11 research outputs found

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Optimization methods for topological design of interconnected ring networks

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1994.Includes bibliographical references (leaves 177-179).by Valery Brodsky.M.S

    Data Driven Network Design for Cloud Services Based on Historic Utilization

    Get PDF
    In recent years we have seen a shift from traditional networking in enterprises with Data Center centric architectures moving to cloud services. Companies are moving away from private networking technologies like MPLS as they migrate their application workloads to the cloud. With these migrations, network architects must struggle with how to design and build new network infrastructure to support the cloud for all their end users including office workers, remote workers, and home office workers. The main goal for network design is to maximize availability and performance and minimize cost. However, network architects and network engineers tend to over provision networks by sizing the bandwidth for worst case scenarios wasting millions of dollars per year. This thesis will analyze traditional network utilization data from twenty-five of the Fortune 500 companies in the United States and determine the most efficient bandwidth to support cloud services from providers like Amazon, Microsoft, Google, and others. The analysis of real-world data and the resulting proposed scaling factor is an original contribution from this study

    Optimised Design and Analysis of All-Optical Networks

    Get PDF
    This PhD thesis presents a suite of methods for optimising design and for analysing blocking probabilities of all-optical networks. It thus contributes methodical knowledge to the field of computer assisted planning of optical networks. A two-stage greenfield optical network design optimiser is developed, based on shortest-path algorithms and a comparatively new metaheuristic called simulated allocation. It is able to handle design of all-optical mesh networks with optical cross-connects, considers duct as well as fibre and node costs, and can also design protected networks. The method is assessed through various experiments and is shown to produce good results and to be able to scale up to networks of realistic sizes. A novel method, subpath wavelength grouping, for routing connections in a multigranular all-optical network where several wavelengths can be grouped and switched at band and fibre level is presented. The method uses an unorthodox routing strategy focusing on common subpaths rather than individual connections, and strives to minimise switch port count as well as fibre usage. It is shown to produce cheaper network designs than previous methods when fibre costs are comparatively high. A new optical network concept, the synchronous optical hierarchy, is proposed, in which wavelengths are subdivided into timeslots to match the traffic granularity. Various theoretical properties of this concept are investigated and compared in simulation studies. An integer linear programming model for optical ring network design is presented. Manually designed real world ring networks are studied and it is found that the model can lead to cheaper network design. Moreover, ring and mesh network architectures are compared using real world costs, and it is found that optical cros..

    Space station data system analysis/architecture study. Task 3: Trade studies, DR-5, volume 1

    Get PDF
    The primary objective of Task 3 is to provide additional analysis and insight necessary to support key design/programmatic decision for options quantification and selection for system definition. This includes: (1) the identification of key trade study topics; (2) the definition of a trade study procedure for each topic (issues to be resolved, key inputs, criteria/weighting, methodology); (3) conduct tradeoff and sensitivity analysis; and (4) the review/verification of results within the context of evolving system design and definition. The trade study topics addressed in this volume include space autonomy and function automation, software transportability, system network topology, communications standardization, onboard local area networking, distributed operating system, software configuration management, and the software development environment facility

    Mitigating hidden node problem in an IEEE 802.16 failure resilient multi-hop wireless backhaul

    Get PDF
    Backhaul networks are used to interconnect access points and further connect them to gateway nodes which are located in regional or metropolitan centres. Conventionally, these backhaul networks are established using metallic cables, optical fibres, microwave or satellite links. With the proliferation of wireless technologies, multi-hop wireless backhaul networks emerge as a potential cost effective and flexible solution to provide extended coverage to areas where the deployment of wired backhaul is difficult or cost-prohibitive, such as the difficult to access and sparsely populated remote areas, which have little or no existing wired infrastructure.Nevertheless, wireless backhaul networks are vulnerable to node or link failures. In order to ensure undisrupted traffic transmission even in the presence of failures, additional nodes and links are introduced to create alternative paths between each source and destination pair. Moreover, the deployment of such extra links and nodes requires careful planning to ensure that available network resources can be fully utilised, while still achieving the specified failure resilience with minimum infrastructure establishment cost.The majority of the current research efforts focus on improving the failure resilience of wired backhaul networks but little is carried out on the wireless counterparts. Most of the existing studies on improving the failure resilience of wireless backhaul networks concern energy-constrained networks such as the wireless sensor and ad hoc networks. Moreover, they tend to focus on maintaining the connectivity of the networks during failure, but neglecting the network performance. As such, it calls for a better approach to design a wireless backhaul network, which can meet the specified failure resilience requirement with minimum network cost, while achieving the specified quality of service (QoS).In this study, a failure resilient wireless backhaul topology, taking the form of a ladder network, is proposed to connect a remote community to a gateway node located in a regional or metropolitan centre. This topology is designed with the use of a minimum number of nodes. Also, it provides at least one backup path between each node pair. With the exception of a few failure scenarios, the proposed ladder network can sustain multiple simultaneous link or node failures. Furthermore, it allows traffic to traverse a minimum number of additional hops to arrive at the destination during failure conditions.WiMax wireless technology, based on the IEEE 802.16 standard, is applied to the proposed ladder network of different hop counts. This wireless technology can operate in either point-to-multipoint single-hop mode or multi-hop mesh mode. For the latter, coordinated distributed scheduling involving a three-way handshake procedure is used for resource allocation. Computer simulations are used to extensively evaluate the performance of the ladder network. It is shown that the three-way handshake suffers from severe hidden node problem, which restrains nodes from data transmission for long period of time. As a result, data packets accumulate in the buffer queue of the affected nodes and these packets will be dropped when the buffer overflows. This in turn results in the degradation of the network throughput and increase of average transmission delay.A new scheme called reverse notification (RN) is proposed to overcome the hidden node problem. With this new scheme, all the nodes will be informed of the minislots requested by their neighbours. This will prevent the nodes from making the same request and increase the chance for the nodes to obtain all their requested resources, and start transmitting data as soon as the handshake is completed. Computer simulations have verified that the use of this RN can significantly reduce the hidden terminal problem and thus increase network throughput, as well as reduce transmission delay.In addition, two new schemes, namely request-resend and dynamic minislot allocation, are proposed to further mitigate the hidden node problem as it deteriorates during failure. The request-resend scheme is proposed to solve the hidden node problem when the RN message failed to arrive in time at the destined node to prevent it from sending a conflicting request. On the other hand, the dynamic minislot allocation scheme is proposed to allocate minislots to a given node according to the amount of traffic that it is currently servicing. It is shown that these two schemes can greatly enhance the network performance under both normal and failure conditions.The performance of the ladder network can be further improved by equipping each node with two transceivers to allow them to transmit concurrently on two different frequency channels. Moreover, a two-channel two-transceiver channel assignment (TTDCA) algorithm is proposed to allocate minislots to the nodes. When operating with this algorithm, a node uses only one of its two transceivers to transmit control messages during control subframe and both transceivers to transmit data packets during data subframe. Also, the frequency channels of the nodes are pre-assigned to more effectively overcome the hidden node problem. It is shown that the use of the TTDCA algorithm, in conjunction with the request-resend and RN schemes, is able to double the maximum achievable throughput of the ladder network, when compared to the single channel case. Also, the throughput remains constant regardless of the hop counts.The TTDCA algorithm is further modified to make use of the second transceiver at each node to transmit control messages during control subframe. Such an approach is referred to as enhanced TTDCA (ETTDCA) algorithm. This algorithm is effective in reducing the duration needed to complete the three-way handshake without sacrificing network throughput. It is shown that the application of the ETTDCA algorithm in ladder networks of different hop counts has greatly reduced the transmission delay to a value which allows the proposed network to not only relay a large amount of data traffic but also delay-sensitive traffics. This suggests that the proposed ladder network is a cost effective solution, which can provide the necessary failure resilience and specified QoS, for delivering broadband multimedia services to the remote rural communities

    JTIT

    Get PDF
    kwartalni

    Safety and Reliability - Safe Societies in a Changing World

    Get PDF
    The contributions cover a wide range of methodologies and application areas for safety and reliability that contribute to safe societies in a changing world. These methodologies and applications include: - foundations of risk and reliability assessment and management - mathematical methods in reliability and safety - risk assessment - risk management - system reliability - uncertainty analysis - digitalization and big data - prognostics and system health management - occupational safety - accident and incident modeling - maintenance modeling and applications - simulation for safety and reliability analysis - dynamic risk and barrier management - organizational factors and safety culture - human factors and human reliability - resilience engineering - structural reliability - natural hazards - security - economic analysis in risk managemen
    corecore