753 research outputs found

    Outcome-Oriented Predictive Process Monitoring to Predict Unplanned ICU Readmission in MIMIC-IV Database

    Get PDF
    Unplanned readmission entails unnecessary risks for patients and avoidable waste of medical resources, especially intensive care unit (ICU) readmissions, which increases likelihood of length of stay and more severely mortality. Identifying patients who are likely to suffer unplanned ICU readmission can benefit both patients and hospitals. Readmission is typically predicted by statistical features extracted from completed ICU stays. The development of predictive process monitoring (PPM) technique aims to learn from complete traces and predict the outcome of ongoing ones. In this paper, we adopt PPM to view ICU stay from electronic health record (EHR) as a continuous process trace to enable us to discover clinical and also process features to predict likelihood of readmission. Using events logs extracted from MIMIC-IV database, the results show that our approach can achieve up to 65% accuracy during the early stage of each ICU stay and demonstrate the feasibility of applying PPM to unplanned ICU readmission prediction

    Precision Clinical Medicine Through Machine Learning: Using High and Low Quantile Ranges of Vital Signs for Risk Stratification of ICU Patients

    Get PDF
    Remote monitoring of patients in the intensive care unit (ICU) is a crucial observation and assessment task that is necessary for precision medicine. We have recently built a cloud-based intelligent remote patient monitoring (IRPM) framework in which we follow the state-of-the-art in risk stratification through machine learning-based prediction, but with minimal features that rely on vital signs, the most commonly used physiological variables obtained inside and outside hospitals. In this work, we significantly improve the functionality of the initial IRPM framework by building three machine learning models for readmission, abnormality, and next-day vital sign measurements. We provide a formal representation of a feature engineering algorithm and report the development and validation of three reproducible machine learning prediction models: ICU patient readmission, abnormality, and next-day vital sign measurements. For the readmission model, we proposed two solutions for data with imbalanced classes and applied five binary classification algorithms to each solution. For the abnormality model, we applied the same five algorithms to predict whether a patient will show abnormal health conditions. Our findings indicate that we can still achieve a reasonable performance using these machine learning models by focusing on low and high quantile ranges of vital signs. The best accuracy achieved in the readmission model was around 67.53%, with an area under the receiver operating characteristic (AUROC) of 0.7376. The highest accuracy achieved in the abnormality model was around 67.40%, with an AUROC of 0.7379. For the next-day vital sign measurements model, we provide three approaches for selecting model predictors and apply the eXtreme Gradient Boosting (XGB) and Random Forest Regression (RFR) algorithms to each solution. We found that, in general, the use of the most recent vital sign measurements achieves the least prediction error. Considering the large investment from the medical industry in patient monitoring devices, the developed models will be incorporated into an Intelligent ICU Patient Monitoring (IICUPM) module that can potentially facilitate the delivery of high quality care by implementing cost-efficient policies for handling the patients who utilize ICU resources the most

    An explanatory machine learning framework for studying pandemics: The case of COVID-19 emergency department readmissions

    Get PDF
    ArticleInPressOne of the major challenges that confront medical experts during a pandemic is the time required to identify and validate the risk factors of the novel disease and to develop an effective treatment protocol. Traditionally, this process involves numerous clinical trials that may take up to several years, during which strict preventive measures must be in place to control the outbreak and reduce the deaths. Advanced data analytics techniques, however, can be leveraged to guide and speed up this process. In this study, we combine evolutionary search algorithms, deep learning, and advanced model interpretation methods to develop a holistic exploratory- predictive-explanatory machine learning framework that can assist clinical decision-makers in reacting to the challenges of a pandemic in a timely manner. The proposed framework is showcased in studying emergency department (ED) readmissions of COVID-19 patients using ED visits from a real-world electronic health records database. After an exploratory feature selection phase using genetic algorithm, we develop and train a deep artificial neural network to predict early (i.e., 7-day) readmissions (AUC = 0.883). Lastly, a SHAP model is formulated to estimate additive Shapley values (i.e., importance scores) of the features and to interpret the magnitude and direction of their effects. The findings are mostly in line with those reported by lengthy and expensive clinical trial studies

    Scalable and accurate deep learning for electronic health records

    Get PDF
    Predictive modeling with electronic health record (EHR) data is anticipated to drive personalized medicine and improve healthcare quality. Constructing predictive statistical models typically requires extraction of curated predictor variables from normalized EHR data, a labor-intensive process that discards the vast majority of information in each patient's record. We propose a representation of patients' entire, raw EHR records based on the Fast Healthcare Interoperability Resources (FHIR) format. We demonstrate that deep learning methods using this representation are capable of accurately predicting multiple medical events from multiple centers without site-specific data harmonization. We validated our approach using de-identified EHR data from two U.S. academic medical centers with 216,221 adult patients hospitalized for at least 24 hours. In the sequential format we propose, this volume of EHR data unrolled into a total of 46,864,534,945 data points, including clinical notes. Deep learning models achieved high accuracy for tasks such as predicting in-hospital mortality (AUROC across sites 0.93-0.94), 30-day unplanned readmission (AUROC 0.75-0.76), prolonged length of stay (AUROC 0.85-0.86), and all of a patient's final discharge diagnoses (frequency-weighted AUROC 0.90). These models outperformed state-of-the-art traditional predictive models in all cases. We also present a case-study of a neural-network attribution system, which illustrates how clinicians can gain some transparency into the predictions. We believe that this approach can be used to create accurate and scalable predictions for a variety of clinical scenarios, complete with explanations that directly highlight evidence in the patient's chart.Comment: Published version from https://www.nature.com/articles/s41746-018-0029-

    Computational intelligence contributions to readmisision risk prediction in Healthcare systems

    Get PDF
    136 p.The Thesis tackles the problem of readmission risk prediction in healthcare systems from a machine learning and computational intelligence point of view. Readmission has been recognized as an indicator of healthcare quality with primary economic importance. We examine two specific instances of the problem, the emergency department (ED) admission and heart failure (HF) patient care using anonymized datasets from three institutions to carry real-life computational experiments validating the proposed approaches. The main difficulties posed by this kind of datasets is their high class imbalance ratio, and the lack of informative value of the recorded variables. This thesis reports the results of innovative class balancing approaches and new classification architectures
    corecore