450 research outputs found

    CIRSS vertical data integration, San Bernardino study

    Get PDF
    The creation and use of a vertically integrated data base, including LANDSAT data, for local planning purposes in a portion of San Bernardino County, California are described. The project illustrates that a vertically integrated approach can benefit local users, can be used to identify and rectify discrepancies in various data sources, and that the LANDSAT component can be effectively used to identify change, perform initial capability/suitability modeling, update existing data, and refine existing data in a geographic information system. Local analyses were developed which produced data of value to planners in the San Bernardino County Planning Department and the San Bernardino National Forest staff

    Chapter Machine Learning in Volcanology: A Review

    Get PDF
    A volcano is a complex system, and the characterization of its state at any given time is not an easy task. Monitoring data can be used to estimate the probability of an unrest and/or an eruption episode. These can include seismic, magnetic, electromagnetic, deformation, infrasonic, thermal, geochemical data or, in an ideal situation, a combination of them. Merging data of different origins is a non-trivial task, and often even extracting few relevant and information-rich parameters from a homogeneous time series is already challenging. The key to the characterization of volcanic regimes is in fact a process of data reduction that should produce a relatively small vector of features. The next step is the interpretation of the resulting features, through the recognition of similar vectors and for example, their association to a given state of the volcano. This can lead in turn to highlight possible precursors of unrests and eruptions. This final step can benefit from the application of machine learning techniques, that are able to process big data in an efficient way. Other applications of machine learning in volcanology include the analysis and classification of geological, geochemical and petrological “static” data to infer for example, the possible source and mechanism of observed deposits, the analysis of satellite imagery to quickly classify vast regions difficult to investigate on the ground or, again, to detect changes that could indicate an unrest. Moreover, the use of machine learning is gaining importance in other areas of volcanology, not only for monitoring purposes but for differentiating particular geochemical patterns, stratigraphic issues, differentiating morphological patterns of volcanic edifices, or to assess spatial distribution of volcanoes. Machine learning is helpful in the discrimination of magmatic complexes, in distinguishing tectonic settings of volcanic rocks, in the evaluation of correlations of volcanic units, being particularly helpful in tephrochronology, etc. In this chapter we will review the relevant methods and results published in the last decades using machine learning in volcanology, both with respect to the choice of the optimal feature vectors and to their subsequent classification, taking into account both the unsupervised and the supervised approaches

    Full seismic waveform analysis combined with transformer neural networks improves coseismic landslide prediction

    Get PDF
    Seismic waves can shake mountainous landscapes, triggering thousands of landslides. Regionalscale landslide models primarily rely on shaking intensity parameters obtained by simplifying ground motion time-series into peak scalar values. Such an approach neglects the contribution of ground motion phase and amplitude and their variations over space and time. Here, we address this problem by developing an explainable deep-learning model able to treat the entire wavefield and benchmark it against a model equipped with scalar intensity parameters. The experiments run on the area affected by the 2015Mw7.8 Gorkha, Nepal earthquake reveal a 16% improvement in predictive capacity whenincorporating full waveforms. This improvement is achieved mainly on gentle (~25°) hillslopes exposed to low ground shaking (~0.2 m/s). Moreover, we can largely attribute this improvement to the ground motion before and much after the peak velocity arrival. This underscores the limits of single-intensitymeasures and the untapped potential of full waveform information

    Assessment of earthquake-triggered landslides in Central Nepal

    Full text link
    Landslides are recurrent in Nepal due to active tectonics, high precipitation, complex topography, geology, and land use practices. Reliable landslide susceptibility maps are crucial for effective disaster management. Ongoing research has improved landslide mapping approaches, while further efforts are needed to assess inventories and enhance susceptibility mapping methods. This thesis aims to evaluate the landslides caused by the Gorkha earthquake in 2015 and develop reliable landslide susceptibility maps using statistical and geospatial techniques. There are four main objectives: (i) proposing clustering-based sampling strategies to increase the efficiency of landslide susceptibility maps over random selection methods, (ii) identifying and delineating effective landslide mapping units, (iii) proposing an innovative framework for comparing inventories and their corresponding susceptibility maps, and (iv) implementing a methodology for landslide-specific susceptibility mapping. Firstly, a comprehensive Gorkha earthquake-induced landslide inventory was initially compiled, and six unsupervised clustering algorithms were employed to generate six distinct training datasets. An additional training dataset was also prepared using a randomised approach. Among the tested algorithms, the Expectation Maximization using the Gaussian Mixture Model (EM/GMM) demonstrated the highest accuracy, confirming the importance of prioritising clustering patterns for training landslide inventory datasets. Secondly, slope units were introduced as an effective mapping unit for assessing landslides, delineating 112,674 slope unit polygons over an approximately 43,000 km2 area in Central Nepal. This is the first instance of generating such comprehensive mapping and making it publicly accessible. Thirdly, a comparison of five post-Gorkha earthquake inventories and susceptibility was conducted, revealing similarities in causative factors and map performance but variations in spatial patterns. Lastly, a rockfall inventory along two significant highways was developed as a landslide-classified inventory, and the rockfall susceptibility was evaluated. A segment-wise map with a 1 to 5 scale indicating low to high susceptibility was published for public use. This thesis proposes new approaches to landslide inventory sampling and earthquake-triggered landslide assessment. It provides publicly accessible databases for Central Nepal's slope unit map and rockfall susceptibility along the major highways. These findings can benefit researchers, planners, and policymakers to enhance risk management practices by advancing landslide assessment, particularly for earthquake-induced landslides in Central Nepal

    AN OVERVIEW OF GEOINFORMATICS STATE-OF-THE-ART TECHNIQUES FOR LANDSLIDE MONITORING AND MAPPING

    Get PDF
    Abstract. Natural hazards such as landslides, whether they are driven by meteorologic or seismic processes, are constantly shaping Earth's surface. In large percentage of the slope failures, they are also causing huge human and economic losses. As the problem is complex in its nature, proper mitigation and prevention strategies are not straightforward to implement. One important step in the correct direction is the integration of different fields; as such, in this work, we are providing a general overview of approaches and techniques which are adopted and integrated for landslide monitoring and mapping, as both activities are important in the risk prevention strategies. Detailed landslide inventory is important for providing the correct information of the phenomena suitable for further modelling, analysing and implementing suitable mitigation measures. On the other hand, timely monitoring of active landslides could provide priceless insights which can be sufficient for reducing damages. Therefore, in this work popular methods are discussed that use remotely-sensed datasets with a particular focus on the implementation of machine learning into landslide detection, susceptibility modelling and its implementation in early-warning systems. Moreover, it is reviewed how Citizen Science is adopted by scholars for providing valuable landslide-specific information, as well as couple of well-known platforms for Volunteered Geographic Information which have the potential to contribute and be used also in the landslide studies. In addition to proving an overview of the most popular techniques, this paper aims to highlight the importance of implementing interdisciplinary approaches

    Evaluation of the use high resolution satellite Imagery to map slope instability in a tropical environment: St. Thomas, Jamaica

    Get PDF
    Landslides are a major natural hazard in Jamaica, and have resulted in loss of life, major economic losses, social disruption and damage to public and private properties. There is a need to delineate areas that are prone to slope instability in order to mitigate their effects. The first and most important stage for the creation of a landslide risk maps is the collection of accurate landslide data in a timely manner. However the type of terrain makes landslide mapping particularly difficult. Aerial Photographs have proven to be an effective way of mapping landslides but acquiring new photographs to map recent landslides is very expensive. High resolution satellite imagery were evaluated for their effectiveness in delineating landslides. The landslides on a whole had no distinctive spectral property; hence no one classification technique could be used to identify them. This research developed integrative methods utilising a combination of: edge enhancement to delineate the scarps area; Wetness Index to identify back titling blocks and debris flow lobes where moisture is higher; shape classification (to distinguish from e.g. ground cleared for agriculture); and slope curvature to map scarps. The information from the image classification was combined in a GIS and automated to determine the probability of the presence and or absence of a landslides. Data derived was validated against detailed field mapping at a scale of 1:5000. For more recent landslides, the modelling proved to be effective, accurately identifying 91% of the landslide both in terms of the location and extent. For the older landslides Pre 2000) the mapping was less effective, with misclassification as high as 24% particularly for smaller landslides. However, the use of these imagery does have great potential as they prove useful for mapping new landslides quickly and efficiently after landslide disaster and are much cheaper and quicker to acquire.University of Chester, KT research grant, and as an outcome of statutory research no. 528-0302-0828 Faculty of Geodesy and Land Management, Institute of Geodesy, bUniversity of Warmia and Mazury in Olszty

    Third Earth Resources Technology Satellite Symposium. Volume 3: Discipline summary reports

    Get PDF
    Presentations at the conference covered the following disciplines: (1) agriculture, forestry, and range resources; (2) land use and mapping; (3) mineral resources, geological structure, and landform surveys; (4) water resources; (5) marine resources; (6) environment surveys; and (7) interpretation techniques

    Geomorphometry 2020. Conference Proceedings

    Get PDF
    Geomorphometry is the science of quantitative land surface analysis. It gathers various mathematical, statistical and image processing techniques to quantify morphological, hydrological, ecological and other aspects of a land surface. Common synonyms for geomorphometry are geomorphological analysis, terrain morphometry or terrain analysis and land surface analysis. The typical input to geomorphometric analysis is a square-grid representation of the land surface: a digital elevation (or land surface) model. The first Geomorphometry conference dates back to 2009 and it took place in Zürich, Switzerland. Subsequent events were in Redlands (California), Nánjīng (China), Poznan (Poland) and Boulder (Colorado), at about two years intervals. The International Society for Geomorphometry (ISG) and the Organizing Committee scheduled the sixth Geomorphometry conference in Perugia, Italy, June 2020. Worldwide safety measures dictated the event could not be held in presence, and we excluded the possibility to hold the conference remotely. Thus, we postponed the event by one year - it will be organized in June 2021, in Perugia, hosted by the Research Institute for Geo-Hydrological Protection of the Italian National Research Council (CNR IRPI) and the Department of Physics and Geology of the University of Perugia. One of the reasons why we postponed the conference, instead of canceling, was the encouraging number of submitted abstracts. Abstracts are actually short papers consisting of four pages, including figures and references, and they were peer-reviewed by the Scientific Committee of the conference. This book is a collection of the contributions revised by the authors after peer review. We grouped them in seven classes, as follows: • Data and methods (13 abstracts) • Geoheritage (6 abstracts) • Glacial processes (4 abstracts) • LIDAR and high resolution data (8 abstracts) • Morphotectonics (8 abstracts) • Natural hazards (12 abstracts) • Soil erosion and fluvial processes (16 abstracts) The 67 abstracts represent 80% of the initial contributions. The remaining ones were either not accepted after peer review or withdrawn by their Authors. Most of the contributions contain original material, and an extended version of a subset of them will be included in a special issue of a regular journal publication

    Spatial prediction of landslide susceptibility/intensity through advanced statistical approaches implementation: applications to the Cinque Terre (Eastern Liguria, Italy)

    Get PDF
    Landslides are frequently responsible for considerable huge economic losses and casualties in mountainous regions especially nowadays as development expands into unstable hillslope areas under the pressures of increasing population size and urbanization (Di Martire et al. 2012). People are not the only vulnerable targets of landslides. Indeed, mass movements can easily lay waste to everything in their path, threatening human properties, infrastructures and natural environments. Italy is severely affected by landslide phenomena and it is one of the most European countries affected by this kind of phenomena. In this framework, Italy is particularly concerned with forecasting landslide effects (Calcaterra et al. 2003b), in compliance with the National Law n. 267/98, enforced after the devastating landslide event of Sarno (Campania, Southern Italy). According to the latest Superior Institute for the Environmental Protection and Research (ISPRA, 2018) report on "hydrogeological instability" of 2018, it emerges that the population exposed to landslides risk is more than 5 million and in particular almost half-million falls into very high hazard zones. The slope stability can be compromised by both natural and human-caused changes in the environment. The main reasons can be summarised into heavy rainfalls, earthquakes, rapid snow-melts, slope cut due to erosions, and variation in groundwater levels for the natural cases whilst slopes steepening through construction, quarrying, building of houses, and farming along the foot of mountainous zone correspond to the human component. This Ph.D. thesis was carried out in the Liguria region, inside the Cinque Terre National Park. This area was chosen due to its abundance of different types of landslides and its geological, geomorphological and urban characteristics. The Cinque Terre area can be considered as one of the most representative examples of human-modified landscape. Starting from the early centuries of the Middle Ages, local farmers have almost completely modified the original slope topography through the construction of dry-stone walls, creating an outstanding terraced coastal landscape (Terranova 1984, 1989; Terranova et al. 2006; Brandolini 2017). This territory is extremely dynamic since it is characterized by a complex geological and geomorphological setting, where many surficial geomorphic processes coexist, along with peculiar weather conditions (Cevasco et al. 2015). For this reason, part of this research focused on analyzing the disaster that hit the Cinque Terre on October, 25th, 2011. Multiple landslides took place in this occasion, triggering almost simultaneously hundreds of shallow landslides in the time-lapse of 5-6 hours, causing 13 victims, and severe structural and economic damage (Cevasco et al. 2012; D\u2019Amato Avanzi et al. 2013). Moreover, this artificial landscape experienced important land-use changes over the last century (Cevasco et al. 2014; Brandolini 2017), mostly related to the abandonment of agricultural activity. It is known that terraced landscapes, when no longer properly maintained, become more prone to erosion processes and mass movements (Lesschen et al. 2008; Brandolini et al. 2018a; Moreno-de-las-Heras et al. 2019; Seeger et al. 2019). Within the context of slope instability, the international community has been focusing for the last decade on recognising the landslide susceptibility/hazard of a given area of interest. Landslide susceptibility predicts "where" landslides are likely to occur, whereas, landslide hazard evaluates future spatial and temporal mass movement occurrence (Guzzetti et al., 1999). Although both definitions are incorrectly used as interchangeable. Such a recognition phase becomes crucial for land use planning activities aimed at the protection of people and infrastructures. In fact, only with proper risk assessment governments, regional institutions, and municipalities can prepare the appropriate countermeasures at different scales. Thus, landslide susceptibility is the keystone of a long chain of procedures that are actively implemented to manage landslide risk at all levels, especially in vulnerable areas such as Liguria. The methods implemented in this dissertation have the overall objective of evaluating advanced algorithms for modeling landslide susceptibility. The thesis has been structured in six chapters. The first chapter introduces and motivates the work conducted in the three years of the project by including information about the research objectives. The second chapter gives the basic concepts related to landslides, definition, classification and causes, landslide inventory, along with the derived products: susceptibility, hazard and risk zoning, with particular attention to the evaluation of landslide susceptibility. The objective of the third chapter is to define the different methodologies, algorithms and procedures applied during the research activity. The fourth chapter deals with the geographical, geological and geomorphological features of the study area. The fifth chapter provides information about the results of the applied methodologies to the study area: Machine Learning algorithms, runout method and Bayesian approach. Furthermore, critical discussions on the outcomes obtained are also described. The sixth chapter deals with the discussions and the conclusions of this research, critically analysing the role of such work in the general panorama of the scientific community and illustrating the possible future perspectives
    • …
    corecore