata evolution and building blocks.
Evolutionary computation, 7(2):109–124, 1999.

[27] D. Sudholt. Crossover speeds up building-block assembly. In Proceedings of
the fourteenth international conference on Genetic and evolutionary com-
putation conference, pages 689–702. ACM, 2012.

[28] S. Tsutsui, M. Yamamura, and T. Higuchi. Multi-parent recombination
with simplex crossover in real coded genetic algorithms. In Proceedings of
the Genetic and Evolutionary Computation Conference, volume 1, pages
657–664, 1999.

[29] E.D. Weinberger. Np completeness of kauffman’s nk model, a tuneably
rugged fitness landscape. Santa Fe Institute Technical Reports, 1996.

[30] E. W. Weisstein. Dirac’s theorem. http://mathworld.wolfram.com/
DiracsTheorem.html. Visited on 19/3/2013.

[31] D. Whitley and S.B. Rana. Representation, search and genetic algorithms.
In Proceedings of the National Conference on Artificial Intelligence, pages
497–502. John Wiley & Sons LTD, 1997.

[32] X.S. Yang. Test problems in optimization. arXiv prepint arXiv:1008.0549,
2010.

35

http://mathworld.wolfram.com/DiracsTheorem.html
http://mathworld.wolfram.com/DiracsTheorem.html

	Illinois Wesleyan University
	Digital Commons @ IWU
	Apr 20th, 11:00 AM - 12:00 PM

	Elitist Schema Overlays: A Multi-Parent Genetic Operator
	Nick Nichols
	Mark Liffiton, Faculty Advisor

	Elitist Schema Overlays: A Multi-Parent Genetic Operator

