
Optimization Methods for Topological Design of
Interconnected Ring Networks

by

Valery Brodsky

B. E. in Electrical Engineering, Stevens Institute of Technology
(1992)

Submitted to the Department of Electrical Engineering and
Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Operations Research

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1994

c) Massachusetts Institute of Technology 1994. All rights reserved.

Author........
Department of Elecirical Engineering and Computer Science

January 19, 1994

Certified by ..
Anantaram Balakrishnan

Associate Professor of Management Science
Thesis Supervisor

Accepted by
WTHDj4i&cct r,

S'ArltfuSltf f¢p.9i L

APR 06 9

LBRARIES ?f

Richard Larson
Operations Research Center

Optimization Methods for Topological Design of

Interconnected Ring Networks

by

Valery Brodsky

Submitted to the Department of Electrical Engineering and Computer Science
on January 19, 1994, in partial fulfillment of the

requirements for the degree of
Master of Science in Operations Research

Abstract
Synchronous Optical Networks are fiber-optical telecommunications networks that
provide a backbone for installation of multimedia services. This thesis presents a
hierarchical view of the SONET network design problem. We analyze the technology
and economics behind different survivable topologies for SONET networks. We cre-
ate a planning model for survivable Interconnected Ring Network [IRD] and consider
issues associated with expansion planning of the ring networks. We consider com-
putational complexity of the [IRD] problem and develop and test fast heuristics for
designing the ring network. The algorithm is tested on two types of demand struc-
tures. For a mesh hub-to-hub demand the heuristic solution is on the average within
5.30% from an optimal solution; for hub-to-central office star demand the heuristic is
on the average within 1.90% of optimality.

Thesis Supervisor: Anantaram Balakrishnan
Title: Associate Professor of Management Science

Acknowledgments

I am thankful to my advisor professor A. Balakrishnan for his support, advice and

tolerance of my English. I am grateful to Chiaolin Ming of Bellcore for her help and

care. My thanks also go to my family who were always there for me. I acknowledge

the help and support of my friends not necessarily in the order of importance: Sougata

Datta, Yaron Zilberman, Barry Kostiner, Christian Voigtlaender, Jim Shor, all the

ORC crowd, Rilke, Kafka and Nietzsche, my friends overseas, Barry Kostiner again,

for his contribution to imlementation of GAMS model, and long dark winter nights.

Contents

1 Introduction

2 Technical Background

2.1 Synchronous Optical Network Standard

2.2 Survivability.

2.3 Survey of Circuit Restoration Techniques

2.3.1 Methods of Protection

2.3.2 Self-Healing Rings.

2.3.3 Plath Rearrangement Using DCS

2.4 Economic Analysis of Network Expansion Based on Survivable

tectures.

2.4.1 Objectives of SONET Network Planning

2.4.2 Economic Performance of Network Topologies

2.4.3 Ring Architecture Selection and Interconnection

3 Problem Description and Formulation

3.1 SONET Problem Hierarchy

3.2 Interconnected Ring Network Problem Formulation

3.2.1 Model and Assumptions

3.2.2 Description of Costs and Constraints

3.3 Computational Complexity of [IR.D]

3.4 Expansion Problem for Survivable Ring Networks .

4 Initial Solution Heuristics

4

8

11

11

12

14

14

17

23

Archi-

26

26

28

32

38

........38

........42

........42

........48

........50

........52

58

Profitable Ring Selection Initial Heuristic . . .

[PR]: Profitable Ring Selection Problem . . .

Knapsack-Based Initial Solution Heuristic . .

Slack Packing Heuristic for the Initial Solution

5 Solution Improvement Heuristics

5.1 [SWAP]: Swap Heuristic

5.1.1 Motivation .

5.1.2 Swap Moves

5.1.3 Algorithm Description .

5.1.4 Computational Complexity

5.2 [I/C]: Interconnection Heuristic . . .

5.2.1 Motivation

5.2.2 Algorithm Description

6 Computational Results

6.1 Data and Test Problems.

6.2 Details of Implementation

6.2.1 A Lower Bound of the [IRD] .

6.3 Computational Results for Small-Size

6.4 Large Size Problems

6.5 Conclusion

58

58

61

67

72

. 72

. 72

. 73

. 74

.77

. 79

. 79

.80

83

83

.85

.87

Problems 88

. 96

. 100

A SONET Carrier Signal Rates 102

B A Bound on the Maximum Number of Rings in an Optimal [IRD]

Solution 103

C Solution Example 106

D C Code 113

E Bibliography 176

5

4.1 [IN1]:

4.1.1

4.1.2

4.2 [IN2]:

List of Figures

2-1 Two-Level Model of Telecommunications Network

2-2 Methods of Node Protection: Multihosting and Multihoming..

2-3 Self-Healing Ring.

2-4 Add/Drop Multiplexor

2-5 4-fiber BSHR: Short Path Span Pr

2-6 DCS: Schematic Depiction

2-7 DCS: Block Diagram

2-8 Methods of Protection

2-9 Expected Loss of Traffic vs Cost

2-10 Worst Case Survivability vs Cost

2-11 BSHR to USHR Capacity Ratio

2-12 BSHR to USHR Cost Ratio . . .

2-13 Ring Interconnection Using ADM

2-14 Ring Interconnection Using DCS

2-1]5 SONET Architecture Comparison

3-1 SONET Problem Hierarchy . . .

3-2 ADM Cost

3-3 Facility Location Problem Transfor

3-4 Network Expansion Problem . . .

3-5 Network Expansion Example . . .

4-1 [IN1] Initial Solution Heuristic

4-2 [IN2] Initial Heuristic 2

. 18

. 19

otection 22

. 23

. 24

. 29

. 30

. .30

. 33

. 34

. 35

. 35

. 37

. 41

. .45

;mation 51

. 53

. 54

. 66

. 71

6

15

16

5-1 Initial Solution: Greedy Is Not Always Optimal 73

5-2 Swap Moves 75

5-3 [SWAP]: Swap Heuristic for Local Improvement 78

5-4 [I/C]: Local Interconnection Improvement Heuristic 81

6-1 Program Structure 86

6-2 Heuristics Final Solution vs.Optimal Solution, Uniform Demand . . . 92

6-3 Heuristics Final Solution vs.Optimal Solution, Star Demand 94

6-4 Optimality Gap, 8-Node Uniform Demand 94

6-5 Optimality Gap, 2-Hub Star Demand 95

C-1 Sample Data 107

C-2 Heuristics Solution for the Sample Data 107

7

Chapter 1

Introduction

EDue to recent developments in fiber-optical communications, transmission facilities

are no longer a bottleneck of a telecommunications system. 4 Gbit/s transmission

rate has been reached using a single mode optical fiber. Such high capacity allows

incorporation of real-time applications in a single link. For example, digitization of

a standard analog video signal requires 100 Mb/s, high-definition TV would take up

to 1 Gb/s capacity, and a coded X-ray image uses from 50 to 100 Mb/s bandwidth.

Thus it is possible to transmit any kind of data and information, from local calls to

medical imaging, through a unified communication system. This concept is known as

"integrated networking". In order to take a full advantage of new services, existing

network structure needs to be updated to incorporate the fiber technology.

Local Bell Operating Companies (BOC) are gearing towards gradual conversion

of the wire and cable facilities into fiber. Current traffic pattern in the telephone

network does not necessarily make fiber a cheaper alternative to coaxial cables, but

the introduction of broadband ISDN services in the future and competition from cable

TV companies requires a backbone fiber-optical network. To understand the scale of

changes facing BOC's, consider the following developments [NYT93].

In February 1993 US West announced plans to update the telephone network with

fiber links and create a system for consumers to order movies on demand and talk

on video phones. The cost of equipment is estimated to be $500 million. The com-

pany is trying to build quickly a high-capacity network, using the available facilities

8

and installing additional coaxial cable and fiber to satisfy the increased bandwidth

requirements. US West plans to add 500,000 customers a year to the network. A

copper line will still carry the voice communications for the last hundred feet into the

customers' homes. In a separate venture, GTE will spend $ 240 million on 50 fiber

optic networks in 12 states.

We can infer that the transition to the integrated services telecommunication net-

work is capital intensive. Conversion to high-capacity networks will evolve gradually.

The B30C and long-distance companies would prefer to make use of existing equipment

and lines wherever possible. Planning will play a major role in the transition. Nu-

merous ISDN applications for the high-capacity network are still under development,

and network planning should allow fast and relatively inexpensive accommodation of

the new emerging services. The changes in telecommunications technology require

the emergence of a new standard, so that various switches and local networks can

communicate to each other.

Methods of operations research can contribute to design of a cost-effective network

expansion plan. In this work we concentrate on designing SONET networks. The ob-

jectives of this work are to present the recent developments in fiber optics technology,

uncover the areas of applications of operations research to survivable SONET design

and create a model and develop efficient solution methods for a selected problem.

The paper proceeds as follows. Chapter 2 provides a motivation of our work. It

introduces the concept of survivability and develops understanding of survivability

techniques. Chapter 3 introduces a hierarchical SONET design problem - a generic

model for strategic planning, design and operations of SONET networks. We de-

scribe in detail a Interconnected Ring Network design problem [IRD] and formulate

a mathematical model for the problem, and show that [IRD] is NP-hard. Chapter 4

considers initial solution heuristics. We introduce a Profitable Ring Selection prob-

lem [PR] and develop an initial solution heuristic based on Lagrangean Relaxation of

[PR]. Another initial solution heuristic uses an insight about the application's con-

text (telecommunications). Chapter 5 describes improvement methods for the initial

solution. Chapter 6 discusses computational results and develops a lower bound based

9

on the context of the problem. The average gap between our algorithm's performance

and a lower bound generated by GAMS optimization software is 3.46% for generated

test problems. In the conclusion we discuss possible future research.

The thesis makes the following contributions. We develop a framework for a sys-

tematic approach to SONET Network design. The approach clarifies the technological

details such that operations research methods can be applied to develop cost-effective

solutions. We consider, in detail, the design of a network using self-healing rings.

The problem emerged previously in a number of papers, for example [LAG93]. We

develop and test fast and efficient heuristic algorithms. The algorithm consists of

several subroutines for creation of initial solution and subsequent improvement. The

subroutines can be combined in a modular fashion to achieve the best result. We con-

sider models for an expansion problem. The problem, to our knowledge, has never

been considered before for the ring network. We analyze computational complexity

of the associated models.

10

Chapter 2

Technical Background

2.1 Synchronous Optical Network Standard

Synchronous Optical Network standard (SONET) was first introduced by Bell Com-

munications Research Inc. (Bellcore) in 1985 as the means to facilitate development

of optical telecommunications network. SONET was formally proposed to the inter-

national community in 1987 [BAL89]. The term"synchronous" was coined from the

SONET basic signal: Synchronous Transport Signal 1 (STS1=51.84 Mbits/s). It is

also referred to as OC1 (Optical Signal 1). All the higher rate signals are multiples

of STS1 (See Appendix A for SONET signal rates).

SONET is designed to define optical signals, a synchronous frame structure and

operations procedure for synchronous optical networks. It is clear from the related

articles, that the signal part of SONET is widely used as guidelines for routing and

optical network architecture design.

One of the major advantages of SONET is its capability to assemble signals of dif-

ferent rates in modular fashion. This allows the system to accommodate a wide range

of different services, and to provide new services without changing the existing net-

work [FLA90a]. SONET is a paradigm for the efficient development of high-capacity

communication network, geared towards current as well as future applications.

11

2.2 Survivability

Survivability of a network is defined as survival of a fixed percentage of calls (in-

fiormation) in case of a failure. A network is a subset of central (local) offices with

associated interoffice demands. A failure is any network failure such that some net-

work elements cease to function normally. An example of the failure could be a

single-link cut due to construction work, a switch malfunction, or a set of links and

switching nodes affected by a natural disaster.

The last case is different from the previous two because more than one element of

the network is affected by the failure. We refer to the failure of one element (link or

node) as a single failure. Experience suggests that multiple failures occur mainly due

to natural disasters. In case of survivability analysis it is assumed that probability of a

multiple failure is negligible comparing with probability of a single failure. From now

on we use the word failure to refer only to a single-link or single-node failure. We can

approximate every single failure as being independent of other failures. Furthermore,

we assume is that the repair time is much smaller than the interfailure time; thus,

survivability analysis concentrates on coping with one single link or node failure at a

time.

Survivability in case of failure is an issue because it takes unacceptably long period

of time from a customer's point of view to restore the failed portion of the network.

For that period the corresponding connection is lost.

A simple solution to designing survivable networks is to double all the existing

links and switches. Thus if a certain element fails, the backup switch/link can be

engaged. Such a solution incurs excessive cost. The approach can be improved using

optimization methods and more flexible network structure, but the basic idea holds:

to recover the demands in case of a failure, there should exist a backup switch or free

link capacity in the network in order to reroute the demands.

A survivable network design involves additional cost due to control software, extra

hardware, and personnel to service the system. Those costs have to be balanced by

the savings due t;o survivability in order to make the implementation of the new

12

architecture feasible.

In order for a survivable network to be cost-justified, the cost of the failure per

link/per node should be sufficiently high, and the failures should occur sufficiently

often. Let us approximate as the measure of cost-effectiveness of protection as Failure

Cost = [unit call cost] x [average number of units failed] x [number of failures per

year]. Let us assume that if the Failure Cost is greater then certain threshold, it may

be cost-efficient to install additional systems.

In terms of our model, the Failure Cost for the pre-SONET Plain Old Telephone

Service (POTS) is low, thus survivable architectures for POTS are not justified. Let

us investigate how the latest changes in technology have influenced the Failure Cost.

In some cases the increased capacity of fiber links leads to the loss of increased

number of demands in case of a failure. For some important information the cost of a

unit-call is high. Consider computerized trading. Computerized trading relies heavily

on network services to complete the transaction. Whereas the volume of the traffic

may not be high in this case, the importance of the information dictates a high cost

per unit of the lost data.

Consider the frequency of the single link failures for 1987 ([GRO87]). The avail-

ability of fiber was 96.5% a year. This amounts to 300 hours a year downtime. Time

to restore a physical link was between 6 and 12 hours in 1987. The cost of an outage

is estimated to be $75,000/min, or $1.35 bn loss of service revenues for the year.

Therefore, even discounting the node failures, single-link outages have high enough

cost to justify protection.

The exact numbers on the cost of a minute of down time could be debated, but the

conclusion is that even the down time of a 300 hours a year can cause a significant

loss of income. Most probably, the availability figures have improved for the past

few years. It is likely, however, that the cost of the outage did not decrease. Thus

extrapolating, we can estimate that savings due to survivability could be in the order

of hundreds of millions of dollars a year since the number of high capacity networks

is steadily increasing.

Our analysis, however sketchy, suggests that the Failure Cost went up due to the

13

introduction of new technology and proliferation of new networking services. In the

following sections of this chapter we cover the restoration methods and review the

literature dealing with the economic analysis of survivability.

2.3 Survey of Circuit Restoration Techniques

2.3.1 Methods of Protection

Consider a hierarchical model of a communications circuit-switching network with

customer's offices at the bottom of the hierarchy, and central offices, hubs, and gate-

ways at successively higher levels. A node's position in the hierarchy is defined by its

function, connectivity and the number of demands terminating and passing through

the node. A customer node, for example, can be a building. An example of a hub

can be a local switch, terminating all the telephone lines beginning with the same

three-digit phone number. We can characterize the customer's office as having a

small number of demands terminated and passed through. The higher level offices

are capable of handling increasing number of demands and have increasingly more

sophisticated hardware and software.

Traffic from the customer's offices to the corresponding central office is considered

to be negligible for survivability to be applied at this level (recall our discussion of

the Failure Cost from section 2.2). Thus we adopt here a two-level network model

with the central nodes (CO's) at the bottom and hubs at the top level.

The major difference between the hubs and the central offices is the amount of

traffic and connectivity. Consider the two level network model shown at Figure 2-1.

T:he office to hub network has a star topology. The hub to central office demands are

typically in the order of DS1 units, and do not have to use fiber optic links because

the link would be underutilized. Signals lower than DS3 are sometimes referred to as

Virtual Tributary signals (VT) since those signals have to be multiplexed at the

hub level to the capacity of DS3/STS1, which is a basic carrier in SONET fiber-optic

networks. All the hubs must be interconnected via high capacity links. Gateways

14

)ual Homing

o - CO

o(- HUB

Figure 2-1: Two-Level Model of Telecommunications Network

(not shown on Figure 2-1) are treated as hubs that are not directly connected to any

central office. The interhub demands are of DS3 order. The hubs are interconnected

via fiber.

The hub-to-hub network is referred to as the transport network; the CO to hub

connections form the access network. It is crucial that the hub receives all the cor-

responding VT signals in order to multiplex it into DS3 units, because the hub only

monitors the switches at DS3 level failures and will not detect absence of one or more

VT signals from the bundle. Thus we have two levels of signal protection: Virtual

Tributary signal protection of the access network and DS3 protection of the transport

network. Both protections are deployed at the physical level, to protect links (link

protection) or nodes (node protection).

The third level of protection is logical protection: to identify and correct problems

before they affect the service (see [FLA9Oa]). This includes maintenance and control.

We restrict our discussion here to the physical link and node protection.

Even though two levels of network need to be protected separately, the methods

of protection and demand restoration are the same.

Link protection deals with various path rerouting techniques. Two major ap-

proaches are used to incorporate link protection.

15

UTT 1
1IuD-J

C02

C03

dual hosting
C01

dual homing

Figure 2-2: Methods of Node Protection: Multihosting and Multihoming.

1) Design a network with built-in protection capacity for each path and switch

the traffic in case of failure. Examples of this approach are self-healing rings and 1:1

path protection. 1:1 protection provides backup path for every existing routing path

in the network. For each demand pair 1 : 1 protection uses a separate pair of fibers,

so that the number of links for a network with k demands is .k(Similarly, 1:N

protection provides one backup for N routes (see [WU88], [FLA9Ob]).

2) Do not reserve capacity for every circuit in case of a failure, but use intelligent

switching elements, such as digital crossconnects, to find free capacity and switch the

circuits on available links. This is called path rearrangement. This second approach

is characterized by more efficient use of bandwidth, since different calls can use the

same protection capacity (bandwidth reuse). Path rearrangement can be viewed as an

improvement of 1:1 and 1:N strategies. This method does not require as much spare

capacity as 1:1, and it provides higher than 1:N degree of survivability for protected

circuits; but it also requires more expensive switching equipment (for references see

[WU88], [FLA9Ob], [WU93]).

Figure 2-2 presents the methods of node protection. This particular figure reflects

the access network node protection, but the method is general and can be applied to

hubs. To protect a node, it can be either multihosted, or multihomed, or both. In

case of multihosting a central office C01 is connected to the hub through two other

central offices C02 and C03 via different paths. If C02 fails, the demands of C01

that are connected to the hub via C03, survive. The calls from CO1 passing through

16

I

C02 are not restorable because of the technology. Dual homing is implemented by

connecting a central office to two different hubs. If one of the hubs fails, all the

demands are rerouted through another hub.

Note that the above methods of protection are technology independent and can

be deployed for both wire and fiber links.

In the next section we describe network protection methods using rings.

2.3.2 Self-Healing Rings

Ring architecture is defined in the SONET standard. Understanding how a ring works

is important for understanding the problems encountered by SONET planners. For

more references on the rings see [DRA93].

A ring, as implied by the term, is an architecture that connects all the nodes via a

closed loop. Protection of the ring demands is based on the principle of self-healing.

Since the underlying topology of the ring is a loop, for every pair nodes on the ring the

ring contains exactly two edge-disjoint paths connecting those two nodes. If one of the

links fail, another path on the ring exists such that the two nodes are still connected.

This is termed as self-healing principle. Note that self-healing is not identical to 1:1

protection (see section 2.2). The equipment required for 1:1 protection is different

from the ring hardware. For a self-healing rings with n nodes, n links are required

independently of the number of the demand pairs. Protection switching in case of

1: 1 method occurs using switches, similarly to rerouting of an ordinary call. The

rings use novel devices called Add/Drop Multiplexors (ADM) to achieve self-healing.

These devices perform automatic switching in case of a service deterioration.

There are two different types of ring configurations: Unidirectional Self-Healing

Rings (USHR) and Bidirectional Self-Healing Rings (BSHR).

Consider the schematic depiction of a ring shown in Figure 2-3. Suppose the ring

is USHR.

The ring connects nodes A,B,C and D. The nodes are connected by two (geo-

graphically diverse) fibers. For each fiber, all the traffic is unidirectional: for instance

the traffic on the inner fiber is counterclockwise, and the traffic on the outer ring is

17

secondary ring

primal ring

Figure 2-3: Self-Healing Ring

clockwise. Each direction is, confusingly, referred to as a ring. With all the links

operational, the transmitter transmits on both rings, and all the receivers listen on

the outer ring, called a primal ring.

Consider the traffic between the nodes A and C. The transmitter at A (TA)

transmits towards D on the inner fiber and towards B on the outer fiber. TC transmits

to B on the inner fiber and to D on the outer one. All the receivers are connected

initially to the outer ring. RA receives all the messages from B, and RC receives

from the direction of D. If any of the inner links fails, the service is not interrupted,

the logical layer of the network detects the failure, and the failed link is restored

immediately without any customer noticing the event. Suppose that the outer link

(AB) has failed. RA will detect the deterioration of service and the ADM at node

A will switch immediately to the inner ring. Thus, the service is restored in a very

short time, crews will then be dispatched to repair the failed link. SHR architecture

provides 100% survivability against single-link failures.

It is clear, that if a node fails, all the demands terminated at node are not recov-

erable. The self-healing mechanism in case of the node failure is similar to switching

in case of a link failure. When a receiver detects a deterioration of the service it

switches to another ring. Since for every demand pair there are two node disjoint

paths, and since the node transmits in the both directions, all the demands that are

18

WORKING ADM AT OFFICE A (one channel shown)

oci ;12

E/O C Electrical-to-Optical Converter
OR Optical Receiver
OT Optical Transmitter
O/E C Optical-to-Electrical Converter
ab, etc. A to B transmission

Wu -- High-Speed Self-Healing Ring Architecture [WU89]

Figure 2-4: Add/Drop Multiplexor

not terminated at the failed node will survive.

Quick and reliable ring switching is made possible by special hardware called

Add/Drop Multiplexor (ADM), installed at the nodes and terminating fibers for

transmit and receive. Under normal conditions, each ADM contains two transmit-

ters broadcasting into the primal and secondary rings and in case of a failure, the

multiplexor switches to the alternate ring. An add/drop part of ADM is depicted at

Figure 2-4.

Consider the ring shown in Figure 2-3. Suppose the demand pattern is as follows:

demand d is planned between the nodes A and B, and d2 is planned between B

and C. Then USHR routing scheme allocates capacity d on the links (AD), (DC)

and (CB) for B to communicate to A, and capacity d on the link (BA) for A to

communicate to B. Capacity d2 is allocated on (BC) for B to communicate to C and

on the links (CD), (DA) and (AB) for C to transmit to B. Thus each link of the ring

is crossed by all the demands, because each node receives and transmits in opposite

directions. Every link must have sufficient capacity for all the calls.

Since a node on the USHR ring transmits in both directions, every call on the ring

19

crosses all the links. The link capacity is used inefficiently. If all the calls are routed

such that the number of calls crossing each link is minimized ("the shortest" path),

the link capacities are utilized more efficiently. Four-fiber bidirectional line-switched

ring (BSHR) permits more efficient utilization of capacity.

The idea is to allow bidirectional routing on the primary and secondary rings.

Consider again the Figure 2-3. Let each ring contain two fibers. For BSHR, all the

traffic will be routed on the "shortest" path for each demand. For our example, the

traffic will be routed only on the links (AB) and (BC). The bandwidth allocated for

calls is dl of each fiber on the link AB, and d2 on the link BC. Consider the routing

table below. As compared to the USHR ring, BSHR ring contains spare capacity on

the links (CD) and (DA). This capacity can be used to install additional services.

Consider the operation of a 4-fiber BSHR. During the normal operation, there are

two working fibers and two protection fibers. When a failure occurs, there exist two

ways of traffic protection: short path span protection and long path ring protection.

In the short path span protection, if one fiber of a link fails, two nodes adjacent to the

failed link communicate and reroute the traffic on the protection fiber (see Figure 2-5

). Long path ring protection occurs when both fibers of the span fail (catastrophic

cable cut). The protection fiber along the alternative (long) path is used to replace

the failed short span. This method utilizes the same approach as USHR switching,

transfer the communication off the failed ring. The nodes adjacent to the failures

control the ring switch.

A cheaper alternative to 4-fiber BSHR is 2-fiber BSHR. Each ring of the 2-BSHR

consists of one fiber, similar to USHR, but the available bandwidth of each fiber is di-

vided in two (one half for the working channel, another half for protection of another

fiber). Thus, a logical "4-channel" is created. The operation of this ring is similar to

4-fiber BSHR, except that the short path protection is not available. 2-fiber BSHR

uses less hardware than the corresponding 4-fiber ring, but the usable bandwidth is

also decreased.

20

Table 2-1 Routing for the Example

Span USHR BSHR

AB 2(dl + d2) 2(dl)

BC 2(d + d2) 2(d2)

CD 2(dl + d2)

DA 2(dl + d2)

Assume now that the bandwidth of all the links is C = dl + d2 (i. e. the capacity

is numerically equal to sum of the demands d and d2). Suppose we want to install

a new service between the nodes A and B, requiring d2 units. Since every link of the

USHR ring has traffic dl + d2, its capacity limit is reached and no new services can

be installed on the ring using its current configuration. When no new services can be

installed on a ring we say that ring exhaust has occurred.

Consider the BSHR ring. Link (AB) has d2 units of unused bandwidth. Thus,

additional traffic can be routed on the BSHR in its current configuration. Both cases

show that using BSHR protection increases the ring's traffic-carrying capacity. In

general, finding the "shortest" path routing on BSHR is a difficult problem, (refer to

[SHU93] and [COS93]). Since BSHR uses twice more fiber than USHR and requires

more equipment, BSHR rings are more expensive. Thus the tradeoff for the achieved

efficiency is higher cost.

Each type of ring has its own advantages and disadvantages. The switching time

on all of the rings is 50-100 milliseconds, with USHR being the fastest. This is an

acceptable speed. The threshold in service restoration is 2 seconds, according to

[WU93], because most existing circuit switching services will not see adverse impacts

of an outage if the outage time is less then 2 seconds.

USHR is the cheapest, with 2-fiber BSHR being the next cheapest, and 4-BSHR

being the most expensive. 4-BSHR presents the most flexibility in terms of using

available capacity, with 2-BSHR being intermediate, and USHR having the least

efficient utilization of bandwidth.

Due to its low cost, USHR seems to be the ring of choice for the telecom-

munication carriers in the short to medium-term future. Currently, there exist

21

failed

2: B->A bridgeaswitched
after 1 :A->B

4:B->A

Figure 2-5: 4-fiber BSHR: Short Path Span Protection

45Mbit/s, 135Mbit/s, 405Mbit/s, 565Mbit/s, 1.2Gbit/s, and 2.2Gbit/s Self-Healing

Rings (SHR); 2.5 Gb/s has been achieved. Potential threshold for USHR is 10 Gb/s.

This is enough capacity for the existing applications. In the near future, traffic car-

rying capability may become more important and 4-fiber BSHR will play a more

significant role in the network. 2-fiber BSI-IR should be designed in a such a way

that it may be easily upgraded to a 4-fiber BSHR. Thus 2-BSHR could be used as an

intermediate step on the way to building a 4-fiber BSHR.

The major problem with all the ring configurations is ring exhaust (defined in the

beginning of this section). Ring capacity is limited by the fiber capacity and ADM

processing capability. Once the capacity is exhausted, another ring must be added,

or new ADM's will have to be installed. Ring exhaust becomes a problem when the

ring has many nodes. For downtown inter-hub rings ring exhaust becomes an issue

even with as few as 5 nodes on the ring [FLA90b]. Building a new ring may be more

expensive than just adding a new path between the nodes to provide an alternate

restoration path. To deal with exhaust, wave division multiplexing was suggested

(see for example [CHL90]). This technology will have to overcome the limitations of

optical signal processing.

22

I

DCS 3/1

DS3A DSl a, DS1 c /0 CM vo DS3A = DSl a, DS b

DS3B = DS1b, DS1d DS3B = DS1 c, DS1 d

AM

Figure 2-6: DCS: Schematic Depiction

2.3.3 Path Rearrangement Using DCS

I)igital Crossconnect Systems were introduced commercially in 1981 to allow dynamic

customer controlled reconfiguration of the customer's system. DCS is a computer that

can multiplex, demultiplex and switch signals. A schematic diagram of DCS is shown

i:n Figure 2-6. We will consider the operation of DCS on the example of DCS 3/1.

The acronym stands for the fact that the Digital Crossconnect System has its input

and output signals at DS3 level, and the crossconnection takes place at DS1 rate (see

Appendix A for SC)NET signal rates).

In our example, we have two DS3 channels - DS3A and DS3B. The inputs are

demultiplexed by the Input/Output Module (I/O) into DSla, DSlb, DSlc, DSld

signals. The DS1 signals are switched by a Crossconnect Matrix (CM), controlled

by an Administration Module (AM). Any switching configuration can be obtained

by altering the information of AM. The DSla and DSlb signals are switched to

the output A, and the DSlc and DSld signals are switched to B. The I/O module

multiplexes the signal at DS3 rates. For a block-diagram of DCS see Figure 2-7.

In case of a link failure, the Digital Crossconnect System at the nodes initiates a

search for a new path. Survivable network design using DCS has to assure that in

case of a failure, there is enough spare capacity in the system to reroute the traffic off

the failed link. For a mesh architecture, the time to restore service is as long as 5-15

minutes using today's centralized control of DCS's at the nodes. This restoration

time is unsatisfactory for real-time applications. The time may be reduced using

distributed control approach [WU93], and new generation Broadband DCS (B-DCS)

23

ADMINISTRATION MODULE
CPU, Memory, OS Interface

Controls the system
All restoration programs
Configuration map .

J

I/O
Interface

Terminates

the line

Crossconnect Module

Switching Matrix Controller

[present crossconnect confi

guration]

Crossconnect Switching Matrix

[responsible for actual data

transport]

I

DCS 3/1

DS3A = DSla, DSlc I/o CM /0 DS3A = DS a, DSlb

DS3B = DS1b, DS1d DS3B = DS1 c, DS1 d

Figure 2- BlockAM gram

Figure 2-7: DCS: Block Diagram

24

I T~~~~~~~~~~~~~~

i
-f

I

I

-- 4

J

devices designed specifically for dynamic path-rearrangement.

Distributed DCS restoration algorithm, shown in [WU93], is an example of a path

rearrangement scheme.

Each DCS stores information that includes working and spare capacity associated

with every link terminated at the system. When a failure is detected, one of the two

ends of the affected path (Sender) broadcasts restoration messages to the adjacent

nodes. The intermediate nodes (tandem nodes) update and rebroadcast restoration

messages, until they reach the other end of the path (Chooser). When the message

is received by the Chooser, it means that all the paths necessary for rerouting have

been established. The Chooser sends an ACK message back to the Sender. After

receiving the ACK signal, the Sender transmits a CONFIRM back to the Chooser via

new routes. At this stage, all the tandem DCS's reconfigure their switch matrices.

This procedure is repeated for each commodity crossing the failed link.

In the Bellcore study on restoration speed of DCS mesh networks (see [WU93])

Broadband SONET DCS were used to perform path restoration. The authors re-

ported simulation results for a network with 15 nodes, hop count of 9 for every path,

and 100% survivability for every link. The network was designed for 1682 working

DS1 channels and 938 spare ones. The results show that even for the fast distributed

algorithm, the restoration time is between 3.1 and 18.2 seconds, which exceeds the

'2-second maximum permissible restoration time requirements.

Restoration time could be divided into two categories: time for computing a new

map within AM, and the new map transfer (the physical path rearrangement). The

simulation shows that it takes approximately 115 ms to reroute one DS1 demand,

with 100 ms going towards the map transfer procedure (see the algorithm above). To

decrease the cross-connect time, a parallel DCS is proposed. The study concludes that

DCS self-healing schemes may not meet the 2-second restoration objective. It may be

more effective to use DCS restoration together with other survivability methods in a

so-called hybrid restoration approach. The authors propose that the rings be used for

applications requiring fast restoration, and other applications be protected through

DCS, thus overcoming ring exhaust and assuring fast restoration time for real-time

25

applications.

In this section two approaches to survivability were considered: self-healing rings

and path rearrangement using Digital Crossconnect Systems. Both schemes, although

technically feasible, have their drawbacks: rings are prone to ring exhaust when

demand increases, and DCS's have unsatisfactory restoration time. We now assess

the economic feasibility of restoration technologies in order to find which technology

has lower cost.

2.4 Economic Analysis of Network Expansion Based

on Survivable Architectures

2.4.1 Objectives of SONET Network Planning

In this section we consider SONET-based deployment of survivable architectures.

The deployment process could be divided into three stages. At the initial stage,

single SONET spans are deployed. During the intermediate stage, the fiber spans

are connected into structures to maximize the economic and operational benefits

of SONET. The final stage involves the evolution to all-SONET communications

network. The initial and intermediate stages can be combined. In other words,

fiom the very beginning, Plain Old Telephone Service (POTS) must be designed

to be updated by coherent SONET structures, such as rings, rather than single fiber

spans. Hence, from the planning point of view, the transformation to SONET network

consists of two phases: installation of the appropriate SONET links and hardware,

retaining the use of the existing cable links where possible, and, as the amount of

services and customers increases, conversion to all-SONET network.

During the planning process, the planner is must consider the following factors:

1. The capital cost of deployment;

2. Impact of the new topology on the operations of the network, including main-

tenance and new services introduction;

26

3. Upgradability;

4. Survivability; and

5. Restoration time.

The cost of building a network is a major factor to consider in the decision process.

Operations cost i.e. the ongoing cost of operating and maintaining the network,

on the other hand, is found to be a secondary factor in selecting among survivable

architectures [MAR93]. Marzec et al. provide two main reasons: SONET network

is fiber-based, hence failures are less frequent (of course, the cost of each failure is

higher). The most labor-intensive level, the DS1 level, requires far less maintenance

events in SONET than in POTS.

Upgradability is defined as the network's ability to absorb new services and

nodes at a minimum cost. Upgradability is very important for SONET networks.

Many SONET applications are still under development. Upgradability varies de-

pending on the architecture. For example, DCS networks can be upgraded with less

cost than ring networks, since the rings cannot be flexibly expanded if the capacity

has reached the limit. In the DCS case free capacity is allocated more efficiently, and

if a new service is added, free capacity may already exist in the network, or protection

for some less important applications may be dropped.

Survivability becomes an issue with the concentration of demands into a span.

Survivability requires the protection of all the vital applications. The cost of surviv-

ability is reflected in terms of additional systems needed to protect the demands.

Restoration time calls for the shortest possible time of service interruption in

case of a failure of an element. Depending on the application, tolerable restoration

time could be from milliseconds, as for real-time applications, to seconds in case of

data transfer.

The objective of SONET planning is to minimize the cost of expanding the net-

work, while meeting the survivability, upgradability, and restoration time specifica-

tions.

27

2.4.2 Economic Performance of Network Topologies

This section analyzes the costs and performance of survivable topologies. The usual

approach in the literature (see [MAR93], [WU88] and [FLA9Ob]) is as follows. For a

given set of nodes and a list of demands, a network of certain topology is generated.

Performance measures, such as cost, cost-to-survivability ratio and others are used to

compare performance of different topologies for given test data. The researchers base

their conclusions on the sample problems .

By examining a number of independent studies and comparing the results we can

make some conclusions regarding the performance of the different architectures under

consideration.

In the study by [MAR93] 15-node interoffice network was modeled. A research

software program, Strategic Solutions, was used to generate a near-minimum cost

network. The authors analyzed the following architectures (see Figure 2-8).

1:1 - every path is protected one-for-one, no diverse routing (two links occupy

the same conduit).

1.:1/DR - one-for-one protection with diverse routing.

UJSHR/SH - unidirectional self-healing ring with single homing.

USHR/DH - dual-homed ring; if one hub fails, the ring is not cut off and can

communicate through another hub.

EBSHR4/SH - four-fiber bidirectional self-healing ring with single homing.

BSHR4/DH ---

DCS-mesh - DCS-based path rearrangement.

D)CS/USHR/SH - a USHR single-homed architecture with DCS instead of ADM

at the hub nodes.

DCS/BSHR4/DH -
The 2-fiber BSHR architecture is omitted, since it occupies the intermediate po-

sition between USHR and 4-BSHR.

We plotted the results of the experiments with scatter plots Figure 2-9 and 2-10.

Two measures of performance are Expected Loss of Traffic (ELT) and Worst Case

Survivability (WCS).

28

1

1:1 DR

USHR / SH

BSHR4 / DH

DCS / mesh

DCS / USHR / SH

HA-RDWARE TYPE: O - Regular Switch
- ADM

0 - DCS

DCS / BSHR4 / DH

Figure 2-8: Methods of Protection

29

/ D

Expected Loss of Traffic vs Cost

USHR/SH

DCS/LSHR
/SH

DCS mesh

Cheaper
and more reliable

3.5 4

1:1/DR

BSHR /SH
I

III

Cost, mln$

Figure 2-9: Expected Loss of Traffic vs Cost

Worst Case Survivability vs Cost

Cheaper
-and more demands
survive

, DCS mesh
DCS/BSHR/

nu

USHR/DH ' BSHR/DH

BSHR/ SH

1:1 /DR

3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5

Cost, mln$

Figure 2-10: Worst Case Survivability vs Cost

30

400

350

300

150

100

50

0

II

IV

3

USHR/DH
BSHR/DH

DCS/BSHR
/DH

4.5 5.5

0eC3
ig

3.

- _- .

.. m I I , I

a

Expected Loss of Traffic is the total amount of traffic that a network is expected

to lose per year on the average due to failures. In this case a failure includes a

breakdown of more than two links simultaneously. The ELT chart is divided into

four quartiles. Quartile I is the cheapest and the most reliable. Quartile II is cheap,

but less reliable. Quartile III is less reliable and more expensive, and quartile IV

is reliable, but more expensive. DCS mesh architecture has the least cost and the

least expected loss of traffic. Single-homed rings, while also inexpensive, may lose

more traffic than the DCS architecture. The ELT figure for rings can be improved

using dual homing, but the cost of the architecture goes up. USHR rings are cheaper

than 4-fiber BSHR rings. An interesting observation is that placing DCS's in the

hub nodes reduces the cost of the dual-homed ring architecture. This fact seems

to be counter-intuitive since DCS are more expensive than ADMs. We discuss this

phenomena in Section 2.4.3. Clearly, conventional 1:1 architecture would not be the

architecture of choice for a network planner.

Worst Case Survivability is the percentage of circuits surviving the worst

possible single-link or single-node failure. The WCS plot is depicted on Figure 2-

10. Notice that there is an upper bound to the WCS figure, meaning that for any

architecture and demand pattern WCS < 100%. One of the "natural" upper bounds

on WCS could be the maximum number of demands terminated at a single node.

When this node is out of service, all the corresponding calls will be lost no matter

how good the protection is.

As in the previous case, we divide the chart into four quartiles. Quartile I rep-

resents the most cost-efficient architecture with the highest proportion of demands

surviving in case of a single failure. The second quartile has inexpensive architec-

tures, but more demands are lost in case of the failure. The third quartile has more

expensive architecture and poor WCS performance (these configurations are clearly

not desirable). The fourth quartile has more expensive architectures, but good WCS

performance. Here again the DCS mesh architecture is a clear winner. The inexpen-

sive single homed rings do not guarantee the survival of more than 30% of demands in

case of the failure. Dual homing improves the rings WCS performance considerably,

31

while increasing the cost. Traditional 1: 1 architecture, again, does not perform well.

An important conclusion is that the SONET architectures can enhance surviv-

ability cost-effectively. Protecting against single-link failures provides the greatest

improvement in ELT. As a result of the study, the DCS mesh architecture emerges

as the most attractive option both for its low cost and good performance. The dual-

homed ring architectures deliver adequate performance, but at a cost higher than the

DCS. The link protection brings the most improvement to survivability. The node

protection decreases the loss further, but it is secondary in the order of magnitude

compared with the link protection. The latest developments show that the ring archi-

l;ecture is currently used more widely then the DCS path rearrangement in a SONET

network. The main reason is the slow restoration time of the current DCS schemes

as mentioned in Section 2.3.3. Digital Crossconnect Systems are used chiefly at the

hub nodes.

2.4.3 Ring Architecture Selection and Interconnection

As discussed in the previous section, the ring architecture is currently the most effec-

tive SONET topology. While designing a ring interconnected topology two questions

arise: how we select a suitable ring technology, and how are the separate rings inter-

connected.

We have previously described three most common types of ring architectures. We

must choose between the lower cost USHR rings and more capacity efficient 4-BSHR

ring (or , possibly, 2-BSHR upgradable ring).

The type of ring architecture that is most appropriate for a particular context

depends on the demand pattern. Consider two possible expansion situations. A hub

and some or all of the central offices from the cluster are assigned to the same ring.

This kind of a ring is called an access ring since the central offices access the network

via the hub. The routing of the new ring has a centralized pattern, with most of the

traffic routed towards or from the hub. Suppose now that the nodes that grouped

on the ring are different hubs. The demand in this case will be distributed almost

uniformly between every pair of nodes.

32

Capacity Ratio: BSHR to USHR

U0.

0.7

0.6

,H 0.5
4J

0.4

0.2

0.1

0

Centralized

- -- Mesh

3 4 5 6 7 8 9 10

of nodes

Figure 2-11: BSHR to USHR Capacity Ratio

A study was undertaken by [WU90] to identify the most efficient ring technologies

for the above demand patterns. The number of nodes was varied from three to ten.

The capacities and the costs of the architectures were measured, and the ratios were

calculated.

The results suggest that for the centralized demand pattern, USHR architecture

is cheaper than BSHR, even though the latter uses the bandwidth more efficiently.

The study for the mesh demand shows that for the number of nodes greater or equal

than five, BSHR topology is preferable. We present the results on Figures 2-11 and

2-12.

The data imply that the ring architecture depends on the nature of the demand

pattern between the nodes grouped on a ring, and the network size.

For the centralized demand pattern, the USHR ring preferable. Because most of

the demands are terminated at the same node (hub) the possibility of reusing the

same bandwidth by different demand pairs is reduced, and so the advantage of BSHR

rings over USHR rings in bandwidth reuse in reduced. Since BSHR is known to use

roughly twice more equipment than similar USHR, the fact that the bandwidth can

33

n n

Cost Ratio: BSHR to USHR

'i\ ~~~i2 sk a - - K /~~~~

[* " rCentralized

--- Mesh

3 4 5 6 7 8 9 10

of nodes

Figure 2-12: BSHR to USHR Cost Ratio

not be efficiently reused leads to the conclusion that the cost of BSHR will be at least

as high as the cost of USHR in case of the centralized pattern.

For the mesh demand, there is a possibility to direct all the traffic on the short

path between the nodes. Since cutting a link (a node) will probably not redirect all

the traffic along the long path, the resulting capacity requirements for BSHR is lower

than the equivalent, capacity of USHR, therefore reducing the necessary capacity and

thus the cost.

Consider the second issue of interconnecting the rings after choosing an appropri-

ate technology. Because the ring has finite capacity, networks contain many rings.

Those rings can be interconnected through single or dual homing. As noted previ-

ously, dual homing is the more attractive alternative because of the improved worst

case performance of the network. Figure 2-13 depicts a typical ring interconnection

using ADM's with dual homing. Because the ADM has limited switching capabilities,

each ring requires an ADM at the hub node. As the number of rings in the inter-

connection grows, the complexity and cost of the system increases without additional

benefits: since there is no flexibility in grooming the demands, the STS channels cor-

34

1.8

1.6

1.4

4 1.2

0.8
O

0.6

0.4

0.2

0

RING

Figure 2-13: Ring Interconnection Using ADM

From [WIL93]

Figure 2-14: Ring Interconnection Using DCS

35

responding to connections of the ADM's are not utilized more efficiently. Figure 2-14

shows a better approach to ring interconnection. DCS's are used instead of ADM's

at the hub. This method is especially useful when a number of access rings are in-

terconnected with a transport ring at the same hub nodes. Because the total traffic

of the access rings is usually smaller than the transport capacity, a limited number

of DCS is enough to interconnect the traffic. The utilization of such a system will

be very high and thus it is more cost effective than using a large number of ADM's.

Note that the DCS systems in this configuration are used for grooming only, and not

for switching, therefore, inadequate DCS switching time is not an issue.

Summary of Ring and DCS Mesh Architectures

Rings and DCS mesh are two complimentary architectures. The main advantage of

the ring is its fast restoration time. Upgradability is a problem because of the ring

exhaust and therefore in the high traffic areas such rings can accommodate limited

number of nodes. When we must add a new node, a new ring has to be created

and interconnected with the old one. Therefore, the areas with high demand such as

downtowns of big cities favor the DCS mesh architecture. DCS's are easily upgradable

to accommodate new nodes. At downtown areas DCS utilization will be high. The

main problem with DCS architecture is slow restoration time.

Figure 2-15 summarizes the advantages and shortcomings of two architectures.

36

Figure 2-15: SONET Architecture Comparison

37

Path Rearrangement Interconnected Rings

I I

Total Cost COMPARABLE for the nodes with DS3-size traffic
More expensive I Less expensive

for lower density traffic

Hardware B-DCS ADM
Hardware cost more expensive cheaper

Survivability flexible, up to 100% 100%

Restoration currently 5-15 min. ; 50 - 100 ms.
time distributed algorithm

simulation: up to 20s.

Bandwidth use efficient USHR - not efficient;
BSHR - better, but
less efficient than DCS

Upgradability easy hard: ring exhaust

Chapter 3

Problem Description and

Formulation

3.1 SONET Problem Hierarchy

Telecommunications networks require large investment. As [NYT93] shows, the scale

of investment is in the range of hundreds of millions of dollars. It is important

that decisions made by a network planner at every stage from design to operations

support are cost-effective. Even as little as 1% in savings may justify significant

work to optimize the network topology. Since the generic SONET network problem

is complex, it is important to present a structured view of the issues.

In this section we develop a hierarchical view of the SONET network planning

problem. Consider the planning hierarchy shown in Figure 3-1. The generic prob-

lem is divided into topology, routing, and operations support. Integrating all three

subproblems creates an effective network expansion and management plan.

Consider the topology selection problem. For a given demand matrix and hard-

ware costs, select a minimum cost survivable topology. Usually topology selection and

link capacities allocation are determined at the same time. Survivable architectures

currently under consideration are the network of rings and interconnected DCS's. If

the ring architecture is selected, the composition of the separate rings must be deter-

mined. For each group of nodes, we must select an appropriate ring architecture, and

38

designate hub nodes. If we find the DCS architecture more preferable, the hardware

for each node must be chosen, and the nodes have to be interconnected via fiber and

existing coaxial cables in an efficient way.

Routing problems are considered for a given topology. Initial routing considers

the routing of the calls to assure survivability requirements in the case of DCS, and

,efficient bandwidth use for the rings. Real-time rerouting involves the rerouting of

demands in case of a link (node) failure. Routing is traditionally an engineering,

rather than operations research problem. Routing approaches use such well known

methods as the "hot-potato" method, or some more sophisticated techniques, such

as dynamic bandwidth allocation. The problem of optimal routing is important. For

instance, for BSHR rings the ring capacity depends on the routing, i. e. the capacity

can be minimized by selecting appropriate routing schemes.

Real-time rerouting algorithms can be considered as an operations support

activity. Generally an issue is an operations problem if the demands, the network

structure, capacity allocation and initial routing are given. Another example of an

operations issue is critical link analysis. For a given routing pattern, it is important

to know which group of links leads to irretrievable loss of traffic. The critical link

problem can be thought of as the network sensitivity analysis.

Consider the problem of network expansion planning. For a given topology,

we consider the following problem: can we increase certain demands of the network

without adding any additional capacity? Can we add new nodes to the network

without building new rings (DCS paths)? If we have to build new ring , what is the

most cost-effective network expansion? Models created for topology design can be

used to answer some of the questions. For example, [DAL92] uses topology design

model to perform the sensitivity analysis.

As our discussion suggests, all the subproblems are complementary and compati-

ble. In Figure 3-1, the vertical direction indicates compatibility of subproblems, and

horizontal layers suggest complementarity. Consider, for example, the design prob-

lems associated with ring architectures. Any subproblem, or a set of subproblems,

can be solved separately. The lower the subproblem is in the hierarchy, the easier

39

it is to solve it to optimality. But local optimum obtained in such a way could be

significantly off the optimal solution within the context of the overall SONET design

problem. Therefore, the dilemma is that solving the Survivable SONET Network

problem with one mathematical model is computationally intensive, whereas solving

special subproblems, though locally optimal, may not produce a good solution for the

network as a whole.

A lot of interesting work has been done in the areas of the SONET network

design. [WU91] considers the topological design problem and attempts to select

the best mix of SONET survivable architectures - both the rings and point-to-point

connections/DCS. The objective is to produce a sound SONET network expansion

strategy. A rule is formulated first with respect to the selection of nodes to be point-

to-point connected. After an architecture is selected for all the given demand pairs,

heuristics are applied to build the topology.

In [MON88] and [GRT92], the authors develop a cutting plane approach to design

a communications network such that for every pair of nodes there exists a given num-

ber of link-disjoint or node-disjoint paths. The method can be applied to designing

survivable networks using crossconnect systems.

[DAL92] develops a model for a survivable network design using DCS systems.

The authors implement the model using the MULTISUN software. Valid inequalities

for the problem are considered and the cutting plane approach applied. Dahl and

Stor also apply the MULTISUN model to solve operational problems such as a flow

feasibility problem.

Results of the above articles are implemented as software systems. We do not

have at this time any information on actual application of the programs to design a

real-life SONET communications network.

[MAG91] develops a model for survivable network design using rings. He suggests

a methods of solution based on decomposition. Magee also considers optimal BSHR

routing and develops valid inequalities for the number of ADM's used. [COS93]

formulates the BSHR optimal capacity allocation problem as a mathematical model

and uses a dual ascent approach to route the demands efficiently on a BSHR ring.

40

U)

0

kM

0
Ott)

a)o b
E C

- H1 -1

I 0'ao
a)

> a

4 (1

,a-4 >1

(n <

0)
U)
(-i

5:1
.r -C
4)

0

c -H

rt~
-, 0
0: O

o~

oH0
04
0

J

C/)

U
nC)

a

.C,4dh

4-)

H

U)

0)

,4
p:

(n

C.
C

V>1

-.s
V41,

.1

oCan
I0Cow

A U

OH

C '^i

'a umr
a)
Q (

IO .,¢ U

V -
_- :d r

-H

0)Cdr-l
dU)r-(O

r-I
f:1

a
0

-
i4

c Oo C)

9 C:
O C
a) 0
a) O

n a)4)

a) C
41 H
11 I

-d C)
l a)

O 0z

C
) 0

ID C .1
C) -H J.)
03 04
J C 0 a)
U 0 O C
a) -H 1 C

0 00
-H U U
C C Ca C a C)
C9- a) 0d a)
oa) -0 C 4

< M 0 *H C
.

Z (

Figure 3-1: SONET Problem Hierarchy

41

>1

UE)R

S.'0

3:
(d

H$4

O'4
C
r-
A0
E1

R0

X

W

[SHU93] discusses some properties of a feasible routing for a BSHR ring. Shulman

shows that a feasible flow exists in the ring if and only if the sum of the demands

across every cut is less or equal than the capacity of the cut. He uses this result

to develop heuristics for optimal routing problem. [LAG93] considers a problem of

designing a USHR ring interconnected network. The author relaxes integrality of the

flow variables, formulates a mixed integer optimization problem, and uses tabu search

to generate a good solution.

In the next section we consider one of the SONET topology design problems - the

Interconnected Ring Network problem.

3.2 Interconnected Ring Network Problem For-

mulation

3.2.1 Model and Assumptions

The Interconnected Ring Network Design Problem (IRD) is stated as follows:

[IRD]: Given a set of nodes representing telecommunications offices, internode

demands and available ADM capacities and costs, find a minimum cost grouping

of the nodes into rings, such that every node belongs to at least one ring. Every

interconnection must be dual-homed. In case of interring traffic an interconnection

cost is incurred.

Assumption 1 If two nodes belonging to two different rings require an establishment

ofr a link, the communications are established via interconnection.

For the model a ring is defined as a set, to which the nodes are assigned. In real

life the rings are physical topologies. For a ring r define intraring traffic to be all

the calls that are routed within the ring. Correspondingly, interring traffic for the

ring r equals all the calls that are initiated on r and terminated on another ring (or

initiated on another ring and terminated on r).

A generic Interconnected Ring Network Design model is described below.

42

Minimize

the cost of ADM systems at the nodes plus the cost of interconnected traffic

subject to the following constraints:

assign: Each node is assigned to at least one ring.

capacity: For each ring, the node ADM system must have enough capacity to

handle all the corresponding interring and intraring traffic on the ring.

balance: All the node-to-node demands are satisfied.

For the model we define two groups of variables: ADM placement variables

xir = 1 if a node i belongs to a ring r, and 0 otherwise. The ADM placement

variables can be considered as variables, assigning nodes to the sets (rings). A node

may belong to more than one ring. This variable is defined for all possible node-ring

pairs.

Demand routing variable yijrs equals the fraction of a demand dij that originates

on ring r and terminates on ring s. In this work we consider circuit switching and

thus origin and destination nodes are indistinguishable, i. e. yijrs = yjisr. The variable

Yijrs is between 0 and 1. It is defined for all the non-zero demands and all possible

node-ring assignments such that j > i. Yijrs is nonzero if for the demand dij the node

i E r and the node j E s (there is no need to define Yijrs for all j: Yijrs = Yjisr). Note

that for r = s the variable yijrr shows the fraction of demand dij confined within the

ring r.

There are two categories of assumptions we make in this model: technical assump-

tions and modeling assumptions. Technical assumptions are those related to the tech-

nology used. The technical assumptions of the model are the symmetry of the nodal

demands, circuit switching, bifurcated routing and dual homing of the rings. The

modeling assumptions include deterministic demands, negligible fiber costs, USHR

ring technology, no transhipment rings and the assumptions about ADM and inter-

connection cost structure. We explain these assumptions next.

Each demand is deterministic. We assume that the demands are supplied by a

network planner. Demand matrix are usually consists of peak demands.

43

Each demand is symmetric: dij = dji for every node i,j. In other words if

the node i uses dij circuits to talk to j, the node j uses the same capacity to reply.

Every circuit switching communications in duplex mode such as voice communications

satisfy this assumption.

If two rings are interconnected, they have two nodes in common. Dual homing

is shown to deliver the best performance results for the ring architecture (see chapter

2).

For the formulation of the problem, we relax bifurcated routing by allowing non-

integer splitting of the demands. For bifurcated routing the demands can only be

split into integer parts. The non-integer splitting assumption will underestimate the

required capacity, since some of the fractional demands in the optimal solution will

have to be rounded up. Our heuristics retain the bifurcated routing requirements,

splitting the demands only in integral parts.

All the fiber links are available at negligible cost. We assume that fiber

conduits are available at no cost. Variable fiber cost is incorporated in the intercon-

nection cost. The assumption may hold for dense downtown networks, or any other

networks for which the nodes are located close enough such that the cost of placing

a fiber link is negligible compared to the cost of the hardware to be installed. The

fiber costs are typically much smaller than the other expenditures ([SCOM93]).

Only USHR rings are used. This is the cheapest currently available ring tech-

nology. The bandwidth allocation of the USHR ring is independent of the routing,

which greatly simplifies the ring capacity calculation. On the other hand, the capacity

of BSHR depends on the routing algorithm, which makes the network design model

intractable. The I[nterconnected Ring Network Design model [IRD] with USHR could

later be used to approximate BSHR-ring network; a more accurate model would in-

corporate a BSHR ring capacity submodel in the problem formulation.

For a USHR ring, the required capacity of an ADM equals the sum of all the de-

mands crossing the ring. It includes the intraring and the interring demands assigned

to the ring. The necessary condition for the demand Yijrr to be assigned to the ring r

is that both variables Xir and xjr equal to 1. A necessary condition for a demand Yijrs

44

Ring Cost

B1 BK.

Figure 3-2: ADM Cost

lto be interconnected is zir = 1, xj, = 1. Note that those conditions are necessary, but

not sufficient. The balance constraints assure that the total number of calls routed

on different rings for the pair (i, j) equals the demand dij. Thus, if c. denotes the

capacity of a ring r:

Cr = + Yijrrdij + Z(Yijrs + yjirs)dij (3.1)
(ij):j>i j>i
i,jEr rTs

where Yijrs E [0, 1]. The last sum of the equation consists of two terms Yijrs and

Yjirs because we sum only over j > i.

If some interring traffic is allocated to the ring pair r, s these two rings are

directly interconnected. The consequence of this assumption is that there is no

transhipment traffic in the network, i. e. for a given ring, all the calls either originate

and terminate within the same ring, or they originate(terminate) in the ring and

terminate(originate) in the adjacent one.

The costs require a special consideration. After carefully considering the under-

lying ring and ADM technology, we adopt the cost structure used by [LAG93]. We

use a stepwise cost function for the fixed ADM cost (see Figure 3-2). The intercon-

nection cost is variable, depending on the amount of the traffic passing through the

interconnection, and the fiber costs are incorporated in the interconnection cost.

The cost of an ADM system is capacity-dependent. For instance, if the ADM

is used in its standard configuration, its maximum capacity is Bo. To increase the

45

I

system's capacity, additional cards must be added and, perhaps, an enhanced version

of control software must be installed. Therefore, the cost of the system of the capacity

greater then Bo0, but less than B1, increases correspondingly. For every capacity

between Bo and B1 the cost does not vary, and therefore it is taken to be a fixed

cost for this interval. There is also a variable ADM cost, associated with a number

of channels being added/dropped at the node. This cost varies only slightly within

the range of the node demands (see LAG93]), and therefore we ignore it.

An example of the costs involved in a typical ADM system is taken from [SCOM93].

The data refer to OC3 ADM, with the maximum capacity of 84 DS1 circuits.

Table 3-1 ADM Cost Example
Unit Cost, $

Control Equipment 1,900

Synchronization-Timing 150

Terminal Cost (if used as terminal multiplexor) 1,125

Add/Drop Cost 900

Other Fixed Cost 1,500

4 DS1 card cost 1,500

All the costs given in the table are fixed costs. An ADM system capacity is

assembled using DS1 cards. For example for an ADM system capable of handling 48

DS1 units and serving as a Terminal Multiplexor, 12 DS1 cards are required and the

cost of $ 23,575 is incurred. We might remark that the costs are constantly changing

due to market fluctuations and introduction of new technology.

Ring interconnection cost is modeled as a variable cost. Recall that the inter-

connection nodes have either multiple ADM's or a DCS system acting as a switch

between the different rings. The variable cost models the ring passthrough capability,

additional control software and hardware required by the interring traffic and variable

costs of fiber. Since the fiber cost is negligible, we do not model the dual homing

aspect explicitly. The capacity of the second interconnection equals the capacity of

46

the first one, and any node can be chosen as the second homing node. For a one-node

ring the ADM system in the node must be duplicated. The cost of dual homing is

twice the corresponding interconnection cost.

Our approach to modeling the problem is to emphasize grouping of demands dij,

rather than the assignment of nodes to the rings. If demand dij is assigned ring r,

then both nodes i and j belong to the ring. On the other hand, the fact that both

nodes i and j are on the ring r, does not guarantee that the corresponding demand

dij is on the same ring.

For each ring r assign a capacity Br from the set of existing ADM sizes. For

each ADM size Bi we create a sufficient number of rings to incorporate the existing

demands. In the Appendix B we develop a better bound on the maximum number

of rings in the optimal solution. If there are K available ADM sizes and R rings are

available for each ADM size, we have KR constraints.

We formulate the [IRD] problem as follows.

[IRD]:

(3.2)Minimize Z = E Y CrXir + E E aijyijrsdij
r i r,s Lj

rys j>i

subject to

E ir > 1 for all nodes i = ... N
r

S Ytyijrrdij + E Yijrsdij + Yijsrdij < Br for r = 1 .. KR
i j>i s,sor j>i s,str j>i

E Yijr = 1 for all i,j such that dij > O and j >
r

Yijrs < xir for all r, s j > i

Yijrs < xis for all r, s j > i

Xir are 0-1 variables

Yijrs E [0, 1]forallr, s,j>i

(3.3)

(3.4)

i(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

This model is different from the one proposed in [MAG91] in two key aspects.

Magee takes a more general approach for his full model, considering interconnection

47

capacities (different from ring capacities) and existence of transhipment rings (traffic

passes through without being terminated or originated on the ring). The author

designates a ring tlo be a special node in the network and an arc from the ring-node

to an office-node signifies inclusion of the node on the ring. This approach gives a

good understanding of the relation between the nodes and the rings, but yields a

bulky and intractable model. The author proceeds to add simplifying assumptions

to make the model more tractable. He considers two subproblems: a ring network

design without interconnections and a single ADM size problem. He than proposes

a method to solving the problem without interconnections by using decomposition

approach. Our model uses a number of simplifying assumptions that make it a good

approximation of reality and at the same time yield a more tractable model.

The ideas underlying the model described [LAG93] are similar to our model. The

author considers additional constraints on the number of nodes on a ring. The major

differences between our model and the model described in [LAG93] are in approaching

the problem and the method of solution. We consider [IRD] as a subset of a more

generic SONET network design problem. Thus our approach is not just to find a

good solution to the Ring Interconnected Network, but to consider the whole set of

operational and design problems arising in context with [IRD]. Laguna proposes to

use Tabu Search as a heuristical method for solving [IRD]. We develop heuristics

using various approaches that exploit the special structure of the model and the

telecommunications context.

3.2.2 Description of Costs and Constraints

The fixed ADM cost c, depends on the size of the corresponding ring. We assume

that ADM costs exhibit economies of scale, i.e. if Bi < kBj, then ci < kcj and if

Bj < Bi, cj < c.

The variable cost of the interconnection is aij/2. This cost is a sum of ring

interconnection cost that is the same for every ring interconnection, and a unit length

fiber cost that depends on the nodes being interconnected. Thus the total variable

cost depends in general on the nodes being interconnected. The unit fiber cost is

48

secondary in the order of magnitude to the ring interconnection cost, so as a matter

of approximation for our heuristics we use a constant interconnection cost a/2. Our

heuristics can also be applied in the case when the interconnection cost varies.

To reflect the dual homing, we double the interconnection cost. No additional

constraints or costs are necessary, since by our previous assumption any ring can be

interconnected with any other ring directly. Dual homing will not influence the ring

capacity. For each homing node the corresponding ADM has to be able to handle all

the ring traffic. Therefore, for our model the dual homing factor can be accounted

by doubling the original interconnection cost, and the interconnection cost for the

dual-homed rings is aij.

From our cost and ADM capacity assumptions, if it is profitable to have a fraction

of a demand dij on a ring and if the ring capacity allows to incorporate the rest of

the demand, then it is profitable to have all the demand dij on the ring. If there is

not enough capacity, the traffic splitting will occur. See more on traffic splitting in

Chapter 5, Section 5.1.

The model's constraints are of two kinds: generic constraints (3.3), (3.4) and (3.5),

and support constraints (3.6) and (3.7).

The constraints (3.3) require each node to belong to at least one ring.

The capacity constraint (3.4) requires the sum of traffic to be less than ADM size.

As mentioned in the Section 3.2.1, the number of the capacity constraints is KR.

Another approach is to have R capacity constraints, one for every ring, but set the

right hand side to be equal the sum of all available capacities multiplied by capacity

selection variable, such that no more than one ADM size is selected for every ring:

E E Yijrrdij + E E Yijrsdij + E E Yijsrdij < E ZrkcBk (3.10)
i j>i sir j>i s-r j>i k

ZZrk < 1 (3.11)
k

where Zrk is 1 if the ring r has a capacity Bk.

The cost c, has to be changed to Ck and the variable xir to xirk. This approach

allows to reduce the number of constraints, while increasing the number of variables

49

(this is the approach used by [MAG91]).

The constraint (3.5) requires that for a given demand pair all the circuits are

'either allocated on the rings, or interconnected. Note that this constraint gives an

exact estimation of USHR traffic. Suppose for some non-zero demand dij a node i

belongs to a ring r, and a node j belongs to two rings sl and s2. Firstly, for any

feasible routing, Yijrs1 + Yijrs2 = 1, therefore the total traffic routed between the rings

r, s l , S2 for the demand (ij) is dij. Both rings s and s2 can handle a portion of the

interring traffic dij, but the corresponding capacity constraints will only account for

the interring traffic assigned to this ring.

The support constraints are needed to establish the necessary logical relations

between the variables. Constraints (3.6) and (3.7) force the variable Yijrs to be 0 if

one or both nodes do not belong to the corresponding rings.

The higher the ratio of the ADM cost to the interconnection cost, the more calls

will be interconnected. Suppose the smallest ADM cost is Bo and the interconnection

cost is a. If dij < LBo/a, than it may be profitable to interconnect the demands.

In the next section we show that [IRD] is NP-hard.

3.3 Computational Complexity of [IRD]

Proposition 1 [IRD] is NP-hard.

We will show that a capacitated facility location problem is reducible to [IRD],

i. e., for any instance of the facility location problem, a corresponding instance of

[XRD] can be constructed in polynomial time, such that solving the latter, solves

the former as well.

The capacitated facility location problem can be stated as follows.

Given a set of M potential facility locations, a set of capacities Bi for each candi-

date facility i, a set of N customers and a set of Dj demands for a customer j; fixed

facility placing costs c and variable cost hij of transporting products from a facility i

to a customer j, choose the subset of locations at which to place facilities and assign

the customers to those facilities to minimize the cost. (See [NEMH88])

50

client 1

client 1

.ent 2

faci

client n
C

2

N

Demand Graph Transformation

Figure 3-3: Facility Location Problem Transformation

Given the set of N customers and the set of M prospective locations consider

the following transformation. Consider a graph with nodes 1... N representing the

customers, with the node 1 corresponding to customer 1, node 2 corresponding to

customer 2, and so on. Add an artificial node 0 and connect it to every customer

with an arc. Let doi be the demand of customer for all i, i = 1 ... N. Let xii = 1

for i = ... N, xij = 0 for i = ... N,j = l... N,j i and xoj = 0 for j = 1... N.

Thus each customer-node is assigned to a different one-node ring. Let the ADM fixed

cost of each customer-node ring be 0 and the capacity Bi = d0i, thus each of the rings

can accommodate all the corresponding customer demands (calls).

Introduce rings N + 1 ... N + M. A ring N + j represents a facility j, j = 1 ... M.

Let the capacity of every ring N + j equal the capacity of the facility j. Let the cost

Cv+j of an ADM system at the ring N + j be the fixed cost of placing facility at

the location j (we use facility j and location j interchangeably). Let xiN+j = 0 for

i = 1...N,j = 1... M and XoN+j C {0, 1} for j = 1... M.

Since each customer is assigned to a unique one-node ring and dij > 0 for all

i,j > N, all the traffic in this ring network is interring traffic with the cost aojrj = hrj

51

..

for r = N + 1... N + M, j = 1 ... N. We have the following instance of [IRD].

[IRDi]:

N+M N+M N
Minimize Z = E E Cr or + E E aojrjyojrjdo3

r=N+l i r=N+l j=l

subject to

N+M

E: XOr
r=N+j

N

E Y 0jrjdOj
j=1

E Z YO3 jr
r

1 (3.12)

< Br for all rings r = N+ 1... N + M

= 1 for all dj, j = 1... N, r = N + 1... N + M

Yojrj < XOr for allr=N+1...N+M

XOr are 0-1 variables for r = N + 1...

YOjrO E [0, 1] for all r,j

N+m

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

For a feasible solution of [IRDi], Yojrj indicates a fraction of demand for a cus-

tomer j that is satisfied from a location r - N r = N + 1 ... N + M, and if XON+j = 1

then a facility is to be built in j.

Since the capacitated facility location problem is known to be NP-hard, the [IRD]

problem is also NP-hard Q. E. D.

In this next section we describe an expansions problem for the Interconnected

Ring network.

3.4 Expansion Problem for Survivable Ring Net-

works

As we mentioned in Section 3.1, the problems arising during the operation of a network

can be often modeled by modifying network design models. In this section we consider

52

X,R,D

X', R' : network
expansion plan

Figure 3-4: Network Expansion Problem

network expansion planning, for which the model [IRD] can be modified and applied.

Suppose we have an existing ring-interconnected SONET network. This network

is built for a given demand matrix. After some time, new services have to be added.

Thus, the demands between the nodes will change (probably, most of the demands

will increase). The network administrator faces the following question: can we ac-

commodate new services using the existing network and installed ADM capacities

and interconnections? If not, can we support all the services without adding any

new rings or new interconnections but only increasing the ADM capacities? If this

ADM expansion strategy is feasible where do we install the new ADM systems? If

the existing network cannot support all the services even after increasing the ADM

capacities, which rings are exhausted? In other words, the problem posed here is to

create a comprehensive network expansion plan for the case when the new services

are added. The demand expansion problem is presented in Figure 3-4.

We are given R = 1... r - the set of existing rings, the matrix of node-ring

assignments X = {xirli E V,r E R} and the matrix of the demands D = {dijli E

V, j E V}. D includes the new services.

53

-I I

Figure 3-5: Network Expansion Example

At first sight, the problem of "fitting" new services may seem to be easy. A naive

approach can be to freeze the initial routing, and try to fit new services sequentially.

This greedy approach does not always work, since if a service can be fitted into more

than one ring, the decision must be made based on the knowledge of routes of all

the available demands, including the set of new ones. If the new calls cannot be

fitted in any ring, there is a possibility that some of the old calls could be rerouted

to accommodate the new service.

Consider an example on Figure 3-5. There are two rings: ring 1 includes the

nodes 1, 2, 4, and ring 2 contains nodes 1, 2 and 3. The demands are as shown, and

the capacity of each ring is 3 units. An initial routing assigns 3 units to the ring

2. Suppose, the new service consists of the demand dl3 = 1. This demand must be

routed on the ring 2, but the ring is full. Note, that if we reroute 1 unit of d12 on the

ring 1, the ring 2 can accommodate the new demand.

The example shows that when there is more than one feasible routings, we may

have to reroute old demands in order to accommodate the new services. Moreover,

there may be a situation when the new service cannot be included on any ring, but

it is possible to interconnect some two rings to install the service. This will add

an interconnection cost, but the objective of the planner will have been achieved.

In a big network there may exist a large number of different feasible routing and

interconnections; thus, checking whether a ring has reached exhaust for a particular

demand matrix is not a trivial problem.

54

Locating free capacity in the network, administering ADM capacities and inter-

connections and finding the exhausted rings are related problems. Thus it is possible

to model the expansion problem with a single mathematical model.

We will use the ideas of the previous section to formulate a ring network expansion

model [EXP1] . For a given set of rings and feasible routing, the model considers

adding new demands at a minimum cost. If there is enough capacity in the network

to incorporate the new demands, the model creates new feasible routing and the

optimal cost is 0. If the optimal objective value is non-zero, then depending on the

values of the corresponding variables (see below) either new rings must be built or

new interconnections must be added or some of the old interconnections expanded.

Consider the [IRD] model. Suppose that X matrix is given. All the xir variables

are constants. The assignment constraints (3.3) are satisfied automatically.

Consider an ADM system. In order to increase capacity of existing ADM, addi-

tional cards have to be installed. All the cards have a fixed cost, and a fixed capacity

(see the ADM cost; example section 3.2). Let 6 be the capacity of the card. Then,

if existing ADM capacity for a ring r is Br, the total ADM capacity for ring r after

the expansion is Br + cat6, where a, is defined to be integer from 0 to K - 1 - r, K

is the number of the sizes available. We define an extra ADM size BK = MB and

a corresponding binary variable 3r for each ring r, where MB is a very big number,

such that BK can accommodate all the demands of the network. If the ring uses the

system BK, it would signal the corresponding ring's exhaust.

The variables grs for all r :~ s indicate extra interconnection capacity to be added.

Grs equals existing interconnection capacity for the rings r, s.

Routing variables y are defined as in [IRD].If Xir = 1 and xjs = 1, Yijrs variable

can be between 0 and 1, and if one or more x variables are zero, Yijr, has to be zero.

For [EXP1] model the routing variables include the old demands and the suggested

expansion services.

Taking this discussion into consideration, we have the following model.

[EXP1]:

55

Minimize Z1 = E Cror + E Mr3Pr + a E grs (3.18)
r r ros

subject to

Yijrrdij + 5 5 Yijrsdij + 5 Yijsrdij < Br + ar6 + -rBK+l (3.19)
i j>i sir j>i sxr j>i

for all rings r

5(yijrsdii + yjirsdji) < Grs + grs for all r s (3.20)
j>i

55Yijrs = 1 for all dij > and j > i (3.21)
r s

Yijrs E [0,1]

irs > 0

r, cr defined as above

The cost Cr for each ring r is defined as Cr = number of nodes on the ring r x

the cost of an expansion card, assuming all the expansion card have the same size

and cost.

Let us see how this model helps a network planner to develop a cost-effective

expansion plan. Suppose, there is enough capacity in the network to accommodate

the new demands. Than, Z1 = 0, and the model gives a new routing.

If there is not enough capacity in the network to accommodate the new demands,

but the capacity of rings or interconnections can be expanded to accommodate the

new services. Mr is set sufficiently large, so that /r = 0. The a and g variables will

provide the network expansion plan.

If there is not enough capacity, the pseudo ADM size BK+1 will be used. The

corresponding rings would have reached the ring exhaust, and the new rings will have

to be created. In order to build the new rings with minimum cost, we use the [IRD]

model with zero costs for the already existing rings.

Suppose, a node or a group of nodes has to be added to the network. This problem

can be treated similarly to [EXP1]. The assignment and forcing constraints have to

56

be added to the [EXP1] to represent the new nodes.

In general, the model [EXP1] can be used to develop comprehensive plans for

addition of new nodes and new services simultaneously.

57

Chapter 4

Initial Solution Heuristics

In Chapter 3 Section 3.3 we showed that [IRD] is NP-complete. Thus solving [IRD]

to optimality is difficult and computationally intensive. We design fast heuristics that

produce a solution on the average within 10% or less from a lower bound. We develop

a two-stage approach: first we use two initial solution heuristics, then we apply series

of improvement methods to generate a near-optimal solution.

The following can be noted about the initial solution heuristic: it is required to

be fast; the solution generated has to be reasonable, but further improvements will

be made.

In this chapter develop initial solution methods for [IRD].

4.1 [IN1]: Profitable Ring Selection Initial Heuris-

tic

In this section we describe a Profitable Ring Selection Problem [PR] and develop an

initial solution heuristic based on a special structure of the model.

4.1.1 [PR]: Profitable Ring Selection Problem

The constraints (3.4) in [IRD] are knapsack constraints. A knapsack problem is a

well-known problem and can be solved efficiently (see for example [AM093]). In this

58

section we develop an approach to utilize the special structure of (3.4).By considering

the objective function of [IRD] in more detail we develop an approach to generate

an initial solution using a subproblem with the knapsack capacity constraint.

Consider the [IRD] objective function.

Z = min (E E crxir + a Yijrsdij) (4.1)
r i r ij

ri$s j>i

We assume here that the interconnection cost a is the same for every intercon-

nection. Let yij =E r, Yijrs. The variable Yij is a fraction of the demand dij that isr-a

interconnected. Substituting Yij into the objective function, we have:

Z = min (E crxir + a E yijdij) (4.2)
r i ij

j>i

Since interconnecting demands incurs a cost proportional to the demand, we think

of placing a demand inside a ring as being a profitable activity, as opposed to inter-

connecting. In practice the bigger the demand, the more the savings due to placing

it inside the ring. For a small demand, interconnecting may be more profitable, but

for the initial solution heuristic we assume that all demands have to be placed within

rings.

Let wij = 1 - yij = 1 - E rs yijrs be an intraring fraction of dij. Substituting wij

into (4.2) we have:

Z = min (CXir+ a dij - a widij) =
r i i,j ij

j>i j>i

= D + min (E crXr - a wijdij) (4.3)
r i ij

j>i

where D = a E ij dij. Multiplying the objective function by -1 and disregarding
j>i

the constant D:

59

Z' = max (a E wijdij - E Cri) (4.4)
ij r i
j>i

For each ring r let us define the ring profit Pr as

Pr = a Ei yijrrdij - CrXir (4.5)
i,jEr i
j>i

The quantity Pr indicates savings due to placing a group of demands on the same

ring versus interconnecting the demands.

Since wij = Er Yijrr, Z' = max Er Pr and the original objective function Z

1) - Z'. So minimizing the cost of building ring interconnected network is equivalent

to maximizing the sum of the ring profits such that the constraints (3.3) - (3.7) are

satisfied.

There is an ambiguity involving wij since the variable does not indicate to which

rings the circuits belong to. By selecting only the most profitable ring, we resolve

this matter.

For Pr defined as in (4.5) consider a problem of Profitable Ring Selection [PR]

[PR]:

Given a set of nodes, internode demands and available ADM capacities and costs,

find a maximum-profit ring.

We propose an initial solution heuristic based on [PR]. For the given data we select

the most profitable ring. The procedure is repeated iteratively until all the demands

are grouped. Since [PR] has a knapsack structure we use Lagrangean relaxation

technique, relaxed [PR] is a knapsack problem that can be solved efficiently. The

generated rings will group the demands according to the savings, so we expect the

approach provide us with a good initial solution. Thus a motivation for using [PR]

problem for initial solution heuristic is the relationship between [PR] and [IRD] and

the special structure of the Profitable Ring Selection problem.

Consider the following formulation of [PR]. [PR]:

60

Maximize Pr = E aijwijdij - r . xi
i j i

subject to

wij < xi for all i, j > i (4.6)

wij < xj for alli, j>i (4.7)

Zwijdij < B for all ADM sizes i (4.8)
j>i

xi E {0,1} for all i,j (4.9)

0 < w j < 1 for all i,j (4.10)

xi = 1 if node i is placed on the ring. Note that if the optimal objective function

P* > 0 and if the ring has enough capacity all the non-zero wij are set to 1. If there

is no such set of demands that Pr > 0 then P* = 0 and no demands are grouped on

the ring.

We remark that in general, a solution to [PR] will not necessarily be a part of an

optimal solution to [IRD].

4.1.2 Knapsack-Based Initial Solution Heuristic

In Section 4.1.1 we mentioned that [PR] problem has an embedded knapsack struc-

ture. In order to utilize this fact we make the following simplifications to [PR] model.

VWe assume that only one ADM size is given. This assumption leads to a single knap-

sack constraint in [PR]. We use the smallest available size Bo. There are two reasons

for using the smallest size ADM: knapsack problem is pseudo polynomial, its running

time is proportional to the right hand side of the capacity constraint; secondly by us-

ing the smallest ADM size we create more rings and therefore more opportunities for

subsequent improvement. We assume the demand routing variables wlij to be binary

rather than fractional. As noted previously if it is profitable to include a part of a

demand, and there is enough capacity on the ring, all the demand will be included.

61

Ilf there is not enough capacity, but it is still profitable to group a fraction of the de-

mand, the fraction of the demand will be included according to the [PR] formulation

in Section 4.1.1. The remaining fraction must be included on another ring (we do not

consider interconnections at this stage). If a demand is included on more than one

ring, then we may incur extra costs due to additional ADM systems, therefore in the

initial solution we want to avoid bifurcated routing.

The remaining issue is what happens if the optimal objective function of [PR] is

0, in other words it is not profitable to group any of the demands on the rings. This

may occur if the ADM systems are very expensive, or the variable interconnection

cost is cheap. For the initial solution we reduce the ADM cost to zero, and continue

the iterations until all the demands are grouped.

Based on our simplifications we can now rewrite the [PR] model.

[PR]:

Maximize Z = E aijwijdij - co xi
i j i

subject to

wi < xi for all i, j > i (4.11)

wij < xj for all i, j > i (4.12)

E wijdij < Bo (4.13)
j>i

xi,wij E {0,1} for all i,j (4.14)

Computational Complexity of the Profitable Ring Selection Problem

In this section we discuss computational complexity of [PR].

Proposition 2 [PR] is NP-complete.

We will show that a knapsack problem is reducible to the Profitable Ring Selection

problem [PR].

Consider the following knapsack problem:

62

[KP]:

V = Max E cizi

subject to

E yii < B
i

Zi {E O, 1}

A choice has to be made among the list {zl,Z2, ... , Z} elements. Each element

z takes up yi amount of space and brings in ci units of profit. The following trans-

formation from [KP] to [PR] is proposed.

Add an element z0o to the list, such that co > 0, yo = 0. Consider a knapsack prob-

lem [KP'] defined on a list of elements {zo, z1, Z2 ,... , z,n with the weights {yl ... yn}

and profits {cl ... (c} equal to the ones defined in [KP] , and co and yo defined as

above.

Let V' be the value of the optimal solution for [KP']. Since yo = 0, and co > 0,

it is easy to see that [KP'] and [KP] are equivalent and V = V' - co. Therefore, if

we denote by A .P B the fact that A can be transformed in polynomial time into B,

and every instance of A can be answered, using B, showing KP -P PR is equivalent

to showing KP' P PR.

To prove the proposition 2, we will show the polynomial-time transformation of

[KP'] into an instance of [PR] . Consider the following transformation. Let

doj = yj

dij = 0 for all i 0

xo = 1

Woj = zj, i = 0, ... , n

wij = 0 for i 0

aoj = cj /doj

63

aij = 0 for all i 0

and the ring cost is 0.

Consider the following instance of [PR] problem:

Max j-woj
do j

subject to:

woj < xo = 1 for all j

woj < xj for all j

ZwoiDj < Bo

j,WOj {0,1}

If wo0 = O, z. = 0, and if woj = 1,zj = 1. So the optimal solution W of the

instance of [PR] defines the optimal solution of [KP'], or, equivalently, [KP]. There-

fore the knapsack problem can be transformed into [PR] in polynomial time and so

the proposition is proved. Q. E. D.

Lagrangean Relaxation for [PR]

Since [PR] is NP-complete, we propose to solve [PR] by relaxing the precedence

constraints (4.111) and (4.12). Let pij be a multiplier for the constraints (4.11) and

7r,:j be a multiplier for (4.12). Relax on (4.11) and (4.12). After simplification, the

Lagrangean objective function for the [PR] becomes

[PRr]:

L(lp, r) = Max(wij (adij - ij - rij) + A xi((ij + 7rij) - c,))
i j>i i j>i

subject to

64

Ewijdij < B (4.15)
j>i

i, wij E {, 1} for all i,j (4.16)

and the dual costs 1u and r are non-negative. To simplify our notation we consider

the cost of interconnection aij to be the same for all pairs of demands (i, j) and aij = a.

The Lagrangean subproblem is a knapsack problem with additional terms xi in the

objective function. Since the node variable x is unconstrained, it is set depending on a

sign of its cost in the objective function. If the cost Ej>i(/ij +7rij)-c) is nonnegative,

xi = 1; if Ej>i(/uij + 7rij) - Cr) < 0, xi = 0. The knapsack problem is solved

using dynamic algorithm described in [AM093, pages 71-72]. We use subgradient

optimization method to generate the dual prices. For the k-th iteration the dual

prices are generated according to

I = max(0, cj -1 + Ok(yk- 1 _ xk-1) (4.17)

C = k-1 +k(yk-1 _ Xk-1
7r: max(O, +(y -- -1 (4.18)

where yk- zk- 1 is the optimal solution of the iteration k - 1, and Ok is the

iteration step. a1 = 1 for the first iteration. It is more important to obtain a fast

and a good feasible solution rather than to solve the problem to optimality. So the

current best feasible solution is stored during the run and a fixed number of iterations

is performed. The iteration step is changed according to 0 k+1 = 0 k/ 2 if during the last

5 iterations no improvement of the objective function has taken place, and 0 k+ l = Ok

otherwise. We stop after the fixed number of iterations, or if an optimal value for

[FIR] was reached. For Lagrangean solution to be feasible for the original problem

the precedence constraints (4.11) and (4.12) have to hold. For a feasible solution, we

check optimality using complementary slackness conditions:

ij (wij- xi) = 0 (4.19)

rij (wij - xi) = 0 (4.20)

65

Figure 4-1: [INI] Initial Solution Heuristic

If the iterations limit is reached, but the optimal solution is not found, the best

feasible solution is retained as the most profitable ring for the current step. The best

Lagrangian solution can be retained to generate an upper bound of the optimal value

of [PR].

Algorithm Description

In this section we describe the initial solution algorithm [IN1] based on the relaxation

of the Profitable Ring Selection problem.

Figure 4-1 describes the [IN1] heuristic. The input data are a demand matrix

and a size and a cost of the smallest ADM system. As explained above, to form an

66

INPUT Demand Matrix { dij }
ADM Size Bo ADM Cost c /* we use only 1 ADM size

to generate initial solution */

OUTPUT Ring-Demands Assignment List {Ri }

BEGIN [IN1]

i =0;

Do STEP While (not all the demands grouped)

For unassigned demand pairsSOLVE [PRi]
Initialize the objective value L()=1000000;

Do While (iteration k<200 or optimal)

1=1; p1=0; 1=0;

SOLVE KNAPSACK L (k, k);

Find minj (L(Ji, 7j));
If L() did not improve in the last 5 iterations

0k+1 = K/2;

END PRi]
If (L () == 0) SOLVE [PRi] with the ADM cost =0;
Assign demands to ring i; i = i+1;

END STEPi

END [IN1]

I

initial solution we use only one ADM size. The procedure is performed until all the

demands are assigned to rings. For a given step i a ring Ri is created. [PR] is run for

200 iterations or until the optimality is reached. The best solution is used for the ring

R. If the optimal objective value is 0, the ADM cost is set to 0 and the procedure is

repeated for the current ring.

Computational Complexity of [IN1]

Consider first the Profitable Ring Selection heuristic [IN1]. Recall, that the algorithm

forms the rings by selecting the most profitable ring from the uncovered demands.

The most profitable ring is selected by solving a Lagrangean relaxation which is a

knapsack problem. In the worst case, one demand pair at a time is grouped on a ring.

Thus, the method requires [the number of demand pairs x the number of iterations of

the Lagrangean relaxation x the number of operations to solve the knapsack problem

I operations. Let Bo denote the capacity of the knapsack and let N denote the number

of the nodes. The knapsack problem is solved in O(BN) iterations (see [AM093]).

Thus the worst-case complexity of [IN1] is O(BN 2).

4.2 [IN2]: Slack Packing Heuristic for the Initial

Solution

In this section we consider an alternative initial solution heuristic based on inherent

properties of [IRD] as a telecommunications network design problem. Here, as in

section 4.1.2, we consider a single ADM size Bo.

For a node i define a nodal demand Di as the sum of all calls terminating at

that node, i. e. Di = Ej dij. The underlying idea of the heuristic [IN2] is to allocate

all the nodal demands sequentially to rings. This method is expected to be faster

than [IN1] since minimum amount of processing will be done compared to solving

Lagrangean relaxation in [IN1].

Allocation of the current demand pair depends on the demands (nodes) that have

67

been grouped before and the rings that have been created. The issue is to find a rule

for the nodal demand selection for the given nodes and demand pair selection for the

given nodal demand such that we generate a good initial solution.

The order of selection of nodes and demand pairs to group on rings influences

the final cost of the solution. Consider the following example. Suppose an ADM has

a capacity of 10 and the following demand matrix is given: d 2 = 3, d13 = 4, d23 =

2, d24 = 6. Suppose the node 2 is selected first. Within the set of the nodal demands

for the node 2 we select the demands in the following sequence: d24, d23, d12. Two

rings will be created, ring 1 with the nodes 2,3,4 and demands d24, d23 and ring 2

with the nodes 1,2 and demand d12 . Demand d13 is then added to the ring 2. Thus

we have a solution consisting of two rings: the ring 1 with the nodes 2,3,4 and the

ring 2 with the nodes 1,2, 3. The cost of the solution is 60.

Consider another order of the node grouping: first we group the node 1 and all

the associated demands, than the node 3 and all the node 3 demands that are not

assigned, then the node 2 and then 4. It is easy to check that two rings are created,

ring 1 with the nodes 1,2,3 and ring 2 with the nodes 2, 4. The cost of this solution

is 50, and so due to the different node selection order in the second case we produced

a better solution.

For a given set of demands routed on a ring R we define free capacity FR of

the ring as the additional number of circuits that can be allocated on the ring until

the ring reaches exhaust. For a given node-to-ring allocation and a given demand dij

being assigned, free capacity FR shows whether it is possible to assign the demand to

the ring.

Each node-to-ring assignments allocates nodal demands for a given node to exist-

ing rings or creates new rings. Thus each node-to-ring assignment changes the free

capacity of the existing rings and adds the free capacity of the newly created rings. In

order to find the best assignment for dij we have to know the free capacity of all the

existing rings and the existing node-ring assignment (which previously assigned nodes

belong to what ring). In order to have an efficient node selection rule it is important

to assess free capacity that is required for a given set of nodal demands. For a nodal

68

demand Di we measure the free capacity using nodal demand slack Si. Define the

quantity Si = Di/Bol Bo - Di. The slack is different from free capacity since the free

capacity is calculated for the already created rings and allocated demands, while the

slack is calculated for a node independent of the ring assignment.

For the node selection rule we considered several strategies such as the largest

nodal demand first, the smallest demand first, the smallest slack first and the largest

nodal slack first. We have chosen the minimum slack first strategy to implement as

our initial heuristic. The key observation is that the savings due to allocation of

demand pairs to existing rings depend on the number of demand pairs allocated to

existing rings, rather than the demand size being allocated.

Maximum demand first strategy attempts to assign first the nodes, requiring the

largest number of ADM's. As a result of this strategy a large number of small nodal

demands will have to be assigned to different rings and use separate ADM's; utilization

of the ADM systems will be low, so the solution may expensive. Assigning smallest

nodal demands first confronts this problem: for small size demands utilization will

be higher, since in the beginning demands for the node may be grouped on the same

ring. But a problem may arise because it is not guaranteed that enough free capacity

will exist in the end to place bigger demands, and so a new ring will have to be created

for every new nodal demand.

Our experience suggests that selecting nodal demands based on their slacks pro-

duces a better solution than selecting the demands based on their magnitudes.

If the maximum slack first selection strategy is used, the result will be abundance

of free capacity in the first steps of the algorithm. But in the end, when the demands

requiring more free capacity are grouped, there may be none left.

If the nodes with the smallest slack are grouped first this will produce less free

capacity in the beginning but in the long run more rings with free capacities will

exist, and bigger proportion of nodes with smaller demands could be allocated to the

existing rings.

The allocation of a demand pair dij for a given node depends on the ring's free

capacity and on the nodes assigned to the ring. Since the objective is to find free

69

capacity on the existing ring containing one or both nodes i, j and the bigger the

demand dij, the more capacity it requires, a reasonable rule is to group the largest

demand pair first.

The initial solution heuristic [IN2] is depicted on Figure 4-2. We consider one

ADM size for the initial solution.

The input data are the demand matrix and the ADM size and cost. No inter-

connection cost is required because we do not consider interconnections at this stage.

F'or each iteration of the algorithm a node I with minimal slack is selected. For all

the demand pairs for the node I, group the demands beginning with the largest pair

dlj. If there is a ring Rk such that both nodes I and j belong to that ring, and there

is enough capacity on this ring to include dj, assign the demand dj to that ring.

Otherwise if there is a ring such that the node I or the node j belong to the ring

and there is enough capacity, include the demand d1 j on that ring and add the other

node to the ring. Otherwise create a new ring for d1j. After all the demands for the

given node are grouped, mark the node. For all the unmarked nodes subtract the

grouped demands and repeat the procedure. The algorithm stops when all the nodes

are marked.

Computational Complexity of [IN2]

Consider the Slack Packing Initial Solution heuristic [IN2]. For each node, a slack is

calculated, and for the node with minimum slack, the nodal demands are allocated

to rings. This procedure first looks through available rings containing the node, and

if no ring contains the node, or there is not enough capacity, a new ring is created.

Thus if the maximum number of rings is R, the worst case performance of [IN2] is

O(NR). This heuristic can be made faster by allocating every node to a new ring

without looking for common nodes in the already created rings. Since no bifurcated

routing is allowed at this stage, the maximum number of rings equals the maximum

number of demand pairs, so R = N(N + 1)/2.

70

INPU Demand Matrix {dij}
ADM Size Bo ADM Cost c o

/* We use only 1 ADM size to generate initial solution */

OUTPUT Ring-Demands Assignment List {Ri }

BEGIN [IN2]

For all Nodes {i} [D
Find Min Slack = mini(Bo - D);

For all demand pairs cdj>O

Find dI j = maxj(dI j)

(1) If 3ring Rk: IRk and jeRk and Rk>dlj

Rk - dIj;

(2) If not (1) 3ring Rk:IeRk or jeRk and IRkl2dj

Rk - dj;

If not (1) and (2)

Create new ring Rk+1 e-dIj;

Mark the node;

END "For all demand pairs.."

For all unmarked nodes delete grouped demand pairs;

END "For all nodes..."

END [IN2]

* FRk - free capacity of ring k.

Figure 4-2: [IN2] Initial Heuristic 2

71

Chapter 5

Solution Improvement Heuristics

5.1 [SWAP]: Swap Heuristic

5.1.1 Motivation

The heuristics described in the previous chapter provide initial feasible solutions.

As our computational results suggest, the initial solution is created in the order of

seconds. However the gap between the objective function of the initial solution and

the optimal value is as large as 20%. The size of the gap suggests that we must apply

improvement methods to the initial solution in order to decrease the optimality gap.

For example consider demand graph on figure 5-1. On this figure an arc represents

a demand pair, and vertices represent the nodes. The weight of the arc is the value

of dij.

We are given an ADM of size 15, the ADM cost of 2, and interconnection cost of

1. The most profitable ring is the ring consisting of the demands w14, wl3 and W 3 4 .

The initial solution heuristic [IN1] creates the following rings:

R : W14, W13, W34

R2: W15, W45

R3 W14, W34

72

2 4 B=15
c=1
Cr=2

918i

Figure 5-1: Initial Solution: Greedy Is Not Always Optimal

The cost of this solution is 3 x 2 + 3 x 2 + 3 x 2 = 18. Choosing ring R 1 at the first

step of [IN1] results in a solution that is not optimal. Consider another solution:

R 1: W14, W45, W15

R 2 : W2, W13, W23

interconnect: W34

The cost of the last solution is 3 x 2 + 3 x 2 + 1 x 1 = 13, and so initial solution

created in the first grouping has a lot of room for improvement.

We propose two local improvement methods: reallocation of demands or parts

of the demands from one ring to another, and ring interconnecting heuristic. In

this section we describe the local swap heuristic, and the next section is devoted to

interconnections.

5.1.2 Swap Moves

Define DiR = Ej (ijRRdij) as the ring-nodal demand for a node i and a ring R. In

this section we define demand swap moves. In the next section we describe how to

select the demand pair and the destination ring.

In our notation DiR is the nodal demand to be reallocated, we refer to R as the

source ring. R1 is the ring where the nodal demand is moved. We refer to R1 to as

73

the destination ring and dkl is a demand belonging to R1 that must be swapped with

l)iR. Define a move as any reallocation involving a nodal demand DIR, destination

ring R1 and demand pair to be moved dkl (dki may be 0).

Recall that FR is a free capacity of the ring R, FR = BK - Ei,j>i(YijRRdij +

yjiRRdij)- BK is the maximum available ADM size. FR more calls can be allocated

on the ring R until it reaches exhaust. The local moves are depicted on Figure 5-2.

The swaps are described below.

ADD If there is enough capacity on the ring R 1 to accommodate DiR demands for

a node i on the ring R.

SW If there is not enough capacity on R1 to accommodate DiR units, but there is

a demand dk E R 1 such that FR1 + dkl is enough to accommodate DiR, and

FR + DiR is enough to incorporate dkl, in other words if it is possible to perform

a swap between the rings R and R1 using the demands DiR and dkl.

SWPARTIAL If for R, R 1, DiR and dkl defined as above, SW can not be per-

formed because the source ring can not accommodate dkl units, but a portion

YklRR of dkl can be included on FR and released free capacity on the ring R 1,

FR + YklR1R 1 dk is enough to accommodate DiR. Note that in this case the

demand dkl is split between the rings R and R1 (bifurcated routing).

5.1.3 Algorithm Description

The idea of Demand Swapping heuristic [SWAP] is to achieve a decrease in cost by

reallocating some of the nodal demands to the other rings. The savings are achieved

through decrease of the number of ADM systems in the initial solution.

In order to select which nodal demands to move first, we introduce inefficiency,

a measure of "excessive" ADM systems at the node.

We previously viewed [IRD] as a way of routing demands on the rings. Another

view of the Interconnected Ring Network could be to consider a problem of optimal

ADM sizing and placement. For each node we have to install enough systems to

74

If FR - DiR ADD]

L YijRR -) YijR1Rl, all j

DiR

R R1

Qd0dk Q
DiR

R

I DC'iR
i

R1k
; O (X)~~~~~

R1

1

Figure 5-2: Swap Moves

75)

R

.i

R

,E
R1

R1

i

r
SWAP

If FR1 + dkl DiR

FR + DiR > dkl

YijRR YijRlRl, all j

YklRlRl 3-YklRR

SWAP PARTIAL
If FR1 + dl DiR

FR + DiR YklRR dkl

FR + DiR < dkl

YijRR - YijRlRl, all j

YklRlRl - YklRR, YklRlRl
L .0

_~~~~~~~~~~l

k

handle all the traffic in, out, and through the node with the minimum cost. From the

'point of view of the node, the minimum number of ADM systems required is such that

there is enough capacity to terminate the nodal demands. For the initial solution for a

single size Bo, the minimum number of ADM systems required in the node with total

nodal demand Di is Di/Bol. Suppose that an initial solution installs Ni ADM's at

the node, and Ni > [Di/Bo. The nodes inefficiency Ii = Ni- Di/Bol is defined as

the number of extra ADM systems over and above necessary to terminate the nodal

demands. The greater 2i is, the more ADM systems at the nodes are underutilized.

We remark here that due to the ring architecture, for each ring node a fraction

of the ADM capacity must be devoted to handling the passing demands. Therefore,

even in the optimal solution there may be nodes with 2i > 0. But as a rule of thumb,

the greater the inefficiency, the easier it is to delete the extra ADM's from the rings

and thus to achieve additional savings. We use the slack measure in the context of

the swap routine to select the nodes for which some ADM systems may be deleted

first.

In this section we describe the swap heuristic [SWAP]. All the swap moves are

described in the section 5.1.2.

As a result of moving of all the demands associated with i off the ring R, the

node i is deleted from the ring. Thus savings can be made equal to the cost of the

ADM. At the same time, other nodes may be added or deleted from the source or the

destination ring.The ring's capacity may increase or decrease, so the corresponding

ADM costs may change. For each move we calculate the move's profit MP. In general,

NIP can be expressed as the difference in cost between the old and the new solution.

If MP > 0, then the move is profitable. Since any move is local, i.e. the structure of

no more than two rings at a time change, each move's profit can be expressed as the

difference in cost;s of the source and destination rings before and after the move:

MP = nR X CR+nR x CR- (nR -ndR+naR) x cR- (nRl -ndRl +naRl) x cR1 (5.1)

In our notation n signifies the number of nodes in the original solution, c is the

76

corresponding ADM cost, nd is the number of nodes deleted from the source (desti-

nation) ring and na is the number of nodes added; c' is the ADM cost on the ring

if the move is performed. Note that for [SWAP] we allow the ADM capacities to

change, and so the solution after [SWAP] may have rings of different sizes.

We start local improvement with the most inefficient node I. We attempt to

move this node's demand from the given ring to every other ring and compute each

candidate move profit. For each destination ring the move with the largest profit is

chosen from all the demand pairs dkl on the destination ring. If the best move's profit

is negative, the move is not performed. If MP > 0 for the given DIR a move with the

best profit is performed. If MP = 0 the move is also performed as an "opportunity"

move.

Figure 5-3 describes the algorithm. For every ring containing the node I and

designated as a source, all the other rings are destinations. For every destination

the best move is found. The maximum of all the move profits for all the destination

rings is taken. If' the move is non-negative, the move is performed, i.e. we update the

node-to-ring allocation list. The procedure is repeated for all the rings containing the

node I. Then the node I is marked, the most inefficient node out of all the remaining

nodes is taken and the swap procedure is repeated until all the nodes are marked.

Our computational experiments suggest that adding a few empty rings to the

initial solution improves the final cost. The reason is that empty rings can be used to

complete the moves with MP = 0(in other words to relocate some group of demands

without a profit). We think of this moves as an "opportunity" moves.

5.1.4 Computational Complexity

Consider the swap heuristic. For every node, starting with the most inefficient one,

and for every ring, containing the node, a search for a profitable swap is performed.

Thus the complexity is O(NR 2).

77

INEP1T ADM Sizes { Bi
ADM Costs { ci

Ring-Demands Assignment List {Ri }

OUTPUT Ring-Demands After Swap Assignment List {Ri*

BEGIN [SWAP]

For all nodes i
Find the most inefficient node: I= ArgMaxi

D 1
(NiF I

For all source rings R
For all destinations rings Ri

If FRi2DIR Find MP for ADD;

Else For all demand pairs on R i

such that there is enough capacity
Find MP;

END Else

Find MPi= Max(MP for all demands for Ri);

END "For all destinations..."

MP= Maxi(MPi);

If MP 2 0 Perform the move;
END "For all source..."

Mark the node;
END "For all nodes..."

END [SWAP]

Figure 5-3: [SWAP]: Swap Heuristic for Local Improvement

78

5.2 [I/C]: Interconnection Heuristic

5.2.1 Motivation

In the chapter 3 we stated the major assumptions related to ring interconnection. We

assumed the rings to be dual homed. The unit-call interconnection cost is aij. The

interconnection cost is variable.

In this section we consider a heuristic improving a solution by adding cost-saving

interconnections.We consider the interconnection cost aij = a to be independent of

the nodes, aij. The Interconnection heuristic can also be applied to variable inter-

connection cost aij. The input to the Interconnection Heuristic [I/C] is the initial

solution that has been improved by the Swap Heuristic.

First we analyze savings due to interconnection of rings. Consider two rings R

and R1, with a demand dij being an interring demand, i E R,j E R 1. Compare

this situation with a solution such that dij is confined within a ring R (or R1). In

the case of interconnection and ADM, capacity of dij has to be allocated in the both

rings R and R1. If the demand is confined within the ring R, the capacity dij has

to be allocated only within the ring R and the capacity dij in the ring R1 is free.

Thus interconnection requires more capacity then confining the same demand within

a, ring. If a demand dij is to be placed in the ring, than the nodes i and j have to be

installed on that ring. If dij is to be routed from R to R1, than i must be placed on

the ring R, and j one on the ring R1. It is not clear whether it could be profitable to

interconnect demands.

Consider a solution obtained from the [SWAP] heuristic. Let DiR = Ej yijRRdij

be the total nodal demand of the node i on ring R. If the node i is assigned to some

other ring R1 and the ring has enough free capacity to accommodate DiR more units,

then all the calls DiR can be interconnected to the node i on the other ring, and the

node i can be deleted from the ring R. Thus CR dollars will be saved and intercon-

nection cost aDit must be paid. If the difference c, - aDiR > 0, than the cumulative

savings can be realized by interconnecting the ring-nodal demands DiR. The reason

for the savings is that some of the facilities on the rings may be underutilized, and by

79

interconnecting demands through those facilities, some of the existing ADM systems

may be removed.

Interconnecting demands to R1 may require increasing this ring's capacity (if a

bigger ADM size is available). If the ring R contains nR nodes and the ring R1

contains nR1 nodes, the interconnection profit IC can be computed according to

IC = CR + nR X CRn - nR1 X cR, - a x DiR (5.2)

where the prime superscript indicates the interconnected solution. nR is the

number of nodes in the ring R 1, the ring to which given calls will be interconnected

from R. To obtain an upper bound on the value of demand that can be profitably

interconnected assume that the capacity of R1 has not increased. Then if DiR < R/a

it may be profitable to interconnect the node i demands on the ring R. Note, the

smaller the ring-nodal demand is, the more savings result from its interconnection.

5.2.2 Algorithm Description

We propose the local interconnection improvement algorithm [I/C] depicted at Figure

5-4. From the previous discussion we have to consider only the ring-nodal demands

less than cax/a as possible candidates for interconnection.

In our heuristic we consider interconnecting one group of ring-nodal demands DiR

at a time. This simplifies the implementation.

The input data for the routine is the node-ring assignment list after [SWAP],

ADM sizes and costs, and the interconnection cost. For all the nodes I and all the

rings R the minimal ring-nodal demand DIR is found. If free capacity DIR is located

in one of the rings Rk other than R such that I E Rk, the interconnection profit

is calculated according to (5.2). If the best interconnection profit is positive, the

interconnection is performed on the nodes-ring assignment list: the node I is deleted

from the ring R, and the corresponding demands DIR are interconnected. If the

interconnection profit is negative, the node is marked. The procedure terminates

when all the demands less than Crmax/a are interconnected or marked.

80

Figure 5-4: [I/C]: Local Interconnection Improvement Heuristic

81

INPU' ADM Sizes {Bi}
ADM Costs {ci}
Interconnection Costa
After Swap Ring-Demands Assignment List {Ri* }

OUTPUT Demands-Ring Final Assignment List {Ri** }

BEGIN [I/C]

For all unmarked nodes i, rings r such that Dir < crmax/a

Find DIR = Mini,r(Dir);

For all rings Rk R

For all rings Rk such that FRk DIR and IERk

Find ICk = cR - a DIR - [nRk (Rk-c'Rk)];
END "For all rings Rk R"

Find IC = Maqxk(ICk);

If IC >0 delete I from R;

interconnect DIR to Rk;

Else Mark DIR;
END "For all unmarked nodes..."

END [I/C]

J

The interconnection heuristic [I/C] conducts a similar search and thus has the

same complexity as the local swap heuristic [SWAP].

82

Chapter 6

Computational Results

(.1 Data and Test Problems

To test the performance of our heuristics we conducted a series of numerical experi-

ments.

We were unable to obtain actual data on costs, demands and ADM systems.

Therefore, we designed the data in such a way that they will be representative of the

problem. As a benchmark, we used the data mentioned in [LAG93].

The sizes of ADM hardware vary depending on the applications. It is important

that the ratio of available ADM sizes and given demands is such that there is an

ADM size that can incorporate the biggest demand pair in the system, for otherwise

the problem is infeasible. We use two ADM's with respective capacities of 48 and 64

DS1 units.

Two different demand patterns are generated. One is a "uniform" interhub

demand: the number of the hubs is fixed, and there exists a demand between two

nodes with probability p = 0.5. The demands are drawn from a uniform distribution

U_(0, 24) and rounded up. Another pattern is a "star" demand: there exists a fixed

number of hub nodes, for each hub node a random number of CO's is generated

from U(0, 8) (this number is rounded up). The inter hub demand is uniform, drawn

from U(0, 48). The demand between a hub and Central Office from the same cluster

is uniform U(0,8). For two CO's belonging to the different clusters, demands from

83

U(0,4) are generated, thus signifying the intercluster traffic on the CO level. 10

problems are generated for each type of demands. See the Appendix C for an example

of a test case. Our approach allows us to capture the effects of heavy interhub

traffic, hierarchical network structure and the existence of demands that could be

cost-effectively interconnected.

An example of ADM cost is given in Chapter 3. According to [SCOM93] those

costs are subjected to virtually daily change. Therefore instead of trying to simulate

the exact cost we decided to use costs that would capture the logical relationship

between interconnecting and confining calls to rings.

Experience suggests, as noted in [FLA90b], that it is profitable to group nodes

with high nodal demand on the rings, whereas the smaller demand nodes are inter-

connected. The unprofitable demands usually consist of a small number of DS1 calls.

In Chapter 5 we showed that the decision whether the demands should be intercon-

nected or placed on a ring for a certain node is based on the ratio of ADM cost to

the interconnection cost. We know that it is always profitable to place the node on

a ring if the total demands between the node and the ring is greater or equal than

Fc,/al, where c, is the cost of ADM on the ring r and a is the interconnection cost,

assuming the capacity of the ring r permits the inclusion of the node (if there is not

enough capacity, then the interconnection is not possible either).

We use the cost data from Laguna: the ADM cost of 114 for the 48-unit system

and the interconnection cost 15. For all the demands less than 8, the interconnection

may be profitable. For the system with capacity of 64 units we use a cost of 150.

This number captures the economy of scale. The cost of a unit-card is 150-114 - 2.25.

This is 1.9% of the base ADM cost. The base cost of the ADM system of the example

chapter 3 is $23,575, the unit-card cost is 1600/4 = 400. Thus the unit-card cost

for the example is 1.6% of the base price, and we can conclude that our ADM price

preserves the economy of scale effect accurately.

Our test data reflect the cost structure and the nature of the data in actual

telecommunications networks. The ADM size allows to include some of the nodal

demands simultaneously, but not all the demands. Thus there is a need for an algo-

84

rithm to pack the demands. The ADM costs capture the economy of scale effect, and

the ADM cost to interconnection cost ratio represents the real-life situation when it

may not be profitable to interconnect the smaller demands. The demand structure

captures network hierarchical architecture, the mesh topology for the hubs, and the

star topology for hub-CO clusters.

6.2 Details of Implementation

The heuristics are implemented in C language on a Sun SPARC station at the Op-

erations Research Center. The code is included in the Appendix D. The C language

was chosen for its speed and flexibility as compared with mathematical packages like

Mathematica and Maple. The heuristics implementation reflects our modular ap-

proach of Interconnected Ring Network design problem. Different subroutines can

be combined to achieve the best results. Since the running time of each heuristic is

negligible this can be done in an efficient real-time manner. The program structure

is depicted at Figure 6-1.

A switch on the figure indicates that any of the connected modules can be used

to generate a solution. The Data Generation layer is used to generate a test problem.

The Initial Solution layer creates a starting feasible solution. The Swap and the

Interconnection layers improve the solution. The .dat entities are the files created by

the corresponding modules.

The data related to demand grouping are kept in an array of structures node.

For each demand, this structure contains the type of allocation (inside a ring or

interconnect) and the ring it is grouped on. For the same pair dij, if a part of the

calls is routed differently (bifurcated routing) a new record is created.

To confirm performance of the algorithm we use GAMS optimization package on

the SUN station to solve small size problems of 8 nodes to optimality. The GAMS

program is included in Appendix C. Our computational experience suggests that

even for a small size problems the GAMS solution time can be significant.

85

DATA GENERATION

INITIAL SOLUTION
Knapsack Min Slack
Heuristic:modl Heuristic nod2

Result .dat

SWAP

stdou
stdou

INTERCONNECTION

Resul

Result2 dat

I ~--I

Figure 6-1: Program Structure

86

6.2.1 A Lower Bound of the [IRD]

To assess the goodness of a heuristic solution it is important to know a lower bound on

the optimal solution. Small-size problems can be solved to and the heuristic solution

for those problems can be compared to the optimal solution. Appendix C contains a

sample GAMS output for an eight-node problem. The package uses branch and bound

procedure to solve mixed integer models. By default the procedure stops whenever

the system has performed 10,000 iterations, or the optimality has been reached, or

a, gap between the integer solution and the best relaxation generated by the branch

and bound is within 0.1. By setting the gap to an arbitrarily small value, for example

0(].0001, and increasing the number of iterations, we can solve small size (8 nodes)

problems to optimality, or almost to optimality. With bigger size problems there are

a, number of limitations: the memory limit may be reached, or the allocated iteration

resource exhausted. Even if this is not the case, it takes a great amount of time to

produce an acceptable integer solution on GAMS. Even one of our 8-node examples

required more than 1 million iterations and still was not able to meet the optimality

requirements.

The problem's LP relaxation can be used to generate the bound. Another ap-

proach is to solve [IRD] using GAMS mixed integer model. By setting parameter

"optcr" to some relatively large fraction, such as 0.3, we indicate that the solution

can stop when the gap between the best integer solution and the best relaxation is

303%. We can use the best relaxation value for a lower bound.

Yet another way of generating a lower bound is to use the node inefficiency ap-

proach. If a nodal demand for a node i is DiR, the minimum-cost number of ADM

systems in the node can be found by solving the following LP.

[NADM]

Minimize Vi = Ckxk (6.1)
k

subject to

87

E xkBk Di (6.2)
k

Xk integer (6.3)

Xk is an integer variable equal to a number of size k ADM's installed at the node

i, ck is the cost of the ADM size k, Bk is the capacity of the ADM k, and Di = Ej dij

is the total nodal demand of the node i. Constraint (6.2) is a multiple knapsack

constraint. [NADM] can be solved quickly by modifying the algorithm used for a

knapsack problem with 0-1 variables [AM093, page 127].

The optimal solution to [NADM] gives the minimum number of ADM systems

for the node i in order to terminate the nodal demands. By summing the optimal

costs Vi over all the nodes i a lower bound for [IRD] can be generated.

6.3 Computational Results for Small-Size Prob-

lems

In this section we present computational results for small size problems. We used

8--node randomly generated networks for a mesh demand topology and 2-hub star

networks for hierarchical demand. The GAMS optimization software was used to

solve the problems to optimality and obtain a performance measure. The sizes of

the GAMS models range from 921 constraints and 481 variables to 14781 constraints

and 7498 non-zero variables. 20 problems were generated, 10 for each topology, out

of which 19 were solved within 1% of optimality by GAMS. One problem was not

completed after three days and is considered an outlier.

The GAMS solution time varied from 3 minutes to 1 day. It is difficult to compare

solution time for different problems, since the tasks were running in UNIX environ-

ment, at different priorities and with other tasks running at the same time. The

solution time for the algorithm, using the Profitable Ring Heuristic [IN1] (Model 1)

was 2 minutes 10 seconds for a batch of 10 problems. The program, using the Slack

88

Packing heuristic [IN2] produced a final solution within 30 seconds for the batch.

It is clear that our algorithm is orders of magnitude faster than the corresponding

GAMS model, and it is possible to use it for real-time solutions.

The tables below represent the results of the runs. IN1 corresponds to the Prof-

itable Ring Selection initial heuristic [IN1], IN2 uses the Slack Packing heuristic

[IN2] to generate the solution.

Table 6-1 GAMS Solution for 8-node Uniform Demand

[NADM] bound is a lower bound generated using the method of Section 6.2.1. If

the value in the column "GAMS Lower Bound" equals the corresponding value in the

column "GAMS Integer Solution", the problem was solved by GAMS to optimality.

89

Problem Constraints, LP [NADM] GAMS Lower GAMS Integer

Variables Relaxation Bound Bound Solution: Gap<.01

1 921, 481 912 984 1467.36 1482

2 3621, 1857 912 1710 1603.7 3078

3 1425, 741 912 912 1443.8 1458

4 2045, 1057 912 948 1595 1611

5 924, 481 1052.9 1176 1740.7 1758

6 2045, 1057 990.5 948 1316.2 1329

7 923, 481 1045.5 1134 1797 1815

8 1428, 741 912 1056 1666.4 1824

9 918, 481 912 912 1241.7 1254

10 918, 481 928.9 948 1173.3 1185

Table 6-2 [IRD] Solution for 8-node Uniform Demand

Problem IN1 IN1 IN1 IN2 IN2 IN2

Initial After Final Initial After Final

Solution Swap Solution Solution Swap Solution

1 1848 1482 1482 1548 1482 1482

2 3222 2736 2727 3306 2850 2850

3 1812 1710 1632 1992 1482 1458

4 2154 1884 1815 2220 1710 1710

5 2310 1932 1932 2100 1818 1818

6 2052 1548 1443 1734 1596 1428

7 1938 1824 1824 1950 1854 1854

8 2508 2052 1935 2250 2070 2070

9 1470 1254 1254 1548 1254 1254

10 1620 1368 1368 1398 1254 1254

Table 6-3 GAMS Solution for 2-hub Star Demand

Problem Constraints, LP [NADM] GAMS Lower GAMS Integer

_____# Variables Relaxation Bound Bound Solution Gap<.01

1 2528, 1301 1482 1710 1699.2 1710

2 14781, 7498 1596 1824 1865.5 1884

3 3555, 1828 1026 1062 1242 1254

4 2776, 1431 1254 1176 1357 1368

5 5420, 2773 1140 1212 1254 1368

6 5420, 2773 1050 798 1050 1050

7 5421, 2773 1254 1368 1468.5 1482

8 1491, 778 684 756 906 912

9 14781, 7498 1596 1746 1849 1854

10 7072, 3609 1254 1404 1467.6 1482

90

Table 6-4 [IRD] Solution for 2-hub Star Demand

91

Problem IN1 IN1 IN1 IN2 IN2 IN2

Initial After Final Initial After Final

Solution Swap Solution Solution Swap Solution

1 1998 1824 1824 1710 1710 1710

2 2268 1938 1938 1938 1938 1938

3 1734 1254 1254 1482 1254 1254

4 1500 1500 1500 1368 1368 1368

5 1848 1482 1482 1482 1368 1368

6 1050 1050 1050 1140 1050 1050

7 1806 1596 1596 1596 1482 1482

8 1056 912 912 1026 912 912

9 2268 1938 1938 2442 1938 1869

10 1812 1482 1482 1596 1596 1596

Solution Comparison. uniform

zouu

2000

0 1 500

In 1000

500

0

[ist]
Li

1 2 3 4 5 6 7 8 9

Problem #

Figure 6-2: Heuristics Final Solution vs.Optimal Solution, Uniform Demand

19 test cases do not allow to reach statistically significant conclusions on the

performance of the algorithm, but the test experiments provide a basis to judge the

performance of the algorithm. Observe from the Tables 6-1 and 6-3 that relaxation

generated using our approach from Section 6.2.1 is consistently better than the LP

relaxation of the problem.

The results shown on Figure 6-2 and 6-3 suggest that initial solution does influence

the final result, but there is no conclusive evidence that any of the initial heuristics

preferable. Thus it is suggested that the algorithm is run with the all the available

initial solutions and the best result is taken.

Figures 6-4 and 6-5 suggest that for the combined runs, i. e. running the algorithm

for both initial solutions and selecting the best of the two, the results are within the

10 % optimality gap. The following table summarizes performance of the algorithm.

92

Table 6-5. Performance Data

Table 6-5 summarizes the results for 8 nodes uniform and 2 hubs star architecture

for two different kinds of initial solution heuristics. The average gap LP-MIP is the

gap between the LP relaxation and the Mixed Integer Solution of the GAMS model.

The average gap MIP-Heur is the gap between the lower bound generated by GAMS

and the final solution produced by the heuristics. We consider it acceptable if the

average gap is within the 10% of the optimal solution. This criterion is not satisfied

in mesh problems with the Profitable Ring initial heuristic. However, this does not

mean that the [IN1] heuristic is not justified. Firstly, it performs better with the star

demand, and secondly, if the best of two solutions is used, we can achieve even more

improvement. Then the gap for the mesh problems goes to 5.30%, down from 6.38%,

93

Gap Gap Gap Gap Gap

LP-MIP MIP-Heur Improvement MIP-Heur Mip-Heur

Average Average Average 1 Best 1 Worst

8unifIN1 8.15% 21.73% .99% 16.12%

8unifIN2 - 6.38% 17.30% .98% 24.22%

8unif best of 2 50.03% 5.30% - -

2hubI N 1 - 2.68% 8.59% 0 18.18%

2hubN2 - 4.90% 15.78% 0 9.09%

2hub best of 2 13.66% 1.90% - -

Total for 40 runs - 5.30% 15.26% -

~o~u~irn mo~r~e~n2hvi

1800

1600
1 1400
-4 1200
> 1000
., 800
o 600

400
200

0
1 2 3 4 5 6 7 8 9 10

Problem #

Figure 6-3: Heuristics Final Solution vs.Optimal Solution, Star Demand

Ontimalitv
25 .00

20 .00

* 15.00

10.00

5 .DO

0 .00

GaD. uniform

.

.

* a

I

2

Problem #

Figure 6-4: Optimality Gap, 8-Node Uniform Demand

94

I finl

J [In 2

- or - - - z - -lo _ _ _ _ _ _ _ _

Rn liit- nn r-nrnnrq ,cqnn 2hiih
onnn.uuu

Optimality Gap, 2hub

17.00

15.00

13.00

1 1 .00

9.00

' 7.00

5 .00

3 .00

1.00

-1.00

Problem #

Figure 6-5: Optimality Gap, 2-Hub Star Demand

and the gap for the star demand is 1.90%, down from 2.68%. The gap calculated

between the best of two solutions produced by IN1 and IN2 and the lower bound

for all the runs is 5.30%. The Gap Improvement column shows that the [SWAP]

and [I/C] heuristics contribute significantly to the improvement of the solution. The

average improvement for all the problems and methods is 15.26%. In the best case

there was an optimal solution produced by our algorithm, in the worst case the gap

was 24.22%.

The table of results gives an insight into performance of the heuristic. When two

initial solutions were used, and the best result was chosen, the average gap between

the solution and the optimum of the [IRD] was 5.30%. When the demands have a

more centralized structure, the algorithm performs better. The local improvement

methods improve the solution of the heuristic significantly. For certain outliers, the

optimality gap can be significant 24.22

The results of the tests suggest that our algorithm delivers an efficient and fast

solution to the Interconnected Ring Network design problem.

95

I

6.4 Large Size Problems

We tested the performance of our algorithm on randomly generated problems con-

taining 15 and 30 nodes for the uniform demands , and 4 and 6 hubs for the star

demand. GAMS on SUN station was not able to solve the problems, since the files

created in the process of the runs required too much memory. We used a lower bound

described in Section 6.2.1. Table 7-6 summarizes running time of the heuristics. For

all the test sets, the running time is given for a batch of 10 problems. Note that the

time given is the running time, not the CPU time. For some batches it is possible that

oether tasks were running on the same machine simultaneously, so that the running

time given in the table is the maximum running time for the given batch.

Table 6-6 Large Problems Running Time

96

Problem Type And Initial Solution, Local Improvement,

Model Used 10 Problems Running Time 10 Problems Running Time

15node, INI 30 min ' 15 s

15node, IN2 8 s 22 s

30node, IN1 10 min 2 5 min 17 s

30node, IN2 12 s 4 min 20 s

4hub, IN1 4 min 8 s

4hub, IN2 5 s 7s

6hub, INI 6 min 15 s 18s

6hub, IN2 14 s 30 s

Table 6-7 contains the results for 15 node uniform demand problems.

Table 6-7 15node Uniform Demand Problems

For the 15node problems average improvement of the objective value due to the

local improvement methods was 10.81% for INI and 25.60% for the IN2.

97

1Prob IN1 IN1 Improv IN2 IN2 Improv Gap,

Init Final % Init Final % [NADM]

1 8016 7263 10.37 10134 8181 23.9 3966

2 7866 6531 20.44 8628 6963 23.4 3444

3 6876 6612 3.99 8100 6906 17.3 3336

4 7126 6462 10.28 7950 6205 27.4 3294

5 6992 5727 22.09 7992 6006 33.07 3330

6 9502 8241 15.30 9870 8041 22.7 3702

7 7350 6891 6.66 8106 7071 14.6 3450

8 7728 7248 6.62 9228 7728 19.4 3780

9 7812 7635 2.32 9606 6313 39.5 3708

10 6618 6015 10.02 7998 5937 34.7 3216

Table 6-8 Result for 30node Uniform Demand Problems

For the 30node problems average improvement of the objective value due to the

local improvement methods was 32.10% for IN1 and 18.42% for the IN2.

Table 6-9 Result for 4hub Star Demand Problems

98

Prob INI IN1 Improv IN2 IN2 Improv Gap,

Init Final % Init Final % [NADM]

1 37,020 27,907 32.7 36,048 30,936 16.52 13,362

2 37,860 30,351 24.7 37,878 31,575 19.96 14,136

3 38,070 27,484 38.5 37,800 33,219 13.79 13,782

4 38,6108 30,030 28.6 39,246 32,346 21.33 14,538

5 35,250 26,047 35.5 35,598 30,444 16.93 13,080

6 34,512 26,067 32.4 35,850 27,987 28.10 12,252

7 35,226 27,886 26.3 37,700 32,409 16.33 12,870

8 38,970 27,780 40.3 39,462 36,087 9.35 13,548

9 38,070 28,230 34.9 38,076 30,243 25.90 13,626

10 34,860 27,400 27.2 35,634 30,729 15.96 12,606

Prob INI IN1 Improv IN2 IN2 Improv Gap,

Init Final % Init Final % [NADM]

1 4648 4215 10.27 5598 5016 11.60 3960

2 5138 4362 17.79 5592 4497 24.35 3444

3 5864 5028 16.63 6384 4836 32.01 3336

4 3078 2970 3.64 2964 2862 3.56 2294

5 4263 3672 16.09 4434 2799 58.41 2330

6 4800 4338 10.65 5706 3936 44.97 3702

7 3904 3189 22.42 3900 3117 25.12 2450

8 3802 3426 10.97 3876 2250 72.27 1780

9 3762 3297 14.10 3660 2712 34.96 2508

10 5130 5130 0.00 5718 5244 9.04 3216

For the 4hub problems average improvement of the objective value due to the

local improvement methods was 12.26% for IN1 and 31.63% for the IN2.

Table 6-10 Result for 6hub Star Demand Problems

For the 6hub problems average improvement of the objective value due to the

local improvement methods was 13.47% for INI and 18.97% for the IN2.

We observed the following properties of the final heuristics solution. For the

uniform demand:

* For each ring there exist a virtual hub, i. e. a node that has communicates with

almost every other node on the ring;

* Small nodal demands requiring 1 ADM system (Di < BO) tend to be placed on

one ring only;

* Small demand pairs are interconnected if there is enough capacity.

For the star demand:

* The hubs are placed on the same ring (rings);

99

Prob IN1 IN1 Improv IN2 IN2 Improv Gap,

Init Final % Init Final % [NADM]

1 6840 6840 0.00 8898 6021 47.78 5210

2 6862 6519 5.26 8148 7413 9.92 5598

3 7248 6381 13.59 7674 6864 11.80 5292

4 9260 8028 15.35 9162 8586 6.71 6132

5 8094 7260 11.49 9138 7914 15.47 6594

6 9014 8232 9.50 10056 7950 26.49 6936

7 9544 7011 36.13 7188 6090 18.03 5142

8 9280 8136 14.06 8874 6966 27.39 6372

9 9960 8835 12.73 9576 8661 10.56 6594

10 9704 8325 16.56 9174 7938 15.57 6132

* Central Offices belonging to the same cluster are placed on the same rings with

the corresponding hubs;

* There is virtually no interconnection in the network.

63.5 Conclusion

The thesis has presented the ideas behind the recent developments in telecommunica-

tions, both from technical and from planning/economic perspective. We described de-

velopments such as optical networks, multimedia, SONET standard, SONET topolo-

gies and survivablity. A hierarchical approach to a SONET network design and

management is introduced.

We approached one of the practical problems that have arisen recently in telecom-

munications field. Even though there are other methods that have been proposed to

design a ring network, for example [LAG93], in this work we treat the Interconnected

Fing Network Design problem in more systematic way, in context of SONET-based

network design.

We considered a number of models for problems associated with [IRD] and made

inferences about computational complexities. An Interconnected Ring Network De-

sign problem is introduced with the fiber costs. Model [EXP1] is created for network

expansion with new services or new nodes. A problem of selecting the most profitable

ring in the network [PR] is considered, as well as the efficient ADM to node assign-

ment problem [NADM].

We develop a fast and efficient algorithm for [IRD]. The algorithm is based on a

number of heuristics. Whereas heuristics are not guaranteed to deliver the optimal

solution, the test problems show that the average optimality gap for our algorithm

is 5.20% for the problems with uniform demands and 1.90% for the problems with

star demands. Moreover, the algorithm is cheap, since it does not require heavy

computational resources and can be implemented on a personal computer; it is also

fast, so that the problem can be solved in real time.

There is significant work ahead in the telecommunications field for operations re-

100

searchers. Virtually every day a new practical problem arises. Among the new issues

are digital superhighways, requiring cost efficient network expansion plans. Optimal

routing on the BSHR ring remains an interesting problem. Lightwave routing and

routing using parallel DCS systems are among the newest areas of interest. To con-

tinue our work, efficient algorithms have to be created for the operational problems

for the ring networks. Stochasticity of the demands may provide for more efficient

capacity allocation. Network sensitivity to more than one link failure may be consid-

ered.

In general, while some of the problems provide no new theoretical insight, fast

and efficient algorithms will prove to be very cost-effective for the telecommunications

industry and will enhance the value of approach of operations research in this field.

101

Appendix A

SONET Carrier Signal Rates

102

CCITT Signal Level, Mbit/s SONET Signal Level, Mbit/s

DS1 1.544 OC1 51.84

DS2 6.312 OC3 155.52

DS3 44.736 OC9 466.56

OC12 622.08

OC18 933.12

OC24 1244.16

OC36 1866.24

OC48 2488.32

Appendix B

A Bound on the Maximum

Number of Rings in an Optimal

[IRD] Solution

Consider the formulation of the Interconnected Ring Network problem given in Chap-

ter 3. The number of constraints (3.4) depends on the proposed number of rings.

Theoretically, the number of rings can be as big as Ei Di, where Di is the total nodal

demand of the node i. Thus even for a small size problem with 8 nodes, average

demand of 4 between a pair of nodes, and a 25% of all the nodes communicating,

the number of rings can be as big as (8x7) x 4 = 28. If one is to solve the problem

to optimality using an available optimization package, the maximum number of rings

in the formulation increases greatly the running time. For example, in one of our

8-node problems, increasing the number of rings of each size from 4 to 7 increased the

running time from 1 hour to 8 hours. This is not surprising, since the straightforward

solution approach uses branch and bound technique, the speed of which exponentially

depends on the number of variables. Since increasing the number of rings increases

the number of variables correspondingly, the running time increases.

For practical purposes it is important to have a better upper bound on the number

of rings used in the optimal solution. In this section we show that given a set of nodal

demands {Di} and a set of ADM sizes {Bi}, there exists an optimal solution to [IRD]

103

that uses no more than [2 x Ei Di/Bil rings of size i.

We say that two non-empty rings rl and r2 are merged in a ring r, if the resulting

ring contains the union of all the demands belonging to the original rings.

Lemma 1 Suppose for some feasible solution of [IRD] there exist two rings rl and

r2 of size i such that the sum of all the traffic crossing both rings is less than Bi.

Than the two ring can be merged, and the cost of the resulting solution is less or equal

than the cost of the initial solution.

Consider the capacity constraints corresponding to the two rings:

Yijrlrl dij + E E Yijrlsdij + E E Yijsrldij < Br1 (B.1)
i j>i s,sirl j>i s,sirl j>i

Yijr2r 2dij + E E ijr2sdij + E E Yijsr2dij < Br2 (B.2)
i j>i s,s#r2 j>i s,s:r2 j>i

Since Br, +Br 2 < Bi, we can add B.1 to B.2 and the inequality sign is not violated.

Let Yijrr = Yijril +Yijr2r2 +Yijrlr2 + Yijr2rl, Yijrs = Yijrls+Yijr 2s and Yijsr --- Yijsrl +Yijsr 2

for all s ~ rl, r2. Set Xir = max(xir,, Xir2). Substitute the new constraint and new

variables into [IRD] constraint set. The new ring is feasible, since at least one Xir is

non-zero. The new objective function is changed by

(S CrX CrXr1 -Xr Cr2xr2) - a(yijrlr2 + Yijr2rl) (B.3)
i i i

Since the nodes of r are the union of r1 and r 2, the expression (B.3) is less or equal

than zero, and so the cost of the solution with the two rings merged is no greater

than the cost of the initial solution.

We will now prove the proposition. Let Cr = Zi Zj>i yijrrdij+s,sr ZEj>i Yijrsdij+

Es,s5r Ej>i Yijsrdij - the traffic on a ring r (Cr < Br). Note, that for any feasible

solution Er Cr < Ej Dj, where Dj is the total nodal demand for the node j. This is

true, because the number of demands in the network is 2 j Dj. In the worst case,

when all the demands are interconnected, each demand is accounted at two rings.

Thus Er Cr < 2 x 2 Ej Dj = Zj Dj.

104

Suppose the optimal solution has Ni rings of size Bi, and

Ni > 2 Z Di/B (B.4)
i

If there are two rings i, j such that the sum of their capacities Ci + Cj < Bi, these

rings can be merged according to lemma 1 such that the new cost function is less or

equal than the old one.

Suppose that there are no two rings i, j such that Ci + Cj < Bi. In other words,

for all the ring pairs i,j, Ci + Cj > Bi. We add up all the inequalities. Each ring Ci

is present in N -1 inequalities. The total number of inequalities is (N) = N(N-1)

Thus we have
N(N- l)

(N -l) 1)C C, > Bi (B.5)
2

Dividing both parts by (N - 1) (from B.4, N > 1):

N . i Di Bi
C > 2 Bi > 2 x -B = EDi (B.6)

2 Bi2 i

This is a contradiction because as noted before, Ei Ci < Ej Dj. Thus there exist

two rings such that Ci+ Cj < Bi, and therefore the merge is possible. We can continue

the merging operation as long as B.4 holds, for then we can always show that there

exist two rings that we can merge.

Q. E. D.

105

Appendix C

Solution Example

In the section we show an example of data and solution to the Interconnected Ring

Network Design Problem. Figure C-1 illustrates the data. Arcs on the graph indicate

existence of demand for nodes represented by the corresponding vertices, and the

weights of the arcs equal to the corresponding nodal demands. Figure C-2 shows

the solution created by the heuristics. We chose the best out of two final solutions.

GAMS listing and the listing created by the heuristics is provided.

The following is the example of a sample solution, solved both by GAMS and by

the heuristic [IN 2] was used for the initial solution.

** GAMS Solution :1329 **

** Best integer possible: 1316 **

*: **

Problem 6 -- 8 nodes Density - "uniform"

2045 rows, 1057 columns, and 5977 non-zeroes.

Started 11.20 12-18

106

Data

6

4

Figure C-1: Sample Data

Homing Nodes

I

6

2

5

3

Homing Nodes

Figure C-2: Heuristics Solution for the Sample Data

107

Final Solution

ection

]Finished

Reniced

11.27 12-18

B1=48 B2=64

al=114 a2=150

i/c=15

rings 0-2:48; 3-4:64

Solution satisfies tolerances.

LP Relaxation :

MIP Solution :

Final LP

Best integer so

Relative gap

990.545455

1329.000000

1329.000000

lution possible :

(326 iterations)

(6951 iterations, 327 nodes)

(0 iterations)

1316.158723

0.00975663

VAR Y

0.1.4.4

0.2.0.0

0.3.0.1

0.5.4.4

0.6.0.0

0.7.4.4

1.3.4.1

1.5.4.4

1.7.4.4

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

1.000

108

2.6.0.0 . 1.000

3.4.1.1 . 1.000

3.6.1.1 . 1.000

4.6.1.1 . 1.000

5.7.4.4 . 1.000

** Heuristic Solution to[IRD] **

** Mod 2 Used to Create an Initial Solution **

** Obj: 1428 Optimality Gap: 8.51% **

INITIAL SOLUTION

PROBLEM 6

0.1 6

0.2 15

0.3 2

0.5 3

109

0.6 16

10.7 11

1.3 1

1.5 23

:1.7 1

:2.6 4

13.4 9

3.6 3

4L.6 19

5.7 19

Cost:1734.000000

AFTER SWAP SOLUTION

EXITING: all set problem 6

Y'[-0] [-1]=-6 on ring -0

Y[-0][-2]=-15 on ring -0

Y [-0] [-3]=-2 on ring -0

Y[-0] [-5]=-3 on ring -1

Y[-0] [-6]=-16 on ring -0

Y[-0][-7]=-11 on ring -2

Y[-1] [-3]=-1 on ring -0

Y[-1][-5]=-23 on ring -1

Y[-1][-7]=-1 on ring -1

Y[-2] [-6]=-4 on ring -0

Y[-3] [-4]=-9 on ring -2

Y[-3] [-6]=-3 on ring -2

Y[-4] [-6]=-19 on ring -2

110

Y[-5][-7]=-19 on ring -1

15 nodes on ring 0 and bw=44

4 nodes on ring 1 and bw=46

5 nodes on ring 2 and bw=42

O nodes on ring 3 and bw=O

o nodes on ring 4 and bw=O

cost=1596.000000

FINAL SOLUTION

Y[0][11=6 on ring 0

Y[0] [2]=15 on ring 0

Y[0] [3]=2 on ring 2

Y'[-1000] [5]=3 on ring 1

Interconnected to 0

Y[01[6]=16 on ring 0

Y[0][7]=11 on ring 2

Y[1] [-1000]=1 on ring 0

Interconnected to 2

Y[1] [51=23 on ring 1

Y[1][7]=1 on ring 1

Y[2] [6]=4 on ring 0

Y[3][4]=9 on ring 2

Y[3] [6]=3 on ring 2

Y[4][61=19 on ring 2

Y[5] [7]=19 on ring 1

Y[O] [-10001=3 on ring 0

Interconnected to 1

Yl[-1000][3]=1 on ring 2

111

Interconnected to 0

4 nodes on ring 0 and bw=47

3 nodes on ring 1 and bw=46

5 nodes on ring 2 and bw=45

0 nodes on ring 3 and bw=O

C) nodes on ring 4 and bw=O

cost after i/c=1428.000000

112

Appendix D

C Code

This appendix contains C code. The program modl.c creates an intial solution using

[IN1]. The program mod2.c creates an initial solution using [IN2]. The program

locbup.c uses the heuristics [SWAP] and I/C] to improve the solution.

Modl.c

#include

#include

#include

#include

<stdio.h>

<stdlib.h>

<math.h>

<ctype.h>

#define RAND_MAX (int)Ox7fffffff

#define LAGR_ITERATIONS 1

main()

{

/***** ** *** *** ** *** *** *** ** *** *** *** ** *** ***** *** *** *** **

Variables: N - the dimension of the demand matrix

d - demand matrix

D - total node demand

113

z - optimal solutions for the knapsack dynamic programming

c - costs for Lagrangean

a - ADM cost

x - answers to knapsack X - current best

y - 1 if an arc i,j is on the ring Y - the current best

mu - dual prices

intc - interconnection cost

L - current best obj

Un - an array of uncovered nodes (they are unprofitable)

The data are stored in a file result.dat

struct dlist{

struct dlist *next;

int i;

int j;

int n;

int d;

int r;

int del_flag; /* set to one if the demand belongs to a ring */

} dex;

struct dlist *head, *current, *new;

int tot_rings, totnodes, bw, rsize;

float cost, rcost;

int N_of_prbl=10, n_of_nodes, n_bands, B[100], band, Curr_band;

int d100l [100], y[250] [250], x[10001, Y[250] [250], X[1000];

int N=30, n_demands;

114

int Dprobl[1000], D[1000], iter, D_var;

int total_nodes, tot_demand;

float tot_cost, ring_profit;

:float a[100], intc, L, L_curr, step, cc;

int i, ii, j, k, 1, n, min, iO,il, sum, lagr_count;

int flag, profit_flag, unc_flag;

float ptalk;

float mu[250] [250], pi[250] [250], c[1000], z[1000] [1000], Z;

FILE *fp, *bar;

char record[BUFSIZ], buffer[BUFSIZ];

/* Data entry */

printf("Enter the number of bands\n");

scanf("%d",&nbands);

printf("Enter cap-ty B= ");

for(i=O; i<=n_bands-1; i++) scanf("%d",&B[i]);

printf("\n");

/*for(i=O; i<=n_bands-1; i++) printf("%d ",B[i]);*/

printf("Enter the ADM cost a = \n");

for(i=O; i<=n.bands-l; i++) scanf("%f",&a[i]);

printf("\n");

/*for(i=O; i<=n_bands-1; i++) printf("%f ",a[i]);*/

printf("\n");

printf("Enter the i/c cost intc= ");

scanf("%f", &intc);

printf("\n");

total_nodes = 0;

ring_profit = 0;

115

/* Open a file to store results & gams data */

if((fp=fopen("result.dat","w")) == NULL)

{

printf("Can't open result.dat\n");

exit(1);

}

if((bar=fopen("barry.dat","w")) == NULL)

printf ("Can't open barry.dat\n");

exit(1);

/*GENRATE PROBLEMS N_of_prbl TIMES, SOLVE EACH TIME AFTER GENERATE */

for(ii=O; ii<=N_of_prbl-1; ii++)

{

sprintf(record,"PROBLEM %d\n\n",ii);

if (fputs (record, fp) ==EOF)

{

printf("Error on writing to a file\n");

exit(1);

}

/* Generate dem. matrix. This method generates av.density demand mtrx.

Later, make it a subr, and let it generate also a low-dens and a high-dens.

Possible sizes: 20, 50, 100 */

for (i=O; i<=N-1; i++)

{

116

:for(j=O; j<=i; j++)

{

k = rand();

if (k<=RAND_MAX/2)

d[i][j] = 1+ (int)(1.O*B[01/2*rand() / (RAND_MAX + 1.0));

d[j][i] = d[i][j];

else

l[i] [j] = 0;

cl[j] [i] = O;

}

} /* End of generating dem mtrx */

/* Zero diagonal elements */

for (i=O; i<=N-1; i++)

d[i][i] = O;

/* On-screen print & store to barry, also store non-zero demands to dlist */

head = (struct dlist *) malloc(sizeof(dex));

current =head;

n =0;

printf ("The Demand Matrix \n");

for(i=O; i<=N-1; i++)

117

:for(j=O; j<=N-1; j++)

{

printf(" %d", d[i] [j]);

:if((d[i][j] !=O) && (j>i))

{

current->i =i;

current->j =j;

current->n =n++;

current->d =d[i] [j];

current->del_flag =0;

current->next =(struct dlist *) malloc(sizeof(dex));

current->r =-1;

current =current->next;

sprintf(record,"%d.%d %d\n",i,j,d[i][j]);

if(fputs(record,bar)==EOF)

{

printf("Error on writing to a file barryl44\n");

exit(1);

printf("\n");

current->next =NULL; /* the last record contains only NULL*/

n--; /* tot # of non-zero demands */

printf("\n");

118

/* Calculating the tot demand */

tot_demand = 0; /* need it to find the final cost */

:for(current=head; current->next != NULL; current =current->next)

tot_demand += current->d;

printf("\n ");

/* ORGANIZE A CYCLE TO CREATE NEW RINGS */

profit_flag = 0; /* ring_flag=1 if no more profitable rings */

unc_flag = 1; /* zero if there is a node uncovered */

tot_rings =-1;

for(; !(profit_flag*unc_flag);)

{

L = -100000000; /* current best obj */

tot_rings++;

for(band=O; band<=n_bands-1; band++) /* RUN FOR EVERY BAND */

{

/* Start Lagrangean relaxation */

lagr_count =0; Z =10000000; step =1.0; Curr_band =-1;

n_demands = n;

/* initialize mu's and pi's: mu=O */

for (i=O; i<=n_demands; i++)

{

/*printf("OK\n");*/

for(j=0; j<=n_demands; j++)

{

119

mu[i] [j] = 0;

pi[i][j] = 0;

y[i] [j] =0;

/* !!!! Remember to set mu[i][i] to 0 !!!! */

flag = 0;

k = 0; /* Number of iterations */

printf("CREATING A RING...\n");

for(;k<=LAGR_ITERATIONS && !flag;)

/* Generating costs AND D[I] */

for(current=head; current->next != NULL; current =current->next)

{

if(current->del_flag)

{

D[current->n] =B[band]+l; c[current->n] =0;

}

else

{

D[current->n] =current->d;

c[current->n] = intc*D[current->n] - mu[current->i] [current->j] -

p:i[current->i] [current->j];

if(c[current->n]<0O) D[current->n] = B[band]+1;

}

120

:}

/* if c[i] is negative, make D[i] big, such that element will never fit into

the sack */

/* Doing a knapsack */

/* Initialize z */

/* First, fill in with -1 */

for(i=O; i<=n; i++)

for(j=O; j<=B[band]-1; j++) z[il [j]= -1;

/* fill in the 1st row - 0 if nothing fits */

for(j=O; j<D[O]-1; j++) zO][j] = 0;

for(; j<=B[band]-1; j++) z[O] [j] = c[O];

/* And the rest of z */

for(i=1; i<=n; i++)

{

for(j=O; j<D[i]-1; j++) z[i] [j]=z[i-l] [j];

if(c[i]>z[i-1] [j] && D[i]<=B[band]) z[i] [j] c[i];

if(c[i]<=z[i-1][j] && D[i]<=B[band]) z[i][j] = z[i-] [j];

j ++;
for(; j<=B[band]-1; j++)

{

if(z [i] [j]==-1)

if(z[i-1][j] > z[i-l][j-D[i]] + c[i])

121

z[i] [j] = z[i-1] [j];

else

z[i][j] = z[i-1][j-D[i]] + c[i];

} /* End knapsack dynamic */

/* CHANGE THE STEP SIZE IF HAS HAD 5 CONSECUTIVE DECREASES OF LAGR OBJ */

if (Z>z[n] [B[band]-1])

Z =zn] [B[band-11];

lagr_count++;

}

else lagr-count =0;

/*printf(" VALUE = Yf \t",z[N-1][B[band]-1]);*/

/* Trace back to find the optimal solution */

j = B[band]-1;

for(i=n; i>=O; i--)

if(z[i][j]==z[i-1][j]) x[il = 0; /* x-of the knps*/

else

122

{

x[i] = 1;

j -=D[i];

if(j==-1) j=0;

}

/* Current y's, x is just a label*/

for(current=head; current->next != NULL; current =current->next)

{

if(x[current->n]==1) y[current->i] [current->j] =1;

else y[current->i] [current->j] =0;

}

/* X-DEPENDING ON THE CORRESPONDING COST */

for(i=0; i<=N-1; i++)

{

cc =0;

for(j=i+l; j<=n; j++) cc +=mu[i] [j];

for(j=0; j<i; j++) cc +=pi[j][i];

cc -=a[band];

i:f(cc>=O) x[i] =1;

else x[i] =0;

/* check the slackness and feasibility */

il =1;

for(i=O; i<=n; i++)

f

for(j=i+1; j<=n; j++)

123

{

if(mu[i][j]*(y[i][j]-x[i])==O && y [i] [j]<=x [i] && pi [i][j]*(y[i][j]-

x[j])==O && y [i] [j] <=x [j]) iO =1;

else iO =0;

il *iO;

}

/* new mu's */

if(lagr_count>=3) step =step/2.0;

if(!il)

{

for(i=O; i<=N-1; i++)

{

for(j=i+l; j<=N-1; j++)

mu[i] [j] = mu[i]

if(mu[i] [j]<=0)

p:i[i] [j] = pi [i]

if (pi [i] [j] <=O)

[j]+ 1.O*step*

mu[i][j] = 0;

[j]+ 1.0*step*

pi[i][j] = 0;

}
}

I

else flag = 1; /* flag=O if not optimal (can'y leave the cycle) il=0

if no opt-slckn or feas for a current eq-n

124

(y [i] Ej I -xi]) ;

(y Ci] [j] -x [jD)

flag=1 iff all iO are ones */

/* Generate a current best */

L_curr = 0;

for(current=head; current->next != NULL; current =current->next)

.[

if(y[current->i][current->jl==1)

I._curr += 1.0 * intc * current->d;

x[current->i] = x[current->j] = 1;

}

for(i=O; i<=n; i++) L_curr - 1.O*x[i]*a[band];

if(L_curr>L)

{

Currband =band;

L = L_curr;

iter = k;

for(i=O0; i<=n; i++) X[i] = x[i];

for(i=O; i<=n; i++)

{

for(j=i+l; j<=n; j++)

Y[i][j] = y[i][j];

}

} /* End of solving Lagrangean */

125

/*if(L_curr==O) intc=0;*/

} /* END OF DOING BANDS */

/* DELETE THE G-ed DEMANDS */

for(current=head; current->next != NULL; current =current->next)

{

if(Y[current->i][current->j]==1)

{

current->del_flag =1; current->r =tot_rings;

}

/* Print the answer */

printf("\n\nOBJ is %f\n",L);

printf("Found on Iteration %d",iter);

printf ("\n\n");

ring_profit += L; /* ????? */

sum =0;

for(current=head; current->next != NULL; current =current->next)

if(!current->del_flag) sum +=current->d;

if(sum<=B[n_bands-1])

tot_rings++;

for(current=head; current->next != NULL; current =current->next)

{

126

if(!current->del_flag)

current->r =tot_rings; current->del_flag =1;

if(L>O) profit_flag =0;

else

profit_flag = 1;

/* SEE IF ALL THE NODES WERE GROUPED */

unc_flag =1;

for(current=head; current->next != NULL; current =current->next)

if((int)current->del_flag!=1) unc_flag =0;

/*delete the node if it's been grouped: make it infeasible for the

knapsack constraint */

}

} /* end of ring creating */

tot_rings++;

/*CALCULATE THE COST */

tot_nodes = cost =0;

for(i=O; i<=tot_rings-1; i++)

127

{

bw =0;

for(j=O; j<=N-1; j++) x[j] =0;

for(current=head; current->next!= NULL; current =current->next)

if(current->r==i)

x[current->i] = x[current->j] =1;

bw +=current->d;

for(rsize=O; bw>B[rsize]; rsize++)

sum =0;

for(j=O; j<=N-1; j++) sum +=x[j];

rcost =a[rsize]*sum;

cost +=rcost;

printf("%d nodes on ring %d and bw=%d\n",sum,i,bw);

tot_nodes +=sum;

}

printf(": cost=%f\n",cost);

sprintf(record,"Cost:%f\n",cost);

if(fputs(record,fp)==EOF)

{

printf("Error on writing to a file\n");

exit(l);

128

/* PRINT IT TO RESULT */

:for(current=head; current->next!= NULL; current =current->next)

sprintf(record,"Y[-%d] [-%d]=-%d on ring -d\n", current->i, current->j,

current->d, current->r);

/*sprintf(record,"%d.%d %d \n", current->i, current->j, current->d);*/

if(fputs(record,fp)==EOF)

printf("Error on writing to a file\n");

exit(l);

}

}

/*FREE THE MEMORY FOR A NEW DEMAND LIST OF THE NEXT ii PROBLEM */

for(current=head; current->next != NULL; current =new)

{

new =current->next;

free (current);

}

} /*END FOR ii PROBLEM */

fclose(fp);

fclose (bar);

129

} /*END OF MAIN */

Mod2.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <ctype.h>

#define RAND_MAX (int)Ox7fffffff

#define MAX_RINGS 200

#define N 15 /* # of nodes */

main()

{

Model2 - max slack heuristic

Variables: N - the dimension of the demand matrix

d - demand matrix

D - total node demand

a - ADM cost

x - answers to knapsack X - current best

y - 1 if an arc i,j is on the ring Y - the current best

intc - interconnection cost

130

'The data are stored in a file result2.dat

struct dlist{

struct dlist *next;

int i; /* d[i][j] */

int j;

int r; /*ring that d[i] [j] belongs to; r=l..; set initially to 0 */

int d;

int del_flag; /* set to one if the demand belongs to a ring */

} dex;

struct dlist *head, *current, *new;

int N_of_prbl=10, n_of_nodes, n_of_bands, B[100], band;

int d[100] [100], I, J, slack;

int r_cap[MAX. RINGS], rI[MAX_RINGS], rJ[MAX_RINGS], rcom[2*MAX_RINGS],

tot_rings, ring, bw;

int D[100], ceil;

int tot_nodes, tot_demand, rsize;

int x[N];

float rcost,cost;

float a[100], intc;

double dd;

int i, ii, j, k, 1, n, max, iO,il, sum;

int unc_flag, flag, cflag, r_flag;

int rflag; /* O-no suitable ring, 1-lnode ring, 2-2node ring */

float p_talk;

FILE *fp;

char record[BUFSIZ], buffer[BUFSIZ];

131

/* Data entry */

printf ("Enter the number of bands\n");

scanf("dd",,&n_of_bands);

printf("Enter cap-ty B= ");

for(i=O; i<=n_of_bands-1; i++) scanf("%d",&B[i);

printf("\n");

printf("Enter the ADM cost a = \n");

for(i=O; i<=n_of_bands-1; i++) scanf("%f",&a[i]);

printf("ADM cost %,f\n",a[O]);

printf("\n");

/*for(i=O; i<=n_bands-1; i++) printf("%f ",a[i]);*/

printf("\n");

printf("Enter the i/c cost intc = ");

scanf("%f", &intc);

printf("\n");

/* Open a file to store results */

if((fp=fopen("result2.dat","w")) == NULL)

{:

printf ("Can't open result2.dat\n");

exit(1);

I

/* Store INIT DATA */

sprintf(record,"bands-%d ",n_of_bands);

strcat(record,"cap's");

for(i=O; i<=n_of_bands-1; i++)

sprintf (buffer, "-%d ",B [i]);

132

strcat(record,buffer);

}

strcat(record," ADM_costs");

for(i=O; i<=n_of_bands-1; i++)

{

sprintf(buffer,"-%f ",a[ii);

strcat(record,buffer);

}

strcat(record," i/c_cost-");

sprintf(buffer,"%f \n",intc);

strcat(record,buffer);

if(fputs(record,fp)==EOF)

printf("Error on writing to a file\n");

exit(1);

}

/*GENRATE PROBLEMS N_of_prbl TIMES, SOLVE EACH TIME AFTER GENERATE */

for(ii=O; ii<=N_of_prbl-1; ii++)

{

sprintf(record,"PROBLEM %d N-%d\n",ii, (int)N);

if(fputs(record,fp)==EOF)

{

printf("Error on writing to a file\n");

exit(1);

133

/* Generate dem. matrix. This method generates av.density demand mtrx.

Later, make it a subr, and let it generate also a low-dens and a high-dens.

Possible sizes: 20, 50, 100 */

for (i=O; i<=N-1; i++)

f

for(j=O; j<=i; j++)

{

k = rand();

if (k<=RAND_MAX/2)

{

d[i][j] = 1+ (int)(1.0*B[0]/2*rand() / (RAND_MAX + 1.0));

d[j][i] = d[i][j];

else

{

d[i] [j] = 0;

d[j] [i] = 0;

}

} /* End of generating dem mtrx */

/* Zero diagonal elements */

for (i=O; i<=N-1; i++)

d[i][i] = 0;

/* On-screen print & store to barry, also store non-zero demands to dlist */

134

head = (struct dlist *) malloc(sizeof(dex));

current =head;

:n =0;

printf("The Demand Matrix \n");

for(i=O; i<=N-1; i++)

{

for(j=O; j<=N-1; j++)

{

printf(" %d", d[i][j]);

if((d[i] [j] !=O) && (j>i))

{

current->i =i;

current->j =j;

n++;

current->d =d[i] [j];

current->del_flag =0;

current->r =-i;

current->next =(struct dlist *) malloc(sizeof(dex));

current =current->next;

}

printf("\n");

}

current->next =NULL; /* the last record contains only NULL*/

printf("Tot # of non-O dem's %d, Max # of rings %d\n",n,MAX_RINGS);

printf("Running... \n");

/*n - tot # of non-zero demands */

135

/* CALCULATE NODE DEM'S D[i] */

for(i=O; i<=N-1; i++)

D[i]= 0;

for(j=0; j<=N-1; j++)

D[i] = D[i] + d[i][j];

}

for(i=0; i<=N-1; i++)

printf("D[/.d]=Yd \n ",i,D[i]);

/* INIT ALL RING CAP'S TO 0 */

for(i=0; i<=MAX_RINGS-1; i++) r_cap[i] =B[n_of_bands-1];

tot_rings =0;

/* ORGANIZE A CYCLE TO CREATE NEW RINGS */

unc_flag = 0; /* zero if there is a node uncovered */

for(; !unc_flag;)

{

/* CALCULATE MIN(MAX SLACK) */

slack = 10000;

printf ("Hey\n");

for(i=0; i<=N-1; i++)

{

for(ceil=0O; D[i]>ceil*B[n_of_bands-1]; ceil++)

if(ceil*B[n_of_bands-1] - D[i] <= slack && D[i]!=0)

slack = ceil* B[n_of_bands-1] - D[i];

136

: =i;

} /* if all the demands for i are grouped, the ceil...-... is B[max], and

if there is an uncov node, its slack would be less - do not have explicitly to do

/* FIT CORRESPONDING DEMANDS IN THE RINGS */

flag =0; /*set to 1 if all the d[I] [j] are grouped */

for(; !flag;)

{

J = max = 0;

for(current=head; current->next!= NULL; current =current->next)

{

/* find the max d[I] [J] */

if(current->d>max && !current->del_flag && (current->i==I II current->j==I)

)

{

max =current->d;

if(current->i==I) J =current->j;

else J =current->i;

}

if (max==O) break; /* exit the cycle for this node if all the I-demands

are grouped */

/* Is there a ring. containing I,J? */

i =0;

for(current=head; current->next!= NULL; current =current->next)

f

if((current->i== I current->j==I) && current->r!=-1)

137

{

rI[i] =current->r; /* list of all rings that I belongs to */

}

rI [i] =-1;

j =0;

for(current=head; current->next!= NULL; current =current->next)

{

if((current->i==J II current->j==J) && current->r!=-l)

{

rJ[j] =current->r;

j++;

rJ[j] =-1;

/* SET r_flag, r_com contains the rings with the nodes I or J or both */

r_flag =0;

k =0;

for(i=O; rI[i]!=-1; i++)

{

for(j=O; rJ[j]!=-1; j++)

{

if(rI[i]==rJ[j] && r_cap[rI[i]]>=d [I[J])

{

rcom[k] =rI[i]; k++; rflag =2;

}

}

138

rcom[k] =-1;

if(r_flag!=2)

{

for(i=O; rI[i !=-1; i++)

{

if (r_cap [rI [i]] >=d [I] [J])

rcom[k] =rI[i]; k++; r_flag =1;

}

for(i=0; rJ[i] !=-1; i++)

{:

if(r_cap[rJ[i]] >=d[I] [J])

{

rcom[k] =rJ[i]; k++; r_flag =1;

}

I

rcom[k] =-1;

/* FIND d[I][J] */

for(current=head; current->next!= NULL; current =current->next)

if((current->i==I && current->j==J) II (current->j==I && current->i==J))

break;

/* PLACE THE DEMAND ON THE 'BEST' RING */

switch(r_flag)

{

case 0:

139

current->r =tot_rings;

r_cap[tot_rings++] = B[n_of_bands-I] - d[I][J];

current->del_flag =1; break;

case 1: case 2:

max =0;

for(i=0; rcom[i]!=-1; i++)

{

if(rcap[rcom[i]] - d[I] [J] >= max)

f

ring = rcom[i];

max = r_cap[rcom[i]] -d[I][J];

}

current->r = ring;

current->del_flag =1;

r_cap[ring] -= d[I] [J]; break;

} /* end for D[i] */

/* GET NEW D[i] */

cflag =0;

for(i=O; i<=N-1; i++) D[i] =0;

for(current=head; current->next!= NULL; current =current->next)

if(!current->del_flag)

{

D[current->i] += d[current->i] [current->j];

D[current->j] += d[current->i] [current->j];

cflag =1;

140

if(!cflag) unc_flag =1; /* end demand placing - all placed */

} /* end placing cycle */

/* PRINT IT TO RESULTS.DAT */

/*strcat(record,"\nProblem \n");*/

for(current=head; current->next!= NULL; current =current->next)

{

sprintf(record, "Y[-%d [-%d]=-%d on ring -%d\n", current->i, current->j,

current->d, current->r);

/*sprintf(record,"%d.%d d \n", current->i, current->j, current->d);*/

if(fputs(record,fp)==EOF)

{

printf("Error on writing to a file\n");

exit(l);

/*CALCULATE THE COST */

tot_nodes = cost =0;

for(i=O; i<=tot_rings-1; i++)

{

bw =0;

for(j=O; j<=N-1; j++) x[j] =0;

for(current=head; current->next!= NULL; current =current->next)

{

141

if(current->r==i)

{

:x[current->i] = x[current->j] =1;

bw +=current->d;

}

for(rsize=O; bw>B [rsi

sum =0;

for(j=O; j<=N-1; j++)

rcost =a[rsize] *sum;

cost +=rcost;

printf("%d nodes on r

tot_nodes +=sum;

ze]; rsize++) ;

.m +=x [j];

'ing %d and bw=%d\n",sum,i,bw);

}

/* Tot Demand */

sum =0;

for(i=O; i<=N-1;

{

for(j=O; j<=N-1;

sum +=d[i] j];

}

i++)

printf(" cost=%f\n" ,cost);

sprintf(record,"Cost:%f 2D:%d\n",cost,sum);

if(fputs(record,fp)==EOF)

printf("Error on writing to a file\n");

exit(1);

}

142

/*FREE THE MEMORY FOR A NEW DEMAND LIST OF THE NEXT ii PROBLEM */

for(current=head; current->next != NULL; current =new)

{

new =current->next;

free(current);

.}

}/* END ii PROBLEM */

fclose(fp);

printf("OVER!!\n");

} /*END OF MAIN */

Locbup.c

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <ctype.h>

#include <string.h>

#define RAND_MAX (int)Ox7fffffff

#define MAXRINGS 200

#define N_of_Problems 10

#define N_of_Iterations 1

143

#define MAX_SIZE 4096

#define NONE 0

#define SIMPLE_ADD 1

#define SWAP_DEMAND 2

#define SWAP_PARTIAL 3

#define Nd 100

struct dlist{

struct dlist *next;

int i; /* d[i][j] */

int j;

int r; /*ring that d[i][j] belongs to; r=l..; set initially to 0 */

int d;

int ic; /* =r if the demand is interconnected to r, init=-1 */

int to_node;

} dex;

struct dlist *head, *current, *new;

struct move_list {

int i;

int j;

int d;

int r;

int move_flag;

} *move;

int n_of_bands, B[100], a[100], ic;

144

char *atoai(char *ptrl, int *array, int n);

int capacity(int ring);

void copy_ring(int *node_demand, int node, int ringto_copy, struct dlist

*Ring[]);

void set_move(int I1, int J1, int d, int ring, int flag);

struct dlist *check_merge(struct dlist *, int , int);

void deletenode(struct dlist *dem_ptr);

void rswap(struct dlist *ring[], int I, int I1, int J1);

void add_node(int i, int j, int r, int d, int il);

float obj(int nrings, int N);

main()

/ ***

Local Search

struct nlist{

int flag; /* 0 if the node has not been in a swap */

145

int r;

int d;

:} nex;

struct nlist *node[Nd];

struct dlist *R_ring[100], *Rl_ring[100], *addr;

struct dlist *Move[100];

int r[MAX_RINGS];

FILE *fp;

char record[BUFSIZ];

char *buf_ptr;

int nrings, min_nsystems;

int i, j, j, ii, sum, dummy, k, kk, kl, k2, flag, J1, i3, i4, i5, i6;

int swap_flag; /*1 if all the nodes had swap attempts */

int I, Dir, R_accept, R_move, Cr, Crl, Cr_new, Crl_new, C[MAX_RINGS],

Br[MAX_RINGS], ar[MAX_RINGS], R;

float inef;

int x[Nd], xadd[Nd], xladd[Nd], y[Nd], rdel, rldel, radd, rladd, rldj , rdi;

int I1, D1, rai, raj, xrel, xrl[Nd], xrrladd[Nd], xlrec[Nd];

int k3, k4, c3, c4, c5, c6, it;

int move_profit, cur_move, move_flag;

int modes, rlnodes, raft_cost, rbef_cost, raft_cost, rbef_cost,

rnd[Nd], rlnd[Nd];

146

int tot_nodes, tot_rings, bw, rsize, N, cap_flag;

float cost, rcost, ic_cost;

:int *D, *D_end, *D_addr; /* pointer to an array of D[node] [ring],

allocate dynamically */

int icflag, min;

/* READ THE DATA FROM THE result2.dat of result.dat */

if ((fp=f open("result2.dat"," ra")) == NULL)

{

printf ("Can't open result2.dat\n");

exit(1);

}

/'*FIRST, THE COSTS */

fgets(record, BUFSIZ, fp);

if(ferror(fp))

{

printf("Error reading result2.dat\n");

exit(1);

buf_ptr =record;

buf_ptr =atoai(buf_ptr,&n_of_bands,1);

printf("bands %/d\n" ,n_of_bands);

buf_ptr =atoai(buf_ptr,B,n_of_bands);

147

for(i=0; i<=n_of_bands-1; i++) printf("B= d ",B[i]);

printf("\n");

buf_ptr =atoai(buf_ptr,a,n_of_bands);

for(i=0; i<=n_of_bands-1; i++) printf("a= d ",a[i]);

bufptr =atoai(bufptr,&ic,1);

printf("ic= %d \n",ic);

printf("\n");

/* FOR EACH PROBLEM ii */

for(ii=O; ii<=N_of_Problems-1; ii++)

fgets(record, BUFSIZ, fp); /* read N -- the number of nodes */

if(ferror(fp))

{

printf("Error reading result2.dat\n");

exit(1);

buf_ptr =atoai(record,&N,1);

head = (struct dlist *) malloc(sizeof(dex));

current =head;

/*READ THE RING RECORDS */

for(; !feof(fp);)

fgets(record, BUFSIZ, fp);

if(ferror(fp))

148

{

printf("Error reading result2.dat\n");

exit(1);

buf_ptr = record;

if(strstr(record,"Cost") != NULL) break; /* stop reading if the end

of problem*/

buf_ptr =atoai(buf_ptr,&(current->i),1);

bufptr =atoai(bufptr,&(current->j),1);

bufptr =atoai(buf_ptr,&(current->d), 1);

buf_ptr =atoai(buf_ptr,&(current->r), 1);

current->ic = current->to_node =-1;

current->next =(struct dlist *) malloc(sizeof(dex));

current =current->next;

}

current->next =NULL; /* the last record contains only NULL*/

for(i=0; i<=N-1; i++) node[i] = (struct nlist *)malloc(sizeof(nex));

/* ALLOCATE FOR move */

move = (struct move_list *)malloc(sizeof(struct move_list));

/* FOR EACH ITERATION */

for(it=O; it<=N_of_Iterations-1; it++)

{

149

/* FIND THE NUMBER OF RINGS */

nrings =0;

:for(current=head; current->next!= NULL; current =current->next)

if(current->r>=nrings) nrings = current->r;

nrings++; nrings +=6; /* extra ring */

/* FIND NODES WITH 0 INEFFICIENCY AND SET THE FLAGS */

/* IF THERE IS A NODE NOT SET, DO THE SWAPS */

swapflag =0;

/* INITIALIZE node struct */

for(i=O; i<=N-1; i++)

{

for(j=O; j<=nrings-1; j++) r[j] =0;

node[i]->d = 0; node[i]->flag =0;

for(current=head; current->next!= NULL; current =current->next)

if(current->i==i current->j==i)

{

r[current->r] =1;

node [i] ->d +=current->d;

}

node[i]->r =0;

for(j=O; j<=nrings-1; j++) node[i]->r +=r[j];

}

I = 10000;

for(; !swap_flag && I!=-l;)

{

15()

for(i=O; i<=N-1; i++)

{

for(j=O; j<=nrings-1; j++) r[j] =0;

for(current=head; current->next!= NULL; current =current->next)

f

if(current->i==i I I current->j==i)

r[current->r] =1;

}

node[i]->r =0;

for(j=0; j<=nrings-1; j++) node[i]->r +=r[jl;

}

/* find the most inefficient node */

inef =0; I =-1;

for(i=O; i<=N-1; i++)

{

for(min_nsystems=O; node[i]->d > min_nsystems * B[n_of_bands-1];

min_nsystems++)

if(1.0*node[il->r/min_nsystems-l> inef && !node[i]->flag)

{:

I=i; inef=node[i]->r/min_nsystems-1;

}

/* if all the nodes swapped, break out */

if (I==-l)

printf("\nEXITING: all set problem %d\n" ,ii);

151

break; /* break the swap cycle */

}

/* DO THE SWAPS FOR I FOR ALL THE RINGS */

for(j=0; j<=nrings-1; j++)

{

rdel = rdel =-1;

radd = rladd = 1;

/* FIND Cr AND Dir FOR A GIVEN RING */

copy_ring(&Dir, I, j, R_ring);

move_profit =-1;

move_flag = NONE;

if(Dir>0)

{

/* SEE WHICH NODES TO DELETE FROM j */

for(i=0; i<=N-1; i++) x[i]=rnd[i] =0;

for(k=0; R_ring[k] != (struct dlist *) NULL; k++)

rnd[Rring[k]->i] = rnd[R_ring[k]->j] =1;

rnodes =0;

for(k=0; k<=N-1; k++) modes +=rnd[k];

x[I] =1;

for(k=O; R_ring[k] != (struct dlist *) NULL; k++)

{

J1 =-1;

152

if(R_ring[k]->i==I) J1 =R_ring[k]->j;

else if(R_ring[k]->j==I) J1 =R_ring[k]->i;

flag =0;

if(J1!=-1)

for(kk=O; R_ring[kk] != (struct dlist *) NULL;

{

if((R_ring[kk]->i!=I && R_ring[kk]->j==J1)

&& R_ring[kkl->i==Jl))

II (R_ring[kk]->j!=I

flag =1; break;

}

}

if(!flag && J1!=-1) x[J1] =1;

}

rdel =0;

for(i=O; i<=N-1; i++) rdel +=x[i];

Cr = capacity(j);

R_accept = B[n_of_bands-l]- Cr + Dir;

153

kk++)

/*LOOK THROUGH THE RINGS FOR THE BEST MOVE */

for(jl=0; jl<=nrings-1; jl++)

{

if(jl!=j)

{

/*COPY RING jl INTO Rl_ring*/

copy_ring(&dummy, -1, j, Rl_ring);

for(k4=0; Rl_ring[k4] != (struct dlist *) NULL; k4++)

rlnd[Rl_ring[k4]->i] = rlnd[Rl_ring[k4]->j] =1;

rlnodes =0;

for(k4=0; k4<=N-1; k4++) rlnodes += rlnd[k4];

Crl = capacity(jl);

for(c3=0; Cr>B[c3]; c3++) ;

for(c4=0; Crl>B[c4]; c4++) ;/* for a */

/* a3 -cost of rold; a4 - cost of rlold */

R_move =Dir - B[n_of_bands-l] + Crl;

/* IS THERE ENOUGH CAP ON R1 TO MOVE Dir ? */

if(Crl+Dir<=B [n_of_bands-l])

{

rldel = radd= 0;

rladd =0;

154

for(i=0; i<=N-1; i++) y[i] =1;

:for(i=O; i<=N-1; i++)

{

for(i3=0; i3<=N-1; i3++)

xrl[i3] =0;

for(k3=0; R_ring[k3] != (struct dlist *) NULL; k3++)

if(R_ring[k3]->i==I II R_ring[k3]->j==I) xrl[R_ring[k3]->i] =

xrl [R_ring[k3] ->j] =1;

for(kl=0; Rl_ring[kl] != (struct dlist *) NULL; kl++)

if((Rl_ring[kl]->i==i && xrl[i]==l) 11 (Rl_ring[kl]->j==i &&
xrl[i]==l)) y[i] =0;

}

for(i=0; i<=N--l; i++)

if(xrl[i]*y[i]==l) rladd +=1;

/* calculate the ring capty, and use the corresponding cost */

for(c5=0; Cr-Dir>B[c5]; c5++);

for(c6=0; Crl+Dir>B[c6]; c6++)

/* calculate the move's profit */

cur_move = rnodes*a[c3] + rlnodes * a[c4] - (rnodes-rdel+radd)*a[c5] -

(rlnodes-rldel+rladd) * a[c6];

/*SET A NEW MOVE */

if(cur_move>move_profit)

{

move_profit = cur_move;

move_flag = SIMPLE_ADD;

I1 =-1;

155

J1

D1 =

=-1;

-1;

set_move(I1,J1,Dl,jl, SIMPLE_ADD);

}

else

{

/* COMPARE DEMANDS ON j WITH Dir, FIND MOVES */

for(k1=0; Rl_ring[kl] != (struct dlist *) NULL; kl++)

{

if(Rl_ring[kl]->d>=R_move)

{

/*which nodes to add to rl*/

/*[nodes to delete from j]: x[N]

[demands to delete from j]:Rring[k]->i==I or R_ring[k]->==I

[demands to delete from j]: Rring[kl]->i Rl_ring[kl]->j */

rldi =rldj =1;

I1 =Rring[kl]->i;

J1 =Rl_ring[kl]->j;

D1 =Rl_ring[kl]->d;

for(k3=0; Rlring[k3] != (struct dlist *) NULL; k3++)

{

if((Rl_ring[k3]->i==I1 && Rl_ring[k3]->j!=J1) 11 (Rlring[k3]->j==I1

&& R1_ring[k3]->i!=J1)) rldi =0;

156

if((Rlring[k3]->i==J1 && Rl_ring[k3]->j!=I1) (Rl_ring[k3]->j==J1

&& Rl_ring[k3]->i!=I1)) rldj =0;

rldel =rldi+rldj;

/* rdi-1 if i delete from rl, rldj; */

/* find radd */ rai = raj =1;

for(k3=0; R_ring[k3] != (struct dlist *) NULL; k3++)

{

if((R_ring[k3]->i==I1 && x[R_ring[k3]->i] !=1) II (R_ring[k3]->j==I1

&& x[R_ring[k3]->j]!=1)) rai =0;

if((R_ring[k3]->i==Jl && x[R_ring[k3]->i]!=1) II (R_ring[k3]->j==J1

&& x[R_ring[k3]->j]!=1)) raj =0;

radd = rai+raj;

/* find radd */

/* create array of nodes from r necessary to relocate Dir */

for(i3=0; i3<=N-1; i3++) xrl[i3] =0;

for(k3=0; R_ring[k3] != (struct dlist *) NULL; k3++)

if(R_ring[k3]->i==I 1J R_ring[k3]->j==I) xrl[R_ring[k3]->i] =

xrl[R_ring[k3->] =>j 1;

/* find all the nodes on rl */

for(i=0; i<=N-1; i++) xlrec[i] =0;

for(k3=0; Rl_ring[k31 != (struct dlist *) NULL; k3++)

:xlrec[Rl_ring[k3]->i] =xlrec[Rl_ring[k3]->j] =1;

157

/* find which nodes from r to add to rl */

for(i=O; i<=N-1; i++) xrrladd[i]=O;

:for(i=O; i<=N-1; i++)

if (xrl [i]==1)

{

if(xlrec[i]!=1 I1 (xlrec[i]==l && i==I1 && rldi==l) II

(xlrec[i]==l && i==Jl && rldj==l)) xrrladd[i]=l; /* 1 if have to add node i to

rl */

}

}

/* calculate rladd */

rladd =0;

for(i=O; i<=N--l; i++) rladd+= xrrladd[i];

} /* end evaluating move for a single demand of rl*/

/* Move and Move profit */

/* calculate the ring capty, and use the corresponding cost */

if(Rl_ring[kl]->d>=R_move)

if(Dl<=R_accept)

{

Cr_new = Cr -Dir + Rl_ring[kl]->d;

Crl_new = Crl - Rl_ring[kl]->d +Dir;

}

else

158

Cr_new = Cr -Dir + R_accept;

Crl_new = Crl-R_accept +Dir;

} /* calculate the move's profit */

for(c5=0; Cr_new>B[c5]; c5++);

for(c6=0; Crl_new>B[c6]; c6++) ;

cur_move = rnodes*a[c3] + rnodes * a[c4] - (rnodes-rdel+radd)*a[c5]

- (rlnodes-rldel+rladd) * a[c6];

}

else cur_move = -2;

if(cur_move>move_profit)

{

move_profit = cur_move;

if(Dl<=R_accept)

{

move_flag = SWAP_DEMAND;

set_move(I1,J1,D1,jl, SWAP_DEMAND);

}

else

move_flag= SWAP_PARTIAL;

set_move(I1,J1,Dl,jl, SWAP_PARTIAL);

} /* for all. the demands on rl */

} /* end if i!=j */

159

} /* end comparing j and jl */

} /*end if Dir>O */

/*MAKE THE MOVE */

switch(move_flag) {

case NONE: break; /* no profitable move was found between Dir

and the rest of the rings */

case SIMPLE_ADD:

rswap(R_ring,I,-1,-l);

break;

case SWAP_DEMAND:

copy_ring(&dummy, -1, move->r, Rlring);

rswap(R_ring,I,I1,J1);

for(kl=0; R_ring[kl] != (struct dlist *) NULL; kl++)

if((Rl_ring[kl]->i==move->i && Rl_ring[kl]->j==move->j) II

(R1_ring[kl]->j==move->i && Rl_ring[kl]->i==move->j)) break;

}

move->r =j;

addr =check_merge(Rl_ring[kl],-l,-l);

if(addr!=NULL)

for(current=head; current->next!= NULL; current = current->next)

if(current==addr) break;

160

current->d +=Rl_ring [kl]->d;

delete_node(Rl_ring[kl]);

else

for(current=head; current->next!= NULL; current = current->next)

if(current==R:l_ring[kl]) break;

current->r = move->r;

}

break;

case SWAP_PARTIAL:

copy_ring(&dummy, -1, move->r, R_ring);

rswap(R_ring,I,move->i,move->j);

for(kl=O; R_ring[kl] != (struct dlist *) NULL; kl++)

{

if((Rl_ring[kl]->i==move->i && Rl_ring[kl]->j==move->j) II

(R1_ring[k]->j==move->i && Rl_ring[kl]->i==move->j)) break;

}

move->r =j;

addr =check_merge(Rl_ring[kl],-l,-1);

if(addr!=NULL)

{

for(current=head; current->next!= NULL; current = current->next)

if(current==addr) break;

current->d +=R.accept;

}

else add_node(move->i,move->j,j,R_accept,-l);

161

for(current=head; current->next!= NULL; current = current->next)

if(current==R1_ring[kl]) break;

current->d -=R_accept;

break;

}

/*COPY TO current THE SWAP */

} /*end comparing j and other rings */ /*!!! REset the flags on current!!! */

/*set the swap flag */

node[I]->flag =1;

for(i=O; i<=N--l; i++)

swapflag *= node[i]->flag;

/*swap_flag =1; */ /* delete this when run for real */

} /* end swap for I */

/* PRINT THE RESULTS FOR A SWAP ON SCREEN*/

for(current=head; current->next!= NULL; current = current->next)

printf("Y[-%d][-%d]=-%d on ring -%d\n", current->i, current->j,

current->d, current->r);

/*CALCULATE THE COST */

printf(" cost=%f\n", obj(nrings,N));

162

,/ D O I N T E R C O N N E C T I O N S */

D = (int *) malloc(sizeof(int)*nrings*N+1);

D_end = D+ nrings*N;

for(D_addr=D; D_addr<=D_end-1; D_addr++) *D_addr = 0;

/* START INTERCONNECTION */

icflag =0;

for(; !icflag;)

{

/* ALLOCATE MEMORY FOR D[] - an array of rind-nodal demands */

/* calculate */

for(D_addr=D; D_addr<=D_end-1; D_addr++)

if(*D_addr!=-1) *D_addr = 0;

for(current=head; current->next!= NULL; current = current->next)

{

if(current->i>=0 && *(D + current->r*N + current->i)>=0)

*(D + current->r*N + current->i) += current->d;

if(current->j>=0 && *(D + current->r*N + current->j)>=0)

*(D + current-->r*N + current->j) += current->d;

}

163

/* find min D[i] [j] */

min = 0; I =J1 =-1;

/*find the ring capacities*/

for(i=0; i<=MAX_RINGS-1; i++) C[i] =Br[i] =ar[i] =0;

for (i=O; i<=nrings-1; i++)

C[i] =capacity(i);

for(i=0; i<=nrings-1; i++)

for(j=0; C[i]>B[j]; j++)

Br[i] =B[j];

ar[i] =a[j];

}

for(i=0; i<=nrings-1; i++)

for(j=0; j<=N-1; j++)

{

if(ar[i]- (*(D+i*N+j)) *ic> min && *(D+i*N+j)>O)

{

min =ar[i]- *(D+i*N+j)*ic;

I1 =i; J1 =j; /* demand *(D+i*N+j) on ring I1, delete node J */

/* copy D[I1] [J11 in R_ring */

k=O;

for(current=head; current->next!= NULL;

current = current->next) if(current->r==I1 && (current->i==J1 I

current->j

== J)) R_ring[k++] = current;

R.ring[k] = (struct dlist *) NULL;

164

/* if the min, demand to interconnect is too big(unprofitable) exit */

if(min==0) icflag =1;

/* else interconnect */

else

{

cap_flag =0;

for(current=head; current->next!= NULL; current =current->next)

{

if((current->i==J1 I1 current->j==J1) && current->r!=I1 &&

C[current->r]+*(D+Il*N+J1)<=Br[current->r])

{

/* interconnect: tell the other ring "-1000"

in the node number means interconnected; set D[1[1 to-1 */

/* for a demand d[J1] [i] to be interconnected, if

the destination ring has both nodes J1 and i, just swap*/

R =current->r; cap_flag =1;

for(k=0; R_ring[k] != (struct dlist *) NULL; k++)

{ swap_flag =-1;

if (R_ring [k]->i==J1) {

if(*(D+R*N+R_ring[k]->j) >0) swap_flag =SIMPLE_ADD; }

else {if(*(D+R*N+R_ring[k]->i) >0) swap_flag

165

=SIMPLE_ADD;}

if (swap_flag==SIMPLE_ADD) {

for(new=head; new->next!= NULL; new

=new->next) { if((new->j==R_ring[k]->j && new->i==R_ring[k]->i)

II (new->j==R_ring[k]->i && new->i==R_ring[k]->j) && new->r==I1)

{ new->r =R; break; }

}

} /* end if */

else

{ add_node(J1, -1000, R, Rring[k]->d, I);

for(new=head; new->next!= NULL; new =new->next)

{

if(new->r==Ii && (new->i==J1))

{

new->to_node =new->i;

new->i =-1000;

new->ic =R;

if(new->r==I1 && new->j==J1)

new->to_node =new->j;

new->j =-1000; new->ic =R;

} /* end else */

} /* end k */

166

break;

}

*(D+I1*N+J1) =-1;

} /* end else interconnect */

/* see if less than the threshold for the ring */

} /* end of icflag*/

/* PRINT THE I/C RESULTS ON SCREEN*/

for(current=head; current->next!= NULL; current = current->next)

{

printf("Y[%d] [%d]=/d on ring %d\n", current->i, current->j,

current->d, current->r);

if(current->i<O 11 current->j<O)

printf("Interconnected to node d on ring /d\n",current->to_node,current->ic);

}

/*CALCULATE THE COST */

printf(" cost after i/c=/f\n", obj(nrings,N));

/* CLEAN UP */

167

} /* end iteration */

/*FREE THE MEMORY FOR A NEW DEMAND LIST OF THE NEXT ii PROBLEM */

for(current=head; current->next != NULL; current =new)

{:

new =current->next;

free(current);

}

free(D);

printf ("\n\n");

} /* end "for each problem" */

/* PRINT!! */

fclose(fp);

printf("OVER! ! !\n");

} /* END MAIN*/

/*CONVERT ARRAY TO ARRAY OF INTEGERS; IF N=1, CONVERT TO AN INTEGER*/

char *atoai(char *ptrl, int *array, int n)

168

int i;

char *ptr2;

for(i=0; i<=n-1; i++)

{

ptr2 = strstr(ptrl, "-");

ptr2++;

*(array+i) = atoi(ptr2);

ptrl =ptr2;

}

return ptr2;

) /* END OF atoai */

/* FIND A RING CAPACITY */

int capacity(int ring)

{

i:nt Cr;

C:r =0;

for(current=head; current->next!= NULL; current = current->next)

{

if(current->r==ring)

Cr += current->d;

}

return Cr;

169

: /*end capacity */

/*COPY RING INTO A BUFFER */

void copy_ring(int *node_demand, int node, int ring_to_copy,

struct dlist *Ring[])

{

i.nt i;

i=O;

*node_demand =0;

for(current=head; current->next!= NULL; current = current->next)

/* FIND THE CAP OF j AND COPY RING j INTO Rring */

{

if(current->r==ring_to_copy)

Ring[i] = current;

i++;

i:f(current->i==node II current->j==node) *node_demand += current->d;

}

Ring[i] = (struct dlist *)NULL;

} /* end copy_ring*/

void set_move(int I, int J1, int d, int ring, int flag)

170

{

move->i = Il;

rnove->j =J1;

move->d = d;

move->r =ring;

move->move_flag =flag;

} /*end set_move */

/* checks if the demand pair d[ij] already exists on the ring r */

struct dlist *check_merge(struct dlist *move_node, int I1, int J1)

for(current=head; current->next!= NULL; current = current->next)

{

if((current->i==move_node->i && current->j==move_node->j

&& current->r==move->r) I I (current->i==move_node->j && current->j==move_node->i

&& current->r==move->r))

{

if((current->i!=I1 && current->j!=J1) II (current->j!=I1

&& current->i!=J1)) return current;

}

return (struct dlist *)NULL;

}

171

} /* end check_merge */

/* deletes the demand from the dlist (in case of merge) */

void delete_node(struct dlist *dem_ptr)

struct dlist *previous;

previous = head;

for(current=head; current->next!= NULL; current = current->next)

{

if(current==dem_ptr)

previous = current;

break;

}

current = previous;

current->next = dem_ptr->next;

free(dem_ptr); /*!!! double check */

} /* end of delete_node */

/*MAKE THE SWAP */

void rswap(struct dlist *ring[], int I, int I, int J1)

{

int k;

struct dlist *addr;

172

for(k=O; ring[k] != (struct dlist *) NULL; k++)

if(ring[k]->i==I I I ring[k[->j==)

r
IL

addr =check_merge(ring[k],I1, J1);

/* i can merge demands for a move, merge */

if(addr!=NULL)

{

for(current=head; current->next!= NULL; current = current->next)

if(current==addr) break;

current->d +=ring[k]->d;

delete_node(ring[k]);

}

else

{

for(current=head; current->next!= NULL; current = current->next)

if (current==ring [k]) break;

current->r = move->r;

}

}

}

} /*end rswap */

void add_node(int i, int j, int r, int d, int il)

{

struct dnode *last;

173

for(current=head; current->next!= NULL; current = current->next)

current->i =i;

current->j =j;

current->r =r;

current->d =d;

current->ic =il;

current->next =(struct dlist *)malloc(sizeof(dex));

current = current->next;

current->next =NULL;

} /*end add_node */

/*CALCULATE THE COST */

float obj(int nrings, int N)

float cost, ic_cost, rcost;

int i, bw, j;

int x[Nd], rsize, sum;

cost =ic_cost =0;

for(i=O; i<=nrings-1; i++)

{

bw = rcost =0;

174

:for(j=O; j<=N-1; j++) x[j] =0;

for(current=head; current->next!= NULL; current =current->next)

{

if(current->r==i)

{

if (current->i>=O) x [current->i] =1;

else ic_cost +=ic*current->d;

if(current->j>=0) x[current->j] =1;

else ic_cost +=ic*current->d;

bw +=current-:,>d;

}

for(rsize=O; bw>B[rsize]; rsize++)

sum =0;

for(j=O0; j<=N-1; j++) sum +=x[j];

rcost =a[rsize]*sum;

cost +=rcost ;

printf("%d nodes on ring %d and bw=%d\n",sum,i,bw);

}

return cost+ic_cost/2;

} /* end obj */

175

Appendix E

Bibliography

176

Bibliography

[BAL89] Ballart R. Ching Y-C. ,"SONET: Now It's the Standard Optical

Network", IEEE Communications Magazine, March 1989.

[CHL90] Chlamtac, Franta, "LightNet and Optimal Lightpath Problem",

Proceedings of the IEEE, Vol. 78, No. 1, January 1990

[DRA93] Drake V. J. "A Review of Four Major SONET/SDH Rings",

IEEE Global Conf.on Commun., 1993.

[FLA89] Flanagan T. "Principles and Technologies for Planning Surviv-

ability", IEEE Global Conf. on Commun., 1989.

[FLA9Oa] Flanagan T. "Planning a SONET Network", IEEE Global Conf.

on Commun., 1990.

[FLA90b] Flanagan T. "Fiber Network Survivability", IEEE Communica-

tions Magazine, June 1990.

[GR087] Grover W. D. "A Fast Distributed Restoration Technique

for Networking Using Digital Crossconnect Machines", IEEE Global

Conf.on Commun., 1987.

[HAS87] Hasegawa S. et al. "Dynamic reconfiguration of Digital Cross-

Connect Systems with Network Control and Management", IEEE

Global Conf.on Commun., 1987.

177

[MAR93] Marzec R. P. et al. "Selection of a SONET Network Architec-

ture - Survivability Can Be Enhanced Cost-Effectively", IEEE Int.

Conf. on Commun. , 1993.

[TOB90] Tobagi F. A. ,"Fast Packet Switch Architectures For Broadband

Integrated Services Digital Networks", Proceedings of IEEE, Vol.78, Jan-

uary 1990.

[WIL93] Williams J. M., Johnson J. A., "The Role of the Wideband Dig-

ital Cross-connect System in Survivable Ring Networks", IEEE Int.

Conf. on Commun. , 1993.

[WU88] Wu T-H. Kollar D. J. Cardwell R. H. "Survivable Network Ar-

chitectures for Broad-Band Fiber Optic Networks: Model and Per-

formance Comparison", Journal of Lightwave Technology, Vol. 6, No. 11,

November 1988.

[WU89] Wu T-H. Kollar D. J. Cardwell R. H. "High-Speed Self-Healing

Ring Architecture for Future Interoffice Networks", IEEE Global

Conf.on Commun., 1989.

[WU90] Wu T-H. Lau R. C. "A Class of Self-Healing Ring Architec-

tures for SONET Network Applications", IEEE Global Conf.on Commun.,

1990.

[WU93] Wu T-H. et al. , "A Service Restoration Time Study for Dis-

tributed Control SONET Digital Cross-Connect System Self-Healing

Networks", IEEE Int. Conf. on Comrnun. , 1993.

[NYT93] Suppliers Are Selected for Big US West Project", The New York

Times, June 16, 1993.

[AM093] Ahuja R. K. Magnanti T. L. Orlin J. B. "Network Flows",

Prentice-Hall, Englewood Cliffs, 1993.

178

[COS93] Cosares S. Sanjee I. "An Optimization Problem Related to Bal-

ancing Loads for Survivability in Telecommunications Networks", to

be published.

[DAL92] Dahl G. Stor M. "MULTISUN - Mathematical Model and Al-

gorithms", Technical Report R 46/92 (translated from Danish), 1992.

[GOL] Goldberg A. V. "Finding a Maximum Density Subgraph", Univer-

sity of California at Los Angeles.

[GRT92] Grotschell M. Monma C. L. Stoer M. "Computational Results

with a Cutting Plane Algorithm for Designing Communications Net-

works with Low-Connectivity Constraints", Operations Research, Vol.

40, No 2, March-April 1992.

[LAG93] Laguna M. "Optimal Design of SONET Rings for Interoffice

Telecommunication", to be published.

[MAG91] Magee T. "SONET Planning Model and Observations", Techni-

cal Memorandum, University of Colorado at Boulder, October 1991.

[MON88] Monma C. L. Shallcross D. F. "Methods for Designing Commu-

nications Networks with Certain Two-Connected Survivability Con-

straints", Operations Research, Vol. 37, No 4, July-August 1989

[SHU93] Shulman A. et al. "Multicornmodity Flows in Ring Networks",

GTE Labs Inc. to be published.

[SCOM93] Shulman A. personal communication.

[WU91] Wu T-H. Cardwell R. Boyden M. "A Multi-Period Design Model

for Survivable Network Architecture Selection for SONET Interoffice

Networks", IEEE Transactions on Reliability, Vol. 40, No 4, October 1991.

[NEMH88] Nemhauser G. L. Wolsey L. A. "Integer and Combinatorial

Optimization", John Wiley and Sons, 1988.

179

