1,765 research outputs found

    Ecological Interface Design of a Tactical Airborne Separation Assistance Tool

    Full text link

    Design of an Ecological Vertical Separation Assistance Cockpit Display

    Get PDF
    A tactical navigation support tool was designed to effectively deal with conflict situations in the vertical plane, while preserving travel freedom as much as possible. Based on Ecological Interface Design principles, the Vertical Separation Assistance Display is developed as an extension to the existing Vertical Situation Display. Functional information is presented via overlays that show pilots how their vertical maneuvering possibilities are constrained by ownship performance, and by limits imposed by surrounding traffic. A questionnaire-based evaluation shows that the ecological overlays considerably improved pilot traffic awareness in vertical conflict situations

    Analyzing Procedure Performance using Abstraction Hierarchy: Implications of Designing Procedures for High-risk Process Operations

    Get PDF
    PresentationStandard operating procedures (SOPs) are a vital element of everyday operations in chemical process industries. Incident investigations also indicate that a majority of adverse events in the processing operations are ascribed to issues associated with SOPs. Although there have been continuous efforts to improve informational and perceptual aspects of SOPs, assessing them from a systems perspective remains a persistent gap. As one novel way to address such gap, this study employs an ecological approach to understand the functional structure of the work domain, that is, abstraction hierarchy (AH) and its relations to SOPs and operator performance. First, this study models a 3-phase separation system, a common gas-oil-water separation process, using an abstraction-decomposition space as a work domain of the system. Second, we assess the AH level, one dimension of the abstraction-decomposition space, of the SOPs developed for three tasks in the 3-phase separation system. In order to consider operators’ knowledge about the tasks, experience-task familiarity (E-TF) level is also assessed as a combinatory factor. To this end, a two-way analysis of variance is conducted to find out the effect of E-TF level (high vs. low) and AH level of the SOPs (physical vs. functional) on the operator’s performance. Results show significant main effects of the E-TF level and AH level on the successful performance of the SOPs. The interaction effect of the two variables is considered marginally significant. Based on the results, several implications for the design of SOPs in relation to the AH of the chemical processing domain are discussed

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 379)

    Get PDF
    This bibliography lists 305 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during Sep. 1993. Subject coverage includes: aerospace medicine and physiology, life support systems and man/system technology, protective clothing, exobiology and extraterrestrial life, planetary biology, and flight crew behavior and performance

    Aerospace Medicine and Biology: A continuing bibliography with indexes (supplement 291)

    Get PDF
    This bibliography lists 131 reports, articles and other documents introduced into the NASA scientific and technical information system in November 1986

    Current Safety Nets Within the U.S. National Airspace System

    Get PDF
    There are over 70,000 flights managed per day in the National Airspace System, with approximately 7,000 aircraft in the air over the United States at any given time. Operators of each of these flights would prefer to fly a user-defined 4D trajectory (4DT), which includes arrival and departure times; preferred gates and runways at the airport; efficient, wind-optimal routes for departure, cruise and arrival phase of flight; and fuel efficient altitude profiles. To demonstrate the magnitude of this achievement a single flight from Los Angeles to Baltimore, accesses over 35 shared or constrained resources that are managed by roughly 30 air traffic controllers (at towers, approach control and en route sectors); along with traffic managers at 12 facilities, using over 22 different, independent automation system (including TBFM, ERAM, STARS, ASDE-X, FSM, TSD, GPWS, TCAS, etc.). In addition, dispatchers, ramp controllers and others utilize even more systems to manage each flights access to operator-managed resources. Flying an ideal 4DT requires successful coordination of all flight constraints among all flights, facilities, operators, pilots and controllers. Additionally, when conditions in the NAS change, the trajectories of one or more aircraft may need to be revised to avoid loss of flight efficiency, predictability, separation or system throughput. The Aviation Safety Network has released the 2016 airliner accident statistics showing a very low total of 19 fatal airliner accidents, resulting in 325 fatalities1. Despite several high profile accidents, the year 2016 turned out to be a very safe year for commercial aviation, Aviation Safety Network data show. Over the year 2016 the Aviation Safety Network recorded a total of 19 fatal airliner accidents [1], resulting in 325 fatalities. This makes 2016 the second safest year ever, both by number of fatal accidents as well as in terms of fatalities. In 2015 ASN recorded 16 accidents while in 2013 a total of 265 lives were lost. How can we keep it that way and not upset the apple cart by premature insertion of innovative technologies, functions, and procedures? In aviation, safety nets function as the last system defense against incidents and accidents. Current ground-based and airborne safety nets are well established and development to make them more efficient and reliable continues. Additionally, future air traffic control safety nets may emerge from new operational concepts

    On the History and Prospects of Three-Dimensional Human-Computer Interfaces for the provision of Air Traffic Control Services

    Get PDF
    This paper is an essay on the history and prospects of three-dimensional (3D) human- computer interfaces for the provision of air traffic control services. Over the past twenty-five years, many empirical studies have addressed this topic. However, the results have been deemed incoherent and self-contradictory and no common conclusion has been reached. To escape from the deadlock of the experimental approach, this study takes a step back into the conceptual development of 3D interfaces, addressing the fundamental benefits and drawbacks of 3D rendering. Under this light, many results in the literature start to make sense and some conclusions can be drawn. Also, with an emphasis on the future of air traffic control, this research identifies a set of tasks wherein the intrinsic weaknesses of 3D rendering can be minimized and its advantages can be exploited. These are the ones that do not require accurate estimates of distances or angles. For future developments in the field of 3D interfaces for air traffic control operators, we suggest focusing on those tasks only

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included
    • …
    corecore