15 research outputs found

    VM Provisioning Policies to Improve the Profit of Cloud Infrastructure Service Providers

    Get PDF
    Cloud providers in order to improve its profit

    FLA-SLA aware cloud collation formation using fuzzy preference relationship multi-decision approach for federated cloud

    Get PDF
    Cloud Computing provides a solution to enterprise applications in resolving their services at all level of Software, Platform, and Infrastructure. The current demand of resources for large enterprises and their specific requirement to solve critical issues of services to their clients like avoiding resources contention, vendor lock-in problems and achieving high QoS (Quality of Service) made them move towards the federated cloud. The reliability of the cloud has become a challenge for cloud providers to provide resources at an instance request satisfying all SLA (Service Level Agreement) requirements for different consumer applications. To have better collation among cloud providers, FLA (Federated Level Agreement) are given much importance to get consensus in terms of various KPI’s (Key Performance Indicator’s) of the individual cloud providers. This paper proposes an FLA-SLA Aware Cloud Collation Formation algorithm (FS-ACCF) considering both FLA and SLA as major features affecting the collation formation to satisfy consumer request instantly. In FS-ACCF algorithm, fuzzy preference relationship multi-decision approach was used to validate the preferences among cloud providers for forming collation and gaining maximum profit. Finally, the results of FS-ACCF were compared with S-ACCF (SLA Aware Collation Formation) algorithm for 6 to 10 consecutive requests of cloud consumers with varied VM configurations for different SLA parameters like response time, process time and availability

    A Trust-Based Approach for Management of Dynamic QoS Violations in Cloud Federation Environments

    Get PDF
    Cloud Federation is an emerging technology where Cloud Service Providers (CSPs) offering specialized services to customers collaborate in order to reap the real benefits of Cloud Computing. When a CSP in the Cloud Federation runs out of resources, it can get the required resources from other partners in the federation. Normally, there will be QoS agreements between the partners in the federation for the resource sharing. In this paper, we propose a trust based mechanism for the management of dynamic QoS violations, when one CSP requests resources from another CSP in the federation. In this work, we have implemented the partner selection process, when one CSP does not have enough resources, using the Analytic Hierarchy Process (AHP) and the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) methods, and also considering the trust values of various CSPs in the federation. We have also implemented the Single Sign-On (SSO) authentication in the cloud federation using the Fully Hashed Menezes-Qu-Vanstone (FHMQV) protocol and AES-256 algorithm. The proposed trust-based approach is used to dynamically manage the QoS violations among the partners in the federation. We have implemented the proposed approach using the CloudSim toolkit, and the analysis of the results are also given

    Effective and Economical Content Delivery and Storage Strategies for Cloud Systems

    Get PDF
    Cloud computing has proved to be an effective infrastructure to host various applications and provide reliable and stable services. Content delivery and storage are two main services provided by the cloud. A high-performance cloud can reduce the cost of both cloud providers and customers, while providing high application performance to cloud clients. Thus, the performance of such cloud-based services is closely related to three issues. First, when delivering contents from the cloud to users or transferring contents between cloud datacenters, it is important to reduce the payment costs and transmission time. Second, when transferring contents between cloud datacenters, it is important to reduce the payment costs to the internet service providers (ISPs). Third, when storing contents in the datacenters, it is crucial to reduce the file read latency and power consumption of the datacenters. In this dissertation, we study how to effectively deliver and store contents on the cloud, with a focus on cloud gaming and video streaming services. In particular, we aim to address three problems. i) Cost-efficient cloud computing system to support thin-client Massively Multiplayer Online Game (MMOG): how to achieve high Quality of Service (QoS) in cloud gaming and reduce the cloud bandwidth consumption; ii) Cost-efficient inter-datacenter video scheduling: how to reduce the bandwidth payment cost by fully utilizing link bandwidth when cloud providers transfer videos between datacenters; iii) Energy-efficient adaptive file replication: how to adapt to time-varying file popularities to achieve a good tradeoff between data availability and efficiency, as well as reduce the power consumption of the datacenters. In this dissertation, we propose methods to solve each of aforementioned challenges on the cloud. As a result, we build a cloud system that has a cost-efficient system to support cloud clients, an inter-datacenter video scheduling algorithm for video transmission on the cloud and an adaptive file replication algorithm for cloud storage system. As a result, the cloud system not only benefits the cloud providers in reducing the cloud cost, but also benefits the cloud customers in reducing their payment cost and improving high cloud application performance (i.e., user experience). Finally, we conducted extensive experiments on many testbeds, including PeerSim, PlanetLab, EC2 and a real-world cluster, which demonstrate the efficiency and effectiveness of our proposed methods. In our future work, we will further study how to further improve user experience in receiving contents and reduce the cost due to content transfer

    Measuring the Business Value of Cloud Computing

    Get PDF
    The importance of demonstrating the value achieved from IT investments is long established in the Computer Science (CS) and Information Systems (IS) literature. However, emerging technologies such as the ever-changing complex area of cloud computing present new challenges and opportunities for demonstrating how IT investments lead to business value. Recent reviews of extant literature highlights the need for multi-disciplinary research. This research should explore and further develops the conceptualization of value in cloud computing research. In addition, there is a need for research which investigates how IT value manifests itself across the chain of service provision and in inter-organizational scenarios. This open access book will review the state of the art from an IS, Computer Science and Accounting perspective, will introduce and discuss the main techniques for measuring business value for cloud computing in a variety of scenarios, and illustrate these with mini-case studies

    Measuring the Business Value of Cloud Computing

    Get PDF
    The importance of demonstrating the value achieved from IT investments is long established in the Computer Science (CS) and Information Systems (IS) literature. However, emerging technologies such as the ever-changing complex area of cloud computing present new challenges and opportunities for demonstrating how IT investments lead to business value. Recent reviews of extant literature highlights the need for multi-disciplinary research. This research should explore and further develops the conceptualization of value in cloud computing research. In addition, there is a need for research which investigates how IT value manifests itself across the chain of service provision and in inter-organizational scenarios. This open access book will review the state of the art from an IS, Computer Science and Accounting perspective, will introduce and discuss the main techniques for measuring business value for cloud computing in a variety of scenarios, and illustrate these with mini-case studies
    corecore