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Abstract 

The Thesis tackles the problem of readmission risk prediction in healthcare systems from a 

machine learning and computational intelligence point of view. Readmission has been recognized 

as an indicator of healthcare quality with primary economic importance. We examine two specific 

instances of the problem, the emergency department (ED) admission and heart failure (HF) 

patient care using anonymized datasets from three institutions to carry real-life computational 

experiments validating the proposed approaches. The main difficulties posed by this kind of 

datasets is their high class imbalance ratio, and the lack of informative value of the recorded 

variables. This thesis reports the results of innovative class balancing approaches and new 

classification architectures. 
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Chapter 1 

Introduction 

This chapter provides a general introduction to the Thesis, providing a brief presentation of its 

contents, motivation, supporting publications and structure. It is structured as follows: Section 1.1 

presents the main motivations of the Thesis. Section 1.2 summarizes the main methodological and 

technical contributions. Section 1.3 enumerates the publications obtained during the research 

associated with this Thesis studies. Finally, Section 1.4 describes the structure of the Thesis. 

1.1. Motivation 

The application of predictive analytics techniques in the medical and clinical practice is gaining 

momentum because they can improve healthcare in several ways [Mortazavi2016]. Specifically, 

risk prediction models are widely used to predict the level of risk of individual patients or patient 

groups for different types of diseases and populations. Those models facilitate the identification of 

patients potentially at high risk so that resources can be used more efficiently in terms of cost-

benefit. 

In hospitals inside public and private healthcare service networks, there is a growing concern on 

the quality and sustainability of the service. Readmission events, defined as returning admissions 

to a hospital after a short time (below some specified threshold) after discharge from hospital, are 

widely recognized as healthcare quality indicators. Readmission threshold is a matter of political 

choice. Readmissions are costly events that impose tremendous burden on patients and on 

healthcare systems [Wallmann2013, Dharmarajan2013]. Preventable readmissions are related to 

suboptimal care during hospitalization and poor management of the discharge process 

[Swain2015, Balla2008]. Thus, hospital readmissions are becoming a strong concern of hospitals 

and policy makers as a measure of the quality of given care and have been adopted by many 

organizations as quality indicators [Baillie2013]. Centres of Medicare and Medicaid Services 
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(CMS) in the USA [CMS2011] and policy makers in UK [Kmietowicz2010] have introduced 

financial penalties to hospitals with high readmission rates by reducing the payment of patients 

readmitted within 30-day of discharge. This is a widely-used readmission threshold, but there are 

some studies where they use 28 days [Betihavas2015, Tsui2015], and we have even dealt with a 

short 3 days’ threshold in one of the studies reported in this Thesis. 

Readmission risk prediction models have become effective tools that help medical decision 

making and provide several benefits to both healthcare providers and patients [[Zheng2015]. 

Predictive models facilitate identification of patients at high risk for hospital readmissions and 

potentially enable direct specific interventions toward those who might benefit most 

[Walraven2010]. Interventions involving issues such as medication reconciliation, patient 

education, telephone follow-ups among others, have shown to effectively reduce readmission 

rates for patients after hospital discharge [Kripalani2014, Urma2017, Leppin2014]. 

However, some studies agree in concluding that predictive models based on administrative and 

clinical data discriminate poorly on readmissions [Ross2008, Kansagara2011, Dharmarajan2013, 

Mortazavi2016, [Krumholz2016]. The inherent difficulty of the problem and the limited 

discriminant power of the variables recorded in the dataset (i.e. the problem may be far from 

being linearly separable) may be the cause to the modest performance of the risk prediction 

models. 

Most of the models in the literature are based on traditional statistics, mainly logistic regression 

and survival analysis [Ross2008, [Zheng2015]. Increasingly, authors propose machine learning as 

one of the best ways in which data can be used to extract knowledge [Kadi2017]. 

Machine learning techniques can improve both discrimination and range of prediction over 

traditional statistical techniques, with the ability to leverage all available data and their complex 

relationships [Mortazavi2016]. 

This Thesis aims to contribute to the field of readmission risk prediction modelling by providing 

comparative studies on the application of state-of-the-art and some innovative machine learning 

techniques for model building. We have tackled the problem in two different medical areas which 

are commented below, namely emergency department readmissions and those related with heart 

failure patients. 

1.1.1. Emergency Department Readmissions 

The aging of global population is a recognized fact. The number of people aged over 65 is 

projected to grow from an estimated 524 million in 2010 to nearly 1.5 billion in 2050 worldwide 

[WHO2011]. This trend has a direct impact on the sustainability of health systems, in maintaining 

both public policies and the required budgets. 
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This growing population group represents an unprecedented challenge for healthcare systems. In 

developed countries, older adults already account for 12 to 21% of all Emergency Department 

(ED) visits and it is estimated that this will increase by around 34% by 2030 [Carpenter2011]. 

Older patients have increasingly complex medical conditions in terms of their number of 

morbidities and other conditions, such as the number of medications they use, existence of 

geriatric syndromes, their degree of physical or mental disability, and the interplay of social 

factors influencing their condition [Kansagara2011]. Recent studies have shown that adults above 

75 years of age have the highest rates of ED readmission, and the longest stays, demanding 

around 50% more ancillary tests [Lopez2011]. Notwithstanding the intense use of resources, these 

patients often leave the ED unsatisfied, with poorer clinical outcomes, and higher rates of 

misdiagnosis and medication errors [Han2009] compared to younger patients. Additionally, once 

they are discharged from the hospital, they have a high risk of adverse outcomes, such as 

functional worsening, ED readmission, hospitalization, death and institutionalization 

[Guidelines2014]. 

1.1.2.  Heart Failure 

Heart failure (HF) is a clinical syndrome characterized by typical symptoms (e.g. breathlessness, 

ankle swelling and fatigue) caused by a structural and/or functional cardiac abnormality, resulting 

in a reduced cardiac output and/or elevated intra-cardiac pressures at rest or during stress. 

Demonstration of an underlying cardiac cause is central to the diagnosis of HF. This is usually a 

myocardial abnormality causing ventricular dysfunction or abnormalities of the valves, 

pericardium, endocardium, heart rhythm and conduction [Ponikowski2016]. The prevalence of HF 

is approximately 1–2% of the adult population in developed countries, rising to ≥10% among 

people >70 years of age [Mosterd2007]. Cardiovascular diseases and pathological processes such 

as HF have the highest 30-day readmission rates [Jencks2009]. In USA, it is estimated that almost 

half of the Medicare beneficiaries are readmitted within 6 months after a hospitalization for 

congestive HF [Krumholz1997]. 

1.2. Thesis Contributions 

The following are the technical and methodological contributions to the field of predictive models 

for readmission in this Thesis: 

● We carry out a systematic literature review, through a thorough analysis of the most 

significant and recent literature on readmission risk prediction modelling 
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● We contribute an innovative ensemble method that combines data resampling with 

bootstrap aggregating (bagging) and an ensemble of Extreme Learning Machine (ELM) 

and Decision Tree (DT) pairs for modelling heavily imbalanced datasets 

● We carry out a detailed analysis of the state-of-the-art approaches addressing the issue of 

class imbalance. Different methods for alleviating the majority class bias are evaluated 

using real life medical datasets 

● We present a real-life application of the recently published Anticipative Hybrid Extreme 

Rotation Forest (AHERF), which is a heterogeneous ensemble classifier that anticipates 

which classifier architecture is better suited for the problem domain at hand 

● We provide an overview and evaluation of common approaches for feature selection in 

readmission risk prediction. We evaluate the performance of some of the most relevant 

techniques in the field using real use-case data 

● We design and implement a software toolbox for predictive modelling in readmission, 

distributed as open source software1. In addition, a synthetic dataset is included for testing 

purposes, which has been generated in accordance with the statistics of the real datasets 

used in this Thesis 

1.2.1. On the curation of the experimental datasets 

Although it’s been extensively reported, we believe that it is necessary to stress the importance of 

data preparation in general, and data cleansing in particular. Often, when working with most of 

publicly available datasets, most data preprocessing is already done and thus, it is transparent to 

the data scientist, whose effort can be focused on carrying out machine learning experiments. 

However, the real-life datasets that we have been provided with are in a quite different state. Most 

of times, data was delivered to us in several ASCII or spreadsheet files, often containing 

incongruences and erroneous data. Let this example help illustrate the problem: One of the 

datasets came from a study regarding a telemonitoring program for specific kind of patients. The 

user interface presented to the patients in the telemonitoring program (via a PDA) provided a free 

text field for reporting data such as weight or systolic and diastolic blood pressure, instead of 

using proper float or integer constrained set of form fields (even with input coherence check). 

Therefore, I had to spend long working hours figuring out the way the patient wrote down the 

data, and implementing appropriate scripts to filter millions of data entries. This minor design 

flaw means that data is unreliable even after such cleaning since patients will always be able to 

                                                
1 https://github.com/aartetxe/par-toolbox 
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invent innovative ways of annotating the required measurement values if no guidance or control is 

provided. The consequence is that most of the researchers in the data science field spend more 

time data sanitizing than in model building. As a corollary, we learnt that data preparation is a 

time and resource consuming task intrinsic to data mining that shouldn’t be underestimated, under 

penalty of jeopardizing a data analysis project (in terms of both tasks and budget). 

1.3. Publications 

The following publications are the direct result of the works reported in this Thesis. 

1. Arkaitz Artetxe, Manuel Graña, Andoni Beristain, Sebastián Ríos. Balanced training of a 

hybrid ensemble method for imbalanced datasets: A case of emergency department 

readmission prediction. Neural Computing and Applications (2017) (Accepted). [JCR 

(2016): 2.505, 5-year: 2.012, Q2] 

2. Arkaitz Artetxe, Manuel Graña, Andoni Beristain, Sebastián Ríos. Emergency 

Department Readmission Risk Prediction: A Case Study in Chile. In International Work-

Conference on the Interplay Between Natural and Artificial Computation (pp. 11-20). 

Springer, Cham (2017). 

3. Arkaitz Artetxe, Nekane Larburu, Nekane Murga, Vanessa Escolar, Manuel Graña. Heart 

Failure Readmission or Early Death Risk Factor Analysis: A Case Study in a 

Telemonitoring Program. In International Conference on Innovation in Medicine and 

Healthcare (pp. 244-253). Springer, Cham (2017). 

4. Arkaitz Artetxe, Borja Ayerdi, Manuel Graña, Sebastian Rios, Using Anticipative Hybrid 

Extreme Rotation Forest to predict emergency service readmission risk. Journal of 

Computational Science, vol. 20, p. 154-161 (2017). [JCR (2016): 1.748, 5-year: 2.009, 

Q2] 

5. Arkaitz Artetxe, Andoni Beristain, Manuel Graña, Ariadna Besga. Predicting 30-Day 

Emergency Readmission Risk. In Proceedings of the International Joint Conference 

SOCO'16-CISIS'16-ICEUTE'16. ICEUTE 2016. Advances in Intelligent Systems and 

Computing, vol. 527, pp.3-12. Springer, Cham (2016). 

Other publications by the PhD student not directly related to the topics presented in this Thesis: 

6. Arkaitz Artetxe, Gorka Epelde, Andoni Beristain, Ane Murua, Roberto Álvarez. Gaining 

Insight from Physical Activity Data using a Similarity-based Interactive Visualization. In 
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Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer 

Graphics Theory and Applications ISBN 978-989-758-175-5, pages 115-122. DOI: 

10.5220/0005675701150122 (2016) 

7. M. Alberich, A. Artetxe, E. Santamaría-Navarro, A. Nonell-Canals, G. Maclair, 

GENESIS - Cloud-Based System for Next Generation Sequencing Analysis: A Proof of 

Concept, Innovation in Medicine and Healthcare 2016, Smart Innovation, Systems and 

Technologies, vol 60, pp 291-300. Springer, Cham (2016). 

8. Álvarez, R., Murua, A., Artetxe A., Epelde G. & Beristain A. A platform for user 

empowerment through Self Ecological Momentary Assessment / Intervention. 

Proceedings of 5th EAI International Conference on Wireless Mobile Communication 

and Healthcare (2015) 

9. Carrasco, E., Sánchez, E., Artetxe, A., Toro, C., Graña, M., Guijarro, F., Susperregui 

J.M., Aguirre, A. Hygehos Home: an innovative remote follow-up system for chronic 

patients. Innovation in Medicine and Healthcare 2014, 207, 261 (2015). 

10. Iker Mesa, Eider Sanchez , Carlos Toro , Javier Diaz , Arkaitz Artetxe , Manuel Graña , 

Frank Guijarro , Cesar Martinez , Jose Manuel Jimenez , Shabs Rajasekharan , Jose 

Antonio Alarcon & Alessandro De Mauro: Design and Development of a Mobile Cardiac 

Rehabilitation System. Cybernetics and Systems: An International Journal, 45:2, 92-108 

(2014) [JCR (2014): 0.84, 5-year: 0.968, Q3] 

11. Arkaitz Artetxe, Andoni Beristain, Luis Kabongo. Activity Classification Using Mobile 

Phone based Motion Sensing and Distributed Computing. Studies in health technology 

and informatics, 207, 1-10 (2013) 

12. Arkaitz Artetxe, Eider Sanchez, Carlos Toro, Cesar Sanín, Edward Szczerbicki, Manuel 

Graña, Jorge Posada: Impact of Reflexive Ontologies in Semantic Clinical Decision 

Support Systems. Cybernetics and Systems: An International Journal 44(2-3): 187-203 

(2013) [JCR (2013): 0.507, 5-year: 0.77, Q3] 

13. Eider Sanchez, Carlos Toro, Arkaitz Artetxe, Manuel Graña, Cesar Sanín, Edward 

Szczerbicki, Eduardo Carrasco, Frank Guijarro: Bridging challenges of clinical decision 

support systems with a semantic approach. A case study on breast cancer. Pattern 

Recognition Letters 34(14): 1758-1768 (2013) [JCR (2013): 1.062, 5-year: 1.466, Q3] 
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14. Iker Mesa, Eider Sanchez, Javier Diaz, Carlos Toro, Arkaitz Artetxe. GoCardio: A novel 

approach for mobility in cardiac monitoring. InImpact: The Journal of Innovation Impact, 

vol. 6(1), p. 110 (2016) 

15. Arkaitz Artetxe, Eider Sanchez, Carlos Toro, Cesar Sanín, Edward Szczerbicki, Manuel 

Graña, Jorge Posada: Speed-up of a Knowledge-Based Clinical Diagnosis System using 

Reflexive Ontologies. KES 2012: 1480-1489 (2012) 

16. Eider Sanchez, Carlos Toro, Arkaitz Artetxe, Manuel Graña, Eduardo Carrasco, Frank 

Guijarro: A Semantic Clinical Decision Support System: conceptual architecture and 

implementation guidelines. KES 2012: 1390-1399 (2012) 
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Figure 1.1. Thesis structure 
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1.4. Structure of the Thesis 

The contents of the Thesis (shown diagrammatically in Figure 1.1) are structured as follows: 

● Chapter 2 introduces the readmission risk prediction problem and provides background 

information related with the main contributions of this Thesis. This chapter contains a 

detailed systematic review of the state-of-the-art techniques and methodologies related 

with readmission risk prediction models. 

● Chapter 3 describes the datasets that were used for the computational experiments carried 

out in this Thesis. 

● Chapter 4 provides the definition of the computational methods used in the experiments, 

along with a description of the related methodological issues. Several feature selection 

techniques, class imbalance addressing approaches and classification algorithms used in 

this Thesis are presented. 

● Chapter 5 presents the experimental results of the studies developed in the two areas of 

healthcare tackled in this Thesis: Emergency Department and Heart Failure readmission 

risk prediction.  

● Chapter 6 provides the conclusions of the Thesis and proposes some future work. 

 

Complementarily, 2 appendices are included in the Thesis. 

● Appendix A: Describes the HF patient telemonitoring program, which is part of the 

working scenarios of this Thesis. 

● Appendix B: Presents the results of the systematic review on readmission risk prediction 

models. 
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Chapter 2 

State of the Art 

This chapter provides a description of the Thesis’ most relevant concepts by a systematic 

literature review, in which a thorough analysis of the most significant readmission risk predictive 

modelling studies is carried out. Next, we briefly describe heart failure from the medical point of 

view, discussing some predictive modelling studies related to this disease. 

2.1. Predictive Models for Readmission Risk: A Systematic 

Review 

Readmission prediction models are not new, and there exists a plethora of studies addressing this 

problem. A query about readmission prediction in Google Scholar returns about 28,500 hits, 

which is a clear indicator of the interest of the scientific community in the topic. The high number 

of published studies covers a wide spectrum of approaches, which justifies the work on a 

thorough review in order to achieve a map of the relevant procedures and issues regarding the 

topic. 

Some authors have performed bibliographic review studies with the objective of synthesizing the 

literature on prediction models for the estimation of readmission risk. In 2011 Kansagara et al. 

[Kansagara2011] presented the most referenced systematic review paper about this topic. It was 

focused on model description and performance comparison in order to assess model suitability for 

clinical or administrative use. Authors conclude that most readmission risk prediction models 

perform poorly so that efforts to improve their performance are still needed. The study also 

concludes that readmission risk prediction is a complex problem by nature, with many inherent 

difficulties and inescapable traps, such as the small number of variables which are very noisy and 

not very much informative. 
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In 2015 Swain et al. [Swain2015] conducted a semi-systematic review of readmission predictive 

factors from predictive modeling papers published prior to March 2013. This review was, to some 

degree, based on [Kansagara2011] since its citations were automatically included within the 

potentially relevant article’s list. Other studies concentrate on a certain subpopulation rather than 

covering all the published risk prediction models. Ross et al. [Ross2008] conducted a review of 

statistical models for the readmission of heart failure (HF) patients. This work included the 

identification of analytic models, apart from identifying patient characteristics associated with 

readmission. A more recent study from Leppin et al. [Leppin2014] reviewed randomized trials 

that assessed the effect of interventions intended to prevent 30-day hospital readmissions. 

Most of the previous review studies have focused on measuring the discrimination ability of the 

models and identifying predictive characteristics associated with readmission. In different but 

related fields, review studies targeting the analysis of data analysis approaches can be found. For 

instance, [Kadi2017] is a recent systematic literature review on data mining techniques applied in 

cardiology. 

Nevertheless, to our knowledge no review study covering data mining techniques, including 

feature selection and class imbalance, has been presented in the field of readmission prediction. 

2.1.1. Research methodology 

A systematic review is a formal method that enables the identification, assessment and 

interpretation of all available studies relevant to a specific research question, topic area or subject 

of interest [Brereton2007]. Systematic reviews differ from narrative reviews in that they are based 

“on a clearly formulated question that uses systematic and explicit methods to identify, select and 

critically appraise relevant primary research, and to extract and analyse data from the studies that 

are included in the review” [Khan2003]. 

In this work, we conduct a systematic review following the three stages proposed by Tranfield et 

al. [Tranfield2003], namely planning, conducting and reporting, as illustrated in Figure 2.1. 

 

Figure 2.1. Phases of a systematic review according to [Tranfield2003] 
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According to this methodology, first we define the research questions. Secondly, we define the 

search strategy by identifying the source databases and the inclusion and exclusion criteria. Next, 

we present the data extraction procedure and, finally, we present the results. 

2.1.2. Research questions 

The overall objective of our systematic review is to identify and analyse the most significant 

research studies carried out on the topic of readmission risk prediction. More precisely, this 

review examines the data analysis methods utilized in these studies, paying special attention to 

data mining techniques. Table 2.1shows the research questions that guided this review. 

Table 2.1. Research questions 

# Research Question Rationale 

Q1 Which data analysis methods were used 

in readmission risk prediction? 

To identify the most common procedures that 

are applied for model construction in 

readmission risk prediction. 

Q2 Which data mining techniques were used 

in readmission risk prediction? 

To identify which data mining techniques are 

used for readmission risk prediction model 

construction. 

Q3 What is the overall performance of 

models in readmission risk prediction? 

To assess the discrimination ability of the 

models in readmission risk prediction. 

 

Given that the second research question (Q2) is broad, it was divided into three sub-questions: 

● Q2.1 Classification algorithms, 

● Q2.2 Feature selection techniques, and 

● Q2.3 Techniques addressing class imbalance issues. 

2.1.3. Search strategy 

Search engines 

We chose PubMed and Google Scholar search engines to retrieve the primary literature 

references. Google Scholar was selected because of its broad coverage of general scientific 

publications, while PubMed provided access to the more specialized MEDLINE (Medical 

Literature Analysis and Retrieval System Online) database. 
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Table 2.2 shows the search strings used with the search engines. The search strings were designed 

to achieve an appropriate trade-off between coverage and manageable size of the retrieved 

reference list. 

Table 2.2. Search strings 

Database Search term 

Google Scholar ((readmission) OR (rehospitalization)) AND ((“prediction model”) OR 

(“predictive model”) OR (“risk model”)) 

PubMed ((readmission*) OR (rehospitalization*)) AND (("prediction model") OR 

("predictive model")) 

 

Additionally, we added the reference lists of main review articles to the references used in the 

analysis, assuming their quality. 

Search limits 

The following search limitations were applied: 

● Peer-reviewed journal articles in English 

We limited the search to indexed journal articles written in English language. Peer-reviewed 

journal articles are considered to provide a good view of accepted and validated 

methodologies and knowledge. 

● Search within 

We performed the search using all fields available, that is, we do not restrict the search to the 

title and abstract or to a particular subject area. Our main goal was not to disregard high 

impact papers due to restrictive search conditions. 

● Published between 

We did not restrict our search to a precise time frame. Citations were collected on February 

15, 2017 so that very few studies published in 2017 were included. It’s worth noting that, due 

to the delays related to journal publishing, some studies accepted for publication in late 2016 

may not be included. 

Moreover, we excluded studies whose target population were patients that underwent certain 

surgical procedure for being too specific. 

Data extracted from the publications 

For each study included in the review, we have extracted and summarized data associated with the 

research questions defined. Analytic model was extracted in relation to Q1. We collected the 

AUC metric (Area Under the Roc Curve) if reported as the canonical measure for discrimination 
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ability (Q3) of the models. The different sub-questions of Q2 lead us to the collection of the 

following information: Feature selection technique, procedures addressing class-imbalance 

applied, and readmission rate, which is directly related to the imbalance-ratio (see Section 4.1). 

Additionally, target population, readmission threshold (in hours, days or months) and dataset size 

(number of instances of the dataset) were also collected. 

2.1.4. Results 

In this section, we present the results of our systematic review study. First, we present an 

overview of the results and following we discuss specific research questions. 

Overview of selected studies 

As shown in Figure 2.2, we gathered 208 eligible references from the search engines. Duplicated 

references (32) in the merged list retrieved from both databases were excluded. To this list, we 

added references extracted from the reference lists of main review articles in the literature (43 

additional references). At this step, we had a dataset consisting of 219 potentially relevant 

references for analysis and review. In the following step, 95 references were excluded based on 

the review of the title and abstract. Further reviews excluded 58 articles that did not fulfil the 

predefined inclusion criteria. 32 of them were excluded due to the language and peer-review 

criteria. 11 citations were excluded for not including a readmission prediction model and 15 were 

discarded for being out of the review scope. 
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Figure 2.2. Flow diagram of the selection process 
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Figure 2.3 shows the number of papers (only covers studies included in the review) per year. Can 

be noticed that the number of papers has increased in recent years, reaching a peak in 2015 and 

2016. Nevertheless, it’s worth noting that the number of papers corresponding to 2017 is not the 

final count since the search was performed on 15th February 2017. In addition, the value for 2016 

should also be considered with caution, since probably some 2016 papers were not yet indexed on 

early 2017, when this survey was carried out. 

 

 

Figure 2.3. Number of publications per year 

Data analysis methods 

Readmission risk prediction has been addressed from different perspectives. Early studies have 

been conducted using conventional statistical multivariate modelling, which has been widely used 

in medical research. Fundamentally two different but related procedures from classical statistical 

modelling approaches have been used: regression analysis and survival analysis. Both techniques 

consist basically in defining a binary outcome (readmitted or not), and fitting a multivariate model 

over a given set of samples (aka instances), each composed of multiple features (aka variables, 

predictors or covariates) describing the facts related to the event, such as patient demographics, 

physiological state, etc. 

Regression analysis estimates the probability of the target variable from some linear combination 

of the predictors. Binary logistic regression is a regression model where the target variable is 
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binary, that is, it can take only two values, 0 or 1. It is the most utilized regression model in 

readmission prediction, where the output is modelled as readmitted (1) or not readmitted (0). 

Survival models, on the other hand, use the features to compute an estimate of the time that passes 

before the event of interest (i.e. readmission) occurs. 

In recent years, machine learning and data mining have emerged as approaches with big 

potentiality to improve the prediction ability of the readmission risk prediction models. Those 

techniques include classification algorithms widely used in multiple fields for predictive 

modelling of the most diverse tasks. However, machine learning techniques are not limited to the 

construction of the classifier, but they also encompass a wider set of techniques such as feature 

selection, variable discretization and normalization, missing value imputation, and many others. 

Figure 2.4 presents a simplified taxonomy of procedures held in the studies included in this 

review. Figure 2.5 shows the evolution in time of the proportion of modelling techniques 

regarding the type of approach. A trend can be devised where machine leaning (ML) techniques 

emerged during the last years are gaining relevance over the classical techniques. 

 

 

Figure 2.4. Taxonomy of data analysis methods 
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Figure 2.5. Distribution of methods per type and year (note that years without any publication 

included in the study are not present) 

Feature selection techniques 

Feature selection, aka feature subset selection (FSS), is a common practice in many data analytic 

fields aiming to identify the most significant variables of a dataset. In medicine, it is of special 

importance since it allows identifying the key factors associated to a disease, or a specific risk 

condition. Moreover, feature selection is of special interest for its ability to reduce the number of 

features, what simplifies model’s complexity and reducing overfitting. This is particularly 

important in the clinical environment, where data acquisition is often related to costly procedures. 

In the context of readmission risk prediction, feature selection is tightly related to the 

classification model used. Here we can clearly distinguish the classical approach, consisting on a 

regression analysis procedure preceded by a univariate parametric or model-free method that 

selects the most significant variables to be included in the model. The most extended feature 

selection procedure is to carry out a univariate/bivariate analysis by means of statistical tests such 

as Student’s t-test, chi2, Wilcoxon or ANalysis Of VAriance (ANOVA), among others. 

Significant predictors from the univariate/bivariate analyses are then included in the final model. 

Variables with p-values lower than a pre-established threshold (typically 0.001 

[AbdelRahman2014] though it may change from one study to another) are considered statistically 

significant features. A more refined hybrid approach that includes a stepwise [Greenland1989] 

approach is widely utilized with regression-based models.  

The (logistic) regression with a multi-step heuristic approach consists in the following steps: 

 



State of the Art  20 

1. Univariate variable selection (optional): For every feature, a univariate logistic regression 

model is built. Only features with a p-value from a Likelihood Ratio test below a specified 

threshold are retained. 

2. A multivariate logistic regression is built on a stepwise fashion. There are two basic 

approaches: 

a. Forward selection: initializes the model with an empty set of selected features and 

iteratively adds features, retaining only those whose addition shows statistically significant 

improvement of the fit. 

b. Backward elimination, which initializes the model with the whole set of features 

proceeding by iteratively removing the features that do not improve (or do worsen) the 

model fit. 

3. A final logistic regression model is built using the features selected in previous steps. 

 

There is a wide variety of feature selection techniques that are utilized in the studies following 

data mining approaches for readmission risk prediction. Abdelrahman et al. [AbdelRahman2014] 

systematically evaluated different feature selection and ranking methods such as wrapper subset 

selection, information gain, gain ratio and symmetrical uncertainty. Cai et al. [Cai2016] used a 

correlation-based feature selection (CBFS) method for selecting the most significant features. 

Some other authors follow an embedded feature selection approach, which consists in conducting 

the feature search within the classifier itself, as part of the learning process. Nevertheless, many of 

the DM papers do not report the use of any specific feature selection approach. 

Class imbalance 

In readmission prediction, as well as in many other fields (e.g. fraud detection or fault diagnosis), 

instances of the event of interest are outnumbered by the “other events” instances. In supervised 

classification, data imbalance occurs when the a priori probabilities of the classes are 

significantly different, i.e. there exists a minority (positive) class that is underrepresented in the 

dataset in contrast to the majority (negative) class. Often the goal is the detection of the minority 

class instances, while the majority class is the collection of “other things” in the universe where 

classification is desired. Most classification algorithms assume equal a priori probabilities for all 

classes, so when the training dataset is imbalanced, the resulting model is biased towards the 

majority class. 

Readmission prediction is an intrinsically imbalanced problem. All-population 30-day 

readmission rate is estimated in a 20% [Jencks2009], although it varies greatly depending on 

multiple factors (e.g. readmission threshold, subpopulation characteristics etc.). The level of class 



State of the Art  21 

imbalance of a dataset is given by the imbalance ratio (IR), so that a IR of 1:10 expresses that for 

each sample of the positive class, there are 10 samples of the negative class. 

Unlike most classification algorithms used in machine learning (e.g. decision trees or linear 

discriminant analysis), linear regression is not affected by class imbalance (at least for modestly 

imbalanced data) [Crone2012]. Thus, while regression-based approaches do not suffer the class 

imbalance problem, it is a relevant problem that arises when machine learning approaches are 

implemented. 

As shown in Table 2.3, most studies using machine learning algorithms do not report the use of 

any procedure correcting class imbalance. Among those who actually do something, resampling is 

the most utilized strategy to overcome class imbalance, either subsampling the majority class or 

oversampling the minority class. 
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Table 2.3. Class imbalance addressing methods in readmission risk prediction 

Paper Class imbalance addressing IR 

amalakuhan2012 - 1:2.1 

Au2012 - 1:5.3 

abdelrahman2014 - 1:5.3 

walsh2014 sub-sampling 1:14 

Yu2015 - 1:5.3 

Zheng2015 random oversampling 1:4.6 

cai2016 - - 

fisher2016 - 1:4 

turgeman2016 boosting 1:3.6 

Mortazavi2016 sub-sampling/oversampling/weighting1 1:6.8 

bergese2017 - 1:45.5 

1weighting chosen for final model 

  

Most studies included in this review employ basic random over or sub sampling techniques. There 

are some cases [[Zheng2015] using more sophisticated resampling methods, such as SMOTE 

(Synthetic Minority Oversampling Technique) [Chawla2002]. In [Mortazavi2016] different 

methods are compared, including resampling (oversampling and subsampling) and cost-sensitive 

learning (weighting). According to the authors, weighting achieved the best results, and, hence, 

they included it in their final model. By contrast, Turgeman et al. [Turgeman2016] used boosting, 

which is an ensemble meta-algorithm also known to overcome the bias towards the majority class. 

2.1.5. Discussion 

Different approaches reported in different studies cannot be directly compared since each study 

has its own particular characteristics in population, definition of the problem, computational 

methods and evaluation metrics. 

The Area Under Receiver Operating Characteristic (ROC) Curve or c-statistic is the standard de 

facto metric for measuring the discrimination ability of readmission risk prediction models. The 

main goal of some papers is to identify predictors associated to readmission. Often, this kind of 

studies do not provide the c-statistic as the overall performance metric. Regarding the 

discrimination ability of the models, most papers report modest AUC scores, mostly below 0.75, 
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in agreement with the results presented in [Kansagara2011]. Nevertheless, 16 models reported 

AUC scores above 0.75 and 21% of the studies did not report AUC metric. However, 

discrimination of the models is not comparable since it is greatly influenced by the population 

subject to study as well as by factors such as readmission length threshold. 

The most widely used readmission threshold is 30-day. It is used by 75% of the reviewed papers, 

although we found time spans ranging from 48 hours to 1 year. Consequently, readmission rates 

also vary depending on this threshold. Longer readmission thresholds are related to higher 

readmission rates and vice versa. However, other factors such as the population subject to study or 

the type of clinical study, can greatly influence this indicator. 

There exists a discussion about what separates “traditional” applied statistics from machine 

learning. Even though we consider that there is considerable overlap among them, in this work we 

separate “traditional” methods from data mining or machine learning techniques. All the same, we 

are aware that many researchers accept that regression analysis (which we have excluded from 

machine learning) does actually make part of machine learning. We found very few studies were 

both approaches are compared under the same conditions. Most salient is the work by Futoma et 

al. [Futoma2015], where a comparison of logistic regression, stepwise logistic regression, random 

forest, SVM and deep neural networks is presented. Authors conclude that overall predictive 

accuracy can be improved moving from standard logistic regression to more complicated non-

linear models although resulting models may be difficult to tune and interpret. 

2.2. Heart Failure readmission risk 

Heart failure (HF) is a clinical syndrome characterized by typical symptoms (e.g. breathlessness, 

ankle swelling and fatigue) caused by a structural and/or functional cardiac abnormality, resulting 

in a reduced cardiac output and/or elevated intra-cardiac pressures at rest or during stress. 

Demonstration of an underlying cardiac cause is central to the diagnosis of HF. This is usually a 

myocardial abnormality causing ventricular dysfunction or abnormalities of the valves, 

pericardium, endocardium, heart rhythm and conduction [Ponikowski2016]. The prevalence of 

HF is approximately 1–2% of the adult population in developed countries, rising to ≥10% among 

people >70 years [Mosterd2007]. Cardiovascular diseases such as HF have the highest 30-day 

readmission rates [Jencks2009]. In USA, it is estimated that almost half of the Medicare 

beneficiaries are readmitted within 6 months after a hospitalization for congestive HF 

[Krumholz1997]. 

Over the last 30 years, improvements in treatments and their implementation have increased 

survival but the outcome often remains unsatisfactory. Most recent European data (ESC-HF pilot 
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study) demonstrates that 12-month mortality rates for HF patients are between 7% and 17%, and 

the 12-month hospitalization rates are between 32% and 44% [Ceia2002]. 

The negative effects of cardiovascular disease (CVD) are not limited only to the individual’s 

health. When CVD causes hospitalizations, short-term expenses tend to be extremely high. Costs 

include ambulance rides, diagnostic tests, hospital stays, and immediate treatment that may 

include surgery. Short-term costs aside, CVD remains expensive for the long-term due to the price 

of drugs, tests to monitor the progress of the disease, and frequent doctor appointments 

[HSA2011]. The high cost of CVD is compounded by the lack of productivity and income that 

such patient may have [Anand2006]. Additionally, high rates of readmission after hospitalization 

for HF impose tremendous burden on patients and on the healthcare system. 

In this context, predictive models facilitate the identification of patients at high risk for hospital 

readmissions and potentially enable direct specific interventions toward those who might benefit 

most by identifying key risk factors. However, current predictive models using administrative and 

clinical data discriminate poorly on readmissions [Kansagara2011]. That is the reason why some 

studies have been developed in order to try to define whether machine learning would enhance 

prediction [Mortazavi2016]. 

Nevertheless, it remains unclear whether it is possible to predict and prevent hospital readmission 

and mortality in patients with HF. Currently, there are several healthcare programs where patient 

monitoring is carried out, so that clinicians can check patients’ progress [Riley2009, Cleland2005, 

Lusignan2001, U4H2017]. 

In some cases, clinicians define some simple rules, so that they can get some alerts that may 

indicate the deterioration of a patient [Mosterd2007]. In other cases, as shown in Mobiguide EU 

project, the system implements the local clinical guidelines and extend them to guide patients 

during their daily life [Ceia2002]. However, due to the lack of time of clinicians and the lack of 

suitable IT solutions, clinicians do not exploit the monitored information.  

2.2.1. Related Studies 

Most studies follow methodologies based on statistical approaches, where logistic regression and 

Cox proportional hazard models are the most extended techniques. Among the studies that follow 

a traditional regression-based approach, a common procedure for dimensionality reduction is to 

apply wrapper feature selection techniques known as stepwise procedures, namely forward 

selection, backwards elimination or stepwise regression. These techniques consist in sequentially 

adding or removing features into/from a feature subset according to the estimated performance of 

a multivariate regression model. Often, a previous univariate feature selection is performed, where 

not-significant features (those with a p-value greater than a given threshold) are removed. With 
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this preliminary step, it is intended that only significant features are passed to the following 

feature selection step 

Some authors [Mortazavi2016] have pointed out that other approaches for risk prediction, such as 

machine learning, can be utilized to achieve better performance, comparing the predictive 

performance of traditional statistics methods (logistic regression and Poisson regression) and 

machine learning methods (Random Forest, Boosting and SVM). In [Kadi2017] a review of 

studies on the application of data mining techniques in cardiology is presented where Neural 

Networks, Decision Trees and SVMs are identified as the most frequently used predictive 

techniques. Some recent studies [Au2012, [Zheng2015, Turgeman2016] make use of machine 

learning techniques, where Support Vector Machine (SVM) and Random Forest (RF) are the most 

utilized algorithms. In [Au2012] authors undertook RF analysis for predicting unplanned 

readmission or death within 30 day of discharge after a HF hospitalization. Prediction ability of 

the features selected by RF were compared with the variables in the LACE score [Walraven2010]. 

On the other hand, [Turgeman2016] presented an ensemble algorithm combining boosted decision 

trees and SVM. 

Zheng et al. [[Zheng2015] studied the risk prediction of hospital readmissions in HF patients 

using metaheuristic and data mining approaches. Authors indicate the need of compensation 

strategies that address the class imbalance, suggesting over-sampling techniques such as SMOTE. 

2.3. Conclusions 

Although classical statistical techniques have prevailed and are still popular techniques in medical 

studies, machine learning approaches have emerged in the last years as a promising set of 

techniques that can improve the predictive ability of readmission risk prediction models. Still, 

univariate and stepwise regression are the dominant modelling methods, while additional feature 

selection methods are infrequent. Within the studies that use data mining techniques, we found 

that class imbalance is only addressed in a minority of them, though it is a major shortcoming of 

conventional machine learning. 

Regarding feature selection techniques, we observed that conventional univariate approaches are 

the most extended. Stepwise regression is also an extended feature reduction procedure intended 

to produce parsimonious models. Recent studies introducing machine learning techniques report 

promising results and anticipate advantages over classical methods. Nevertheless, further 

comparative studies are needed to assess the real impact of this techniques in the domain of 

readmission risk prediction. Moreover, further areas of machine learning such as feature selection, 

class imbalance or variable discretization remain still largely unexplored. 
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In readmission prediction like in many other medical fields, data is intrinsically class-imbalanced. 

General 30-day readmission rate varies from 11% to 25% [Jencks2009, Silverstein2008, 

Desai2012] depending on the population subject to study. In supervised classification, class 

imbalance imposes a bias towards the majority class that leads to a higher misclassification rate of 

the minority class instances (which are usually the most interesting ones from the practical point 

of view [Lopez2013]). Although this effect is not that significant for regression analysis, most of 

machine learning techniques assume equal a priori probability for all the classes, so that class 

imbalance is an issue that must be addressed. 

Feature selection is another challenge that must be tackled when applying machine learning 

techniques in the readmission prediction domain. Feature reduction is of great importance since it 

reduces noise, avoids collinearity and reduces the cost since in a clinical context, measuring 

variables may be expensive. Traditional procedures include univariate parametric methods such as 

t-test, chi2 or regression [Bradford2016] and wrapper methods, mainly stepwise regression. 

Nevertheless, machine learning methods can be used to improve model’s performance thanks to 

their ability to leverage all available data and their complex relations. 
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Chapter 3 

Dataset 

This chapter is devoted to the description of the datasets that support the experimental works of 

this Thesis. These datasets were directly provided by physicians through their information and 

communication (ITC) services, such as the one of Osakidetza, the Basque public health service 

provider, and the Hospital José Joaquín Aguirre of the Universidad de Chile. We received the data 

after being anonymized, so that all issues of ethics and data privacy were already solved by the 

providers. In the following sections, we present the three datasets that we used, named according 

to their place of origin: University Hospital of Araba, Hospital José Joaquín Aguirre of the 

Universidad de Chile, and Hospital of Basurto. 

3.1. University Hospital of Araba Dataset 

The original dataset was collected by Dr. Ariadna Besga during June 2014 and was composed of 

802 admissions registered at the two hospitals that form the University Hospital Araba, namely 

Hospital Txagorritxu and Hospital Santiago Apostol. After filtering the Emergency Department 

(ED) admissions, the dataset was composed of 462 admission samples of 360 unique patients. 

The final curated dataset used for the experiments was presented by Besga et al. in [Besga2015]. 

It encompases data of 360 patients divided into four groups, namely: 

1. Case management (CM), which is the most general category of data encompassing all 

categories not covered by the specific categories 

2. Patients with chronic obstructive pulmonary disease (COPD),  

3. Heart failure (HF) and  

4. Diabetes Mellitus (DM).  

For each patient, a set of 97 variables were collected, divided into four main groups: i) 

Sociodemographic data and baseline status, ii) Personal history, iii) Reasons for consultation/ 
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Diagnoses made at ED and iv) Regular medications and other treatments. The dataset contains 

missing values. Table 3.1 shows the distribution of the number of variables of each category.  

Table 3.1. Distribution of variables by category from the University Hospital of Araba 

Variable 
No. (%) of variables 

n=96 

Sociodemographic and 

baseline status 
4 (4.2) 

Personal history 43 (44.8) 

Reasons for consultation 16 (16.7) 

Regular medications 33 (34.3) 

 

In order to build our model following a binary classification approach, the target variable was set 

to readmitted/not readmitted. Those patients returning to ED within 30 days after being 

discharged are considered readmitted (value=1), otherwise are considered as not readmitted 

(value=0). 

It is noteworthy that one patient returning the first day and another returning the 30th are both 

considered as readmitted. On the other hand, a patient returning the 31th day is considered as not 

readmitted, while in practice underwent a readmission Table 3.2 shows the distribution of 

readmission rate across different subpopulations. 

Table 3.2. Comparative information about the subpopulations of the dataset from the University 

Hospital of Araba 

    

Readmission within 30 days, no. 

(%) of patients 

 

Overall no. of 

patients 
No Yes 

  n=360 n=296 (82.2) n=64 (17.7) 

Case management 94 (26.1) 73 (77.7) 21 (22.3) 

Heart failure 70 (19.4) 62 (88.6) 8 (11.4) 

Chronic obstructive 

pulmonary disease 
80 (22.2) 64 (80) 16 (20) 

Diabetes mellitus 116 (32.2) 97 (83.6) 19 (16.4) 

 

We observe that readmission rate varies greatly depending on the subpopulations, ranging from 

11.4% to 22.3% for HF and case management respectively. We also notice that data is not well 



Dataset  29 

balanced in terms of different population stratum. Figure 3.1 shows the distribution of some 

demographic features across the mentioned subpopulations. It can be appreciated (Figure 3.2) that 

the class distributions are imbalanced, though the actual imbalance ratios vary greatly between 

population strata.  

Table 3.3 reproduces the most significant variables of each subpopulation according to a t-test for 

the significant differences among the mean values between readmitted and non-readmitted 

patients as (Besga et al. in [Besga2015]). 

 

Figure 3.1. Boxplots of age at admission time across different population stratum 

 

 

Figure 3.2. Readmission rate across different population stratum 
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Figure 3.3. Distribution of number of patients per sex in the University Hospital of Araba 

dataset across different population stratum 
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Table 3.3. Most significant variables for each population stratum in the University Hospital of 

Araba dataset according to t-test, extracted from [Besga2015] 

Feature p-value 

Case management  

Patient age on admission 0.0054 

Considered useful to make a follow-up call 0.0087 

Acute myocardial infarction 0.0066 

Thyroid disease 0.0013 

Use of antipsychotics 0.0039 

Use of inhalers 0.0034 

Diagnosis of COPD 0.0021 

Heart failure   

Acute myocardial infarction 0.0001 

Dementia 0.0001 

Number of medications prescribed on ED discharge 0.0000 

Diagnosis of gastrointestinal illness 0.0020 

COPD   

Dementia 0.0071 

Depression 0.0038 

Use of anticoagulants 0.0071 

Genitourinary problems 0.0021 

Use of opioids 0.0021 

History of falls 0.0071 

Diabetes mellitus   

Organic lesions 0.0006 
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3.2. University of Chile Dataset 

This dataset is composed of ED admission events of 102,534 patients divided into 2 groups, 

namely adults and paediatrics, which amounts to 156,120 admission cases recorded between 

January 1st, 2013 and August 31, 2015 from the electronic medical records of the Hospital José 

Joaquín Aguirre de la Universidad de Chile. At admission time a set of 17 variables were 

collected. The variables or features are categorized into three main groups: i) Sociodemographic 

data and baseline status, ii) Personal history and iii) Reasons for consultation or diagnoses made 

at admission. The dataset contains missing values. 

3.2.1. Data pre-processing 

Data was provided in a large ASCII text file containing 156,120 admission records corresponding 

to 102,534 different patient identities. After parsing the data, we built a dataset combining 

admission and patient-related data. Next, we cleaned the data by removing inconsistent and 

missing samples. Missing values were imputed using the arithmetic mean for continuous variables 

and the mode for categorical variables. 

For each admission of a patient to the ED we calculated the number of days elapsed since his last 

visit. In order to build our model following a binary classification approach, the target variable 

meaning was set to readmitted/not readmitted. Those patients returning to the ED within 72 hours 

after being discharged were considered readmitted, otherwise they were considered not 

readmitted. 

Notice that a patient returning the very first day after discharge and another one returning the third 

day are both considered as readmitted. On the other hand, a patient returning the 73rd hour from 

discharge is considered as not readmitted. 

After removing inconsistent and missing samples the dataset was composed of 99,858 instances.  

3.2.2. Description 

Table 3.4 shows the distribution of admissions and readmission records according to gender, 

broad pathology class (general medicine, traumatology, paediatric, and gyneco-obstetrics), and 

the assigned triage. Class distribution shown in Table 3.4 indicates an imbalance ratio (IR) of 

approximately 1:28, which is a strong case of class imbalanced data. Notice that most admissions 

correspond to general medicine, followed by the paediatric admissions, however if we consider 

readmissions, the paediatric segment of the population is responsible for more than half (56%) of 
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the readmissions, with some implications on the causes. Note also that triage III accounts for most 

admissions and readmissions (75%).  

Figure 3.4 shows the distribution of readmission class among some attributes of our dataset. 

Readmissions (shown as green columns) are much less frequent than normal admissions, i.e. the 

dataset is heavily imbalanced. Some details, such as the greater frequency of readmission for 

people in the age range 20-30, can be appreciated. Still, there is not enough evidence that allow to 

use a single variable for the prediction.  

The description of each patient contains a categorical variable encoding the admission motivation, 

this encoding into more than 500 topics is given by the electronic medical record implementation. 

Table 3.5 contains the more frequent causes of admission and readmission, those accounting for 

1.5% of the cases or more. The non-informative category “OTHERS” is the most frequent, and 

the most frequent causes for admission appear also as causes of readmission. In our current 

implementation, this variable has been encoded with a vector of binary valued features, one per 

each admission motivation category. This approach is equivalent to unfold a subspace of 

dimension 500 to represent the variable motive.  Additional features correspond to the encoding 

of the triage, demographics variables such as age, sex, adult or paediatric patient, and 

physiological variables such as blood pressure, temperature, heart rate, respiratory rate, glucose 

levels, and others. Hence, feature vector dimension is greater than 500, which is an already very 

high dimension. Table 3.6 contains the descriptive statistics of the main variables of the 

University of Chile dataset.  In some variables, we give the mean and standard deviation mean 

(SD), for other we give the number of instances and the percentage in the whole population. 

Figure 3.5 shows the histograms of the causes for admission (a) for the entire population, (b) for 

the non-readmitted patients, and (c) for the readmitted patients. It can be appreciated that the 

OTHERS motivation is rather salient in all situations, while the next five most frequent 

motivations are common to the readmitted and non-readmitted patients, though in different orders 

of importance, exception made of the fever cause, which is much more prevalent in readmissions. 

 

Table 3.4. Statistics of ED admissions from 2013 to 2016. Age mean and standard deviation. 

Remaining rows give the number of records and the percentage relative to the total Columns 

correspond to no readmission, readmission, and total number of records. By rows, we give the 

total number and percentage of the total population of the occurrence of each kind of gender, class 

of pathology, and triage assigned upon arrival. 

 

  72h readmission Total 

  No (n=148617) Yes (n=5674) n=154291 
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Age Years (%) 33.3 (24.8) 22.2 (24.6) 32.9 (24.9) 

Gender 
Male 69106 (46.5) 2832 (49.9) 71983 (46.6) 

Female 79511 (53.5) 2842 (50.1) 82353 (53.4) 

Pathology 

General Medicine 91566 (61.6) 2375 93941 (60.9) 

Traumatology 16651 (11.2) 325 16976 (11) 

Paediatric 39999 (26.9) 2964 42963 (27.8) 

Gynaeco-obstetrics 401 (0.3) 10 411 (0.3) 

Triage 

I 649 (0.4) 8 567 (0.4) 

II 17280 (11.6) 501 17781 (11.5) 

III 111310 (74.9) 4309 115619 (74.9) 

IV 19057 (12.8) 848 19905 (12.9) 

V 321 (0.2) 8 (0.1) 329 (0.2) 

 

Table 3.5. Distribution of causes of admission and readmission cases. GAP general abdominal 

pain, 1/3DF up to three days fever; 24HF 24 hours; fever; HA headache; D diarrhoea; T throwing 

up; EP epigastric pain; LuP lumbar pain; GD general discomfort; LegP leg pain; AD acute 

dyspnoea. 

Admission Readmission 

Motive % Motive % 

OTHER 14.22 OTHER 30.13 

GAP 8.21 GAP 8.20 

24HF 5.53 1/3DF 5.40 

COUGH 5.47 COUGH 4.28 

HA 4.93 24HF 4.10 

1/3DF 3.65 HA 3.04 

GD 2.33 D 2.59 

EP 2.22 T 2.43 

T 2.21 EP 1.86 

D 2.16 LuP 1.51 

LegP 2.11   

LuP 2.06   

AD 1.57   

FP 1.55   

NAUSEA 1.44   
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Figure 3.4. Distribution of readmission class among different attributes (readmission in green, 

regular admissions in blue) in the University of Chile dataset. From left to right, top to bottom: 

sex, age, destination after discharge, triage, previous visits, evaluation, pathology, prevision, and 

readmission 
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Table 3.6. Descriptive statistics of the Hospital of Chile variables 

 

  



Dataset  37 

 

(a) 

 

(b) 
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(c) 

Figure 3.5. Histograms of the 20 most common reasons for consultation for a) all admissions, b) 

non-readmissions and c) readmissions 
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3.3. Hospital of Basurto Dataset 

3.3.1. Context 

Since 2014 up to March 2017, 193 HF patients were included in a telemonitoring program at the 

OSI Bilbao-Basurto, Spain. During the program, patients were monitored using validated devices 

that collected health status data as well as self-reported data from questionnaires. 

The prospective study included 193 patients that underwent a hospitalization or emergency visit 

due to decompensation of heart failure (with need and administration of diuretics) and were 

diagnosed of HF by a cardiologist. Patients with myocardial infarction or percutaneous coronary 

intervention in the last 3 months and patients with a coronary artery bypass graft, valve 

replacement or correction in the last 6 months were excluded (refer to Appendix A for further 

details) from the study. 

3.3.2. Preprocessing 

Data was provided spread across several spreadsheet files, containing from few hundred entries 

up to about a million. Datasets were related using the pseudonymized patient’s unique identifier. 

Data contained 704 admission records corresponding to 193 different patient identities, along with 

up to 900,000 monitorization data entries. After parsing the data, we built a dataset combining 

admission and patient-related data. Next, we cleaned the data by removing inconsistent and 

missing samples. Missing values were imputed using the arithmetic mean in case of continuous 

variables and the mode in case of categorical variables. 

The primary prediction outcome was readmission or mortality due to heart failure within 30 days 

after discharge. A committee of physicians studied each potential readmission to determine 

whether the primary cause was related to HF. A new binary variable named readmission was 

created, which encodes whether the patient was readmitted within the first 30 days from hospital 

discharge. 

We defined admission event as the unit of analysis. Admissions corresponding to the same patient 

were considered separately if the time between hospitalizations was greater than 30 days. Planned 

admissions (those hospitalizations scheduled by physicians beforehand) were excluded from the 

dataset. For each admission instance in the dataset, clinician staff recorded monitorization data 

consisting of diverse medical parameters (e.g. blood pressure, heart rate, weight) and self-reported 

information gathered using a questionnaire. 

3.3.3. Description 



Dataset  40 

Each instance in the dataset contained variables grouped in i) baseline status data of the patient, ii) 

monitorization data and iii) other meta-data. A complete list of variables is shown in Table 3.7. 

• Baseline Status: data that corresponds to the first seen by a physician when entering the 

study. This information includes patient demographic information, such as year of birth 

and gender, but also clinical data, such as the hospitalization date, type of heart disease 

and hemodynamic parameters such as heart rate, systolic and diastolic blood pressure, 

blood check-up data, pharmaceutical treatment and other non-cardiac comorbidities. 

• Monitored Data: data that is monitored by the patient remotely every week (with a 

frequency that varies from 3 to 7 days per week), which contains patient vital signs (such 

as heart rate, systolic/diastolic blood pressure, weight and oxygen saturation) and a 

questionnaire about the patient condition (e.g. During the last 3 days, have you been 

having your medications as prescribed?). 

• Meta-data: Includes data about the admission itself, such as length of stay (LOS), type of 

admission or season. 

Table 3.8 shows a summary of the patient characteristics and their distribution according to the 

output class. The dataset class imbalance is quite high, as illustrated in the histogram plots for 

some selected variables in Figure 3.6. 

 

Table 3.7. Description of the variables in the Hospital of Basurto dataset. 

Feature Description 

Clinical history 

AGE Age of the patient (years) 

SEX Sex of the patient 

SMOKER Does the patient smoke? (yes/no/former) 

WEIGHT Weight of the patient (kg) 

HEIGHT Height of the patient (cm) 

HR Heart Rate (bpm) 

SO2 Oxygen saturation (%) 

SBP Systolic Blood Pressure (mmHg) 

DBP Diastolic Blood Pressure (mmHg) 

LVEF Left Ventricular Ejection Fraction (%) 

FIRSTDIAG Years since first diagnostic 

LOS Length of stay (days) 

Implanted device yes/no 

Needs of oxygen yes/no 

Therapies 

THERAPY_1 Furosemide 

THERAPY_2 Torasemide 

THERAPY_3 Thiazide 

THERAPY_4 MRAs (Mineralocorticoid/aldosterone receptor 
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antagonists) 

THERAPY_5 ACEIs (Angiotensin-converting enzyme inhibitors) 

THERAPY_6 ARB (angiotensin receptor blocker) 

THERAPY_7 Beta blockers 

THERAPY_8 Ivabrandine 

THERAPY_9 Digoxin 

THERAPY_10 Anticoagulants 

THERAPY_11 Antiplatelet therapy 

THERAPY_12 Oxygen therapy 

THERAPY_13 Antiarrhythmic drugs 

THERAPY_14 Lipid lowering therapy 

Laboratory 

UREA Urea (mg/dl) 

CREATININE Creatinine (mg/dl) 

SODIUM Sodium (mEq/L) 

POTASSIUM Potassium (mEq/L) 

HEMOGLOBIN Hemoglobin (g/dl) 

TOTAL_CHOLESTEROL Total cholesterol (mg/dl) 

LDL_CHOLESTEROL LDL cholesterol (mg/dl) 

HDL_CHOLESTEROL HDL cholesterol (mg/dl) 

TRYGLICERIDES Triglycerides (mg/dl) 

Comorbidities 

COM_1 Acute coronary syndrome 

COM_2 Peripheral vascular disease 

COM_3 Stroke 

COM_4 Dementia 

COM_5 Chronic obstructive pulmonary disease 

COM_6 Connective tissue disease 

COM_7 Peptic ulcer disease 

COM_8 Mild liver disease 

COM_9 Diabetes mellitus 

COM_10 Hemiplegia 

COM_11 Moderate / severe renal disease 

COM_12 Complicated Diabetes Mellitus 

COM_13 Any tumour 

COM_14 Leukemia 

COM_15 Lymphoma 

COM_16 Moderate/severe liver disease 

COM_17 Metastatic solid tumour 

COM_18 Anxiety/depression 

COM_19 Osteoarthritis/arthrosis/spondylitis 

COM_20 Osteoporosis 

COM_21 Sinus rhythm 

COM_22 Atrial fibrillation 

COM_23 Pacemaker rhythm 

Questionnaire 
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Q1 With respect to previous three days, I feel: 

Q2 Does the medication do me good? 

Q3 In the last 3 days, have I taken any medication without 

supervision from my doctor? 

Q4 Am I following the diet and exercise recommendations 

given by my doctor and nurse? 

Q5 In the last 3 days, my ankles are: 

Q6 Can you take walks like previous days? 

Q7 Do I feel breathless or shortness of breath when I lie in 

bed? 

Q8 Do I notice that I have begun to have cough or to expel 

phlegm? 

Q9 Have I noticed fatigue at rest? 

Q10 If fatigue – Can I take walks on flat? 

Q11 If fatigue – At what level of effort I notice fatigue? 

 

Table 3.8. Summary of characteristics and its distribution. Mean and standard deviation is 

reported for continuous variables and percentage for categorical ones. 

Feature All patients 

(n=193) 

Readmitted 

(n=40) 

Not readmitted 

(n=153) 

Age, mean (SD) 77.4 (11.2) 77.0 (12.2) 77.5 (11.0) 

Male sex (%) 111 (57.5) 26 (13.5) 85 (44.0) 

Smoke    

- Yes 97 (50.3) 17 (8.8) 80 (41.5) 

- No 43 (22.3) 11 (5.7) 32 (16.6) 

- Former 33 (17.1) 9 (4.7) 24 (12.4) 

- Unknown 20 (10.4) 3 (1.6) 17 (8.8) 

LVEF 41.7 (15.3) 37.4 (14.3) 42.8 (15.4) 

First diagnostic 6.6 (7.5) 9.9 (9.9) 5.8 (6.5) 

Implanted device 44 (22.8) 12 (6.2) 32 (16.6) 

Need oxygen 13 (6.7) 3 (1.6) 10 (5.2) 

Urea 72.7 (37.6) 81.7 (42.9) 70.3 (36.0) 

Creatinine 1.3 (0.5) 1.4 (0.6) 1.3 (0.5) 

Sodium 139.9 (4.2) 138.8 (5.1) 140.2 (3.8) 

Potassium 4.3 (0.8) 4.4 (0.7) 4.3 (0.8) 

Haemoglobin 13.3 (11.1) 16.2 (23.9) 12.5 (2.7) 

Sinus rhythm 73 (37.8) 15 (7.8) 58 (30.1) 

Atrial fibrillation 107 (55.4) 21 (10.9) 86 (44.6) 

Pacemaker rhythm 25 (13.0) 6 (3.1) 19 (9.8) 
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Figure 3.6. Distribution of readmission class for different attributes in the Hospital of Basurto 

(readmission in green, blue otherwise). 
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Chapter 4 

Methods 

In this chapter we gather the computational methods used in the experiments, along with a 

discussion of methodological issues that have to be taken into account. 

First, in Section 4.1 we discuss the problem of class imbalance which strongly affects the 

classification performance, and that is present in the datasets that we have been dealing with. 

Next, in Section 4.2 we present feature selection processes that we have applied. Finally, in 

Section 4.3 we give short descriptions of the classification algorithms that we have used, because 

most are well known from the literature. 

4.1. Class Imbalance 

4.1.1. Introduction 

In supervised classification, we say that a dataset is imbalanced when the a priori probabilities of 

the classes are significantly different, i.e. there exists a minority (positive) class that is 

underrepresented in the dataset in contrast to the majority (negative) class [Haixiang2017, 

Sun2009, Yang2006]. The minority class can have the meaning of a rare event, such as an alert 

condition, an intrusion in a security system, or a disease in a population. Such situations appear in 

healthcare as well as in many other fields, e.g. fraud detection, cybersecurity, communications, 

fault diagnosis, etc. Often the minority class is the target class to be predicted because it is related 

to the highest cost/reward events [Lopez2013]. Most classification algorithms assume equal a 

priori probability for all the classes, or equivalently equal cost to errors in classification, so that 

when this premise is violated the resulting classifier is biased towards the majority class, i.e. it has 

a higher predictive accuracy over the majority class, but poorer predictive accuracy over the 

minority class. Although imbalanced data classes have been recognized as one of the key 
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problems in the field of data mining [Yang2006], it is not usually taken into account in the 

literature of readmission risk prediction. 

A measure of class imbalance is given by the imbalance ratio (IR), defined as the ratio of the 

number of instances in the majority class and the number of those in the minority class. 

Computational studies have shown that conventional classifier performance deteriorates even with 

moderate imbalance ratios [Mazurowski2008]. Figure 4.1 depicts a taxonomy of the methods 

developed to deal with class imbalance [Lopez2013] where three main techniques are identified, 

namely preprocessing, cost-sensitive learning, and ensemble techniques. Following we give an 

overview of the different strategies. 

 

 

Figure 4.1. Taxonomy of Class imbalance problem addressing techniques extracted from 

[Lopez2013] 

4.1.2. Preprocessing 

Methods following this strategy carry out resampling of the original dataset in order to change the 

class distribution. Sometimes they are referred as data-level methods. Resampling techniques 

(illustrated in Figure 4.2) can be divided into three groups: 

● Undersampling techniques deleting instances of the majority class,  

● Oversampling techniques, that replicate or create new instances of the minority class, and  

● Hybrid techniques that combine both resampling techniques. 
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Figure 4.2. Undersampling and oversampling techniques, effect on the sample distribution on a 

2D dataset. 
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Undersampling 

The simplest undersampling method is random undersampling, which consists of randomly 

deleting majority class instances in order to achieve class balance. More sophisticated approaches 

have been proposed, most of them distance-based methods. Among the most representative 

methods we find NearMiss [Mani2003], which selects the samples to be removed based on k-NN 

search. A similar data cleaning method consists of removing Tomek links [Tomek1976] which are 

defined as instances that are each other’s closest neighbours, but belong to different classes. Other 

approaches introduce the use of clustering techniques, such as SBC (under-sampling based on 

clustering) [Yen2009] which consists in clustering the samples and selecting the cluster 

containing the most majority samples. The samples to be removed are randomly selected among 

the majority class instances of the selected cluster. Undersampling is often criticized because of 

the information loss that instance deletion may produce. Hence, it is common practice to use this 

method only when a very high number of possibly redundant majority samples are present in the 

dataset. 

Oversampling 

Random oversampling is the simplest oversampling method, which consists of randomly 

replicating minority class samples. Despite its simplicity, this method leads easily to overfitting, 

since it generates exact copies of existing instances [Lopez2013]. In order to deal with such 

problems, more sophisticated techniques have been proposed. Synthetic Minority Oversampling 

Technique (SMOTE) is probably the most applied oversampling technique. This method over-

samples the minority class by creating synthetic instances based on its nearest neighbours 

[Chawla2002]. Algorithm 4.1 and Figure 4.3 illustrate the SMOTE procedure. 

Depending on the percentage of synthetic samples that want to be generated (in respect to the 

original minority class instances), some -or all- minority samples are selected. Having specified 

beforehand the number of nearest neighbours k, for each sample, the k nearest neighbours are 

found using the Euclidean distance. Once the nearest samples are selected, a random value 

between 0 and 1 is generated and multiplied to the distance of each feature between the actual 

instance and the neighbour. In other words, the vector of coefficients of a random convex linear 

combination is generated and applied to the k nearest neighbours in order to create a new sample. 

Adaptive Synthetic Sampling Approach (ADASYN) [He2008] is similar to SMOTE but instead 

of generating an arbitrary number of instances per minority sample, it uses the concept of 

“difficulty in learning” concept, so that more synthetic data is generated for minority class 

samples that are harder to learn. 
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Algorithm 4.1. Synthetic Minority Oversampling Technique [Ditzler1997] 

 

 

 

Figure 4.3. Synthetic instance generation with SMOTE [Borovicka2012] 

4.1.3. Cost-sensitive learning 

Cost-sensitive methods are based on the idea of compensating for the class imbalance of the 

dataset, without modifying the actual class distribution. Learning methods for classifier building 

are guided by the minimization of some cost function. The simplest cost formulation attributes 

cost 1 to a misclassification and 0 to a correct classification. The strategy followed by cost-

sensitive learning methods is to assign different cost values to each class misclassifications, so 

that the bias towards the majority class is balanced by the lower cost of misclassifications. A cost 
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matrix is built assigning cost values to the entries of the confusion matrix giving (see Table 4.1 

for the two-class case). The usual approach is to penalize misclassifications of the minority class. 

The diagonal elements are usually set to zero, meaning that correct classification has no cost 

[Kotsiantis2006]. 

 

Table 4.1. Cost matrix for binary classification 

  Predicted Class 

  Positive Negative 

Actual Class 
Positive CTP CFN 

Negative CFP CTN 

 

Cost sensitive methods are categorized into the following groups: 

● Direct methods, that introduce the misclassification cost within the classification 

learning algorithm. For the case of a classification tree, it can be done by minimizing the 

cost of each node of the tree. 

● Meta-learning, where the learning algorithm itself is not modified. Instead, a 

preprocessing (or postprocessing) mechanism is introduced to handle the costs. Meta-

learning methodologies can be divided into two categories, namely thresholding and 

sampling. 

4.1.4. Ensemble classifiers 

Ensemble methods rely on the idea that the combination of many "weak" classifiers can improve 

over the performance of a single monolithic classifier [Galar2012]. They are divided in two 

groups, namely cost-sensitive ensembles and data and algorithmic approaches. 

 

● Cost-sensitive ensemble techniques, are analogous to cost-sensitive methods mentioned 

earlier, although in this case, the cost minimization is undertaken by the boosting 

algorithm. Different variants of AdaBoost such as AdaCost [Fan1999] and other 

modifications such as AdaC1, AdaC2 and AdaC3 [Sun2007] are some representative 

examples of this type of techniques. 

● Data and algorithmic approaches, which embed a data preprocessing technique in an 

ensemble algorithm. Depending on the ensemble algorithm they use, three groups are 

identified: i) Boosting, ii) Bagging and iii) Hybrid. 
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Bagging 

Bagging [Breiman1996] consists in creating bootstrapped replicas of the original dataset with 

replacement (i.e. different copies of the same instance can be found in the same bag), so that 

different classifiers are trained on each replica (Algorithm 4.2). In the original bagging proposal, 

each new dataset or bag maintained the size of the original dataset. Nevertheless, UnderBagging 

and OverBagging strategies embed a resampling process, so that bags are balanced by means of 

undersampling or oversampling techniques. To classify an unseen instance, the output predictions 

of the weak classifiers are collected performing a majority vote in order to produce the joint 

ensemble prediction. In this group we find, among others, algorithms like SMOTEBagging 

[Wang2009] or UnderBagging which embed undersampling within the ensemble algorithm. We 

propose RUSBagging which carries out a random undersampling for each bag generated in the 

ensemble creation. An individual weak classifier is trained from the data in each bag. Figure 4.4 

depicts the bagging with resampling procedure. 

 

Algorithm 4.2. Pseudocode of bagging [Du2012] 

Input = Training sample S, classifier h, iterations T 

Output = argmax
𝑦∈𝑌

∑ 1𝑖:𝐿𝑖(𝑥)=𝑦  

For i=1 to T 

   Si = bootstrap sample from S 

   hi = train a classifier using Si 

End for 
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Figure 4.4. Bagging with resampling 

Boosting 

Most boosting algorithms (there exist multiple variations) consists of iteratively training weak 

classifiers and combining the outputs to create a strong classifier. In the first iteration the base 

classifier uses the original dataset, where all the instances are assigned equal weight. In each 

iteration the weights are updated so that misclassified instances gain weight (i.e. we pay more 

attention on these observations). The weak classifier is added to the final classifier until the 

termination criteria is fulfilled (maximum number of iterations reached or a given accuracy 

threshold achieved). 

AdaBoost [Freund1995] is the most representative algorithm of this type of ensemble techniques. 

This technique has been combined with different resampling strategies, leading to methods such 

as SMOTEBoost [Chawla2003] (in combination with SMOTE oversampling) or RUSBoost 

[Seiffert2010] (using random undersampling) among others. 
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4.2. Feature Selection 

The feature set is the set of variables that are input to the classifiers. Features may be produced by 

transformations of the original variables describing the dataset items, or they can be a subset of 

the original variables. Feature selection is the process of obtaining a subset of the original variable 

set containing the relevant features by discarding redundant or irrelevant variables. Dataset 

instances are described by a vector of variables X = (x1, …, xn) and a class label. The goal of 

feature subset selection is to find an optimal feature subset X’ ⸦ X so that the accuracy of the 

classifier is maximal. 

Feature selection is an important step in model building since it allows model complexity 

reduction, and makes it more efficient in terms of performance. Often, when dealing with high-

dimensional spaces, predictive models tend to overfit as the number of features grows. This 

phenomenon, known as the curse of dimensionality, causes a degradation of model’s performance 

due to the high number of variables, as shown in Figure 4.5. Moreover, resulting models are 

easier to interpret from domain expert’s perspective. This point is especially important in 

medicine, where clinicians are reluctant to use complex black-box-type models and demand 

interpretable solutions. 

 

Figure 4.5. Curse of dimensionality 

According to the taxonomy of feature selection techniques defined by Kohavi et al. [Kohavi1997] 

the methods can be grouped as follows (see Figure 4.6): 
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• Filter Methods 

o Univariate 

o Multivariate 

• Wrapper Methods 

• Embedded Methods 

  

 

Figure 4.6. Taxonomy of feature selection techniques according to [Kohavi1997] 

Following, the different techniques are briefly explained. 

4.2.1. Filter Methods 

According to [Kohavi1997] filter methods attempt to assess the predictive value of features from 

the data, without recourse to the classifier learning algorithm. A scoring function S(i) is computed 

for each input variable xi, (ith component of X) according to its corresponding c value.  Frequently 

features are ranked according to their relevance, assuming that high scores indicate high relevance 

and vice-versa. Eventually low-scoring features are removed, so that won’t be eligible for further 

analysis or imputation to the classification algorithm. As shown in Figure 4.7, in the filter 

approach feature selection is applied as a pre-process of the dataset, regardless of the algorithm to 

be used in the classification phase. 
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Figure 4.7. Filter approach for feature selection 

 

In terms of computation, filter methods are efficient and scale well since they require only to 

compute n scores. However, its main advantage, that is, being classification algorithm agnostic, is 

at the same time one of its biggest disadvantages: It ignores the effects of the selected feature 

subset on the performance of the classification algorithm. Another disadvantage that is usually 

pointed is that the proposed techniques are univariate [Saeys2007]. It means that each feature is 

considered independently, ignoring interactions between features. Not taking into account feature 

interactions can lead to model’s suboptimal performance, since features containing valuable 

interaction information but with low independent score are not included in the model. In order to 

overcome the problem of ignoring feature interactions, different multivariate techniques have 

been proposed. (e.g. correlation-based feature extraction [Hall1999]). 

4.2.2. Wrapper methods. 

Unlike filter approaches, which ignore the biases of the classification algorithm, the wrapper 

approach, shown in Figure 4.8, makes use of a classifier for scoring the feature subset’s predictive 

power. As pointed in [Kohavi1997] the classifier is considered a black box, as no knowledge of 

the algorithm is needed, just the interface. Wrapper methods conduct a search through the feature 

subset space for a good subset, where subsets are evaluated according to classifier’s estimated 

accuracy. Classification model’s accuracy is usually estimated using cross-validation. 

Although in cases where the number of features is not too large an exhaustive search may be 

practicable, the problem is known to be NP-hard, what makes this approach computationally 

intractable [Guyon2003]. Since an exhaustive search of the space is impractical, often a search 

procedure guided by a heuristic function is defined. Multiple search strategies have been 

proposed, including hill-climbing, best-first or genetic algorithms among others. 
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Figure 4.8. Wrapper approach for feature selection 

 

One of the advantages of the wrapper approach is that interactions and dependencies between 

features are taken into account. Another advantage is that, unlike the filter approach, wrapper 

methods are linked to the classification model, so that the interactions of the feature set with the 

prediction model are considered. Nevertheless, a common drawback is that this approach is more 

prone to overfit to the training data. Wrapper methods are also criticized because their high 

computational cost, although efficient search strategies can alleviate the problem to a great extent. 

In the following, we briefly introduce two simple and widely used greedy search strategies, 

namely Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS): 

Sequential Forward Selection (SFS) 

Starting from an empty set S’, sequentially add the feature x that maximizes the evaluation 

measure J when is combined with S’, 

 

Algorithm 4.3. Pseudocode of SFS 

1. Start with empty set S’ = {0} 

2. While no improvement in J in last j steps or S’==S 

a. 𝑥′ = argmax
𝑥∉𝑌𝑘

𝐽(𝑆′ ∪ {𝑥}) 

b. 𝑆′ = 𝑆′ ∪ {𝑥′} 

3. end while 

Sequential Backward Selection (SBS) 

Starting from the full feature set, sequentially remove the feature x’ that least reduces (or 

increases) the evaluation measure J when is removed from S’, 
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Algorithm 4.4. Pseudocode of SBS 

1. Start with full feature set S’ = S 

2. While no improvement in J in last j steps or S’=={0} 

a. x’ = argmax J(S’ - {x}), x 𝜖S’ 

b. S’ = S’-{x’} 

3. end while 

4.2.3. Embedded methods. 

In those methods, the search is conducted within the classifier itself, as part of the learning 

process. Embedded methods, in the same manner as wrapper methods, are tied to a specific 

classification algorithm. Nevertheless, the computational cost is significantly lower for embedded 

methods compared to wrapper methods and are less prone to overfitting than the latter. Common 

embedded methods include decision tree algorithms including random forest and logistic 

regression, among many others [Saeys2007]. 
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4.3. Classification 

In this Section, we describe the classifier building problem as a supervised learning problem. 

Moreover, the chapter describes the main classification algorithms that were employed during the 

different experiments carried out in the context of this Thesis. 

4.3.1. Definition of the problem 

In supervised classification, a classifier is a prediction model built using a -training- dataset. The 

dataset is composed of a set of M instances, where each instance is described by a vector of 

features X = (x1, …, xn) and the class label C = {c1, …, cn}. The classifier can be defined as a 

function g that returns the c value given a feature vector X (i.e. predicts the class of the input 

instance): 

𝑔: 𝑋 → 𝐶 

𝑔(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑐

𝑓(𝑥, 𝑐) 

where f defines a scoring function. A well-known principle in machine learning is that we cannot 

expect a classifier architecture to outperform all others over all problem domains, which has been 

stated as the no free lunch theorem [Wolpert1996, Wolpert1997]. Thus, it is common practice to 

compare different classification algorithms and ensembles, in order to find the configuration that 

provides the best bias-variance trade-off. Following we briefly describe the classification 

algorithms that we have utilized in the experimental works carried out in this thesis. 

4.3.2. Logistic Regression 

Logistic regression is a linear classifier that measures the relationship between one or more 

independent variables and the binary target variable (multinomial logistic regression is used when 

the target variable can take more than two values). This model estimates the probability of the 

target variable given some linear combination of the predictors by fitting a logit function, as 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝑙𝑛 (
𝑝𝑖

1 − 𝑝𝑖
) = 𝛽0 + 𝛽1𝑥𝑖1+. . . +𝛽𝑚𝑥𝑖𝑚 

where pi is the probability that the target variable is true given some linear combination of the 

predictors, given by 

pi = P(yi = 1 | xi) 

  

xi = {xi1, …, xim} are the predictors (features) of the model, 𝛽 is the intercept and 𝛽 = {𝛽1, … , 𝛽𝑚} 

are the regression coefficients. The probabilities pi and the regression coefficients are determined 
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by optimization procedures such as maximum likelihood estimation. The probability of the target 

variable being true is equal to the logistic function of the linear regression expression, as 

𝑝𝑖 =
1

1 + 𝑒−(𝛼+𝜷.𝒙𝒊)
 

4.3.3. Gradient Boosting 

Gradient boosting is an ensemble-based classifier that produces many weak prediction models 

iteratively, usually decision trees, gathering them into a single stronger learner. It uses gradient 

descent optimization algorithm to minimize a cost function (loss function) iteratively fitting a 

model in the negative gradient direction.  

Given a loss function L(y, F(x)), we want to obtain an estimate �̂�(𝑥) of the function value F* that 

minimizes the expected value of the loss function, 

 

Gradient boosting follows an additive expansion approach, so that �̂�(𝑥) is formed by a weighted 

sum of functions h(x;a): 

 

Where h(x;a) is a function of input variables x characterized by parameters am, m= 1, …, M. As 

fitting h at each step is computationally impractical, gradient descent is used as an optimization 

algorithm. 

Algorithm 4.5. Gradient boost [Friedman2001] 

 

 

Gradient tree boosting is a specific adaptation of the more general gradient boosting algorithm 

which uses decision trees (typically CART trees) as base learners. 

4.3.4. Support Vector Machine 
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Support Vector Machines (SVM) [Burges1998, Vapnik1998] look for the set of support vectors 

that allow to build the optimal discriminating surface in the sense of providing the greatest margin 

between the classes. In this way, the decision function can be expressed in terms of the support 

vectors only: 

 

where K(xi, xj) ≡ ø(xi)T ø(xj) is a kernel function, αi is a weight constant derived from the SVM 

process and the si are the support vectors [Vapnik1998]. Nonlinear kernel functions filling some 

conditions allow to map a nonlinearly separable discrimination problem into a linearly separable 

equivalent problem in higher dimensional space. For training, the SVM approach solves the dual 

optimization problem is 

 

subject to 𝑦𝑇α = 0, 0 <  α𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑙 where e is the vector of all ones, C > 0 is the upper 

bound on the error, Q is an l x l positive semi-definite matrix, Qij ≡ yiyj K(xi, xj). Model selection 

in SVM involves the selection of the appropriate kernel function as well as tuning of its 

parameters, which not trivial task [ICS2016]. Often, radial basis function kernel or RBF kernel is 

used, defined as 

 

Where x and x’ are two samples represented as feature vectors. 

4.3.5. Decision Tree 

Decision Trees (DT) [Breiman1984, Quinlan1993] are built by recursive partitioning of the data 

space using a quantitative criterion (e.g., mutual information, gain-ratio, gini index), maybe 

followed by a pruning process to reduce overfitting. Tree leaves correspond to the probabilistic 

assignment of data samples to classes. One of the most popular implementations of the algorithm 

is C4.5 [Quinlan1993] which is an extension of the previous ID3 [Quinlan1986] algorithm. At 

each node, the algorithm selects the feature that best splits the samples according to the 

normalized information gain. 

 

Algorithm 4.6. Pseudocode of a decision tree 

Preconditions: 

Sample set S = {xi, yi}, i=1, …, n 

F features 
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Tree = {} 

For each f in F do: 

  Compute normalized information gain if splitting on f 

End for 

fmax = feature with the highest normalized information gain ratio 

S’ = subsets generated according to fmax 

Tree = Create a decision node that tests fmax in the root 

For each S’: 

  Tree’ = C4.5(S’) 

  Append Tree’ to the corresponding branch or Tree 

End for 

Return Tree 

4.3.6. Random Forest 

Random Forest [Breiman2001] is an ensemble classifier consisting of multiple decision trees 

trained using randomly selected feature subspaces. This method builds multiple decision trees at 

training phase. Often, a pruning process is applied to reduce both tree complexity and training 

data overfitting. In order to predict the class of a new instance, it is put down to each of these 

trees. Each tree gives a prediction (votes) and the class having most votes over all the trees of the 

forest will be selected (majority voting). The algorithm uses the bagging method [Breiman1996], 

where each tree is trained using a random subset (with replacement) of the original dataset. In 

addition, each split uses a random subset of features. 

  

Algorithm 4.7. Pseudocode of Random Forest 

Preconditions: 

Sample set S = {xi, yi}, i=1, …, n 

B = Number of trees 

F features 

for i=1 to B do: 

  S’ = A bootstrap sample from S by randomly selecting n’ samples out of a 

set of n samples, with replacement) 

  hi = Train a decision tree on S’ using a random subset of F features: 

  for each node. 

           f = random subset of F 

           Split on best feature in f 
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  end for 

  H = H + hi 

end for 

return majority vote of trees in H 

 

One of the advantages of random forests is that generally they generalize better than decision 

trees, which tend to overfit and that naturally perform some feature selection. They can also be 

run on large datasets and can handle thousands of attributes without attribute deletion. 

4.3.7. Extreme Learning Machine 

Extreme Learning Machines (ELM) [Huang2006, Huang2011, Huang2015] was proposed as a 

very fast training algorithm for single-layer feedforward neural networks (SLFN). The ELM 

avoids gradient descent of the input to hidden layer weights by performing a random sampling, 

equivalent to a random subspace projection. The training problem reduces to the estimation of the 

output weights by linear least squares resolution of the network response minimizing the 

classification error, often solved by the Moore-Penrose generalized pseudo-inverse. 

Randomization of hidden layer weights introduce training instability which has been tackled in 

many ways. Ensembles of ELM, such as the Voting ELM [Ayerdi2015, Chyzhyk2015], and the 

HERF [Ayerdi2014], help improve the training stability. The sought effect is that the individual 

classifier errors compensate in the limit when the ensemble size grows, assuming that the 

probability distribution of the individual classifier error is symmetric around zero. 

4.3.8. Adaptive Hybrid Extreme Rotation Forest (AHREF) 

The Anticipative Hybrid Extreme Rotation Forest (AHERF) algorithm was originally presented in 

[ICS2016] which is a heterogeneous ensemble classifier that anticipates the correct fraction of 

instances from each basic classifier architecture to be included in the ensemble. 

The training and testing phases of this method are summarized in Algorithm 4.8. We specify the 

training and test phases of each cross-validation fold. For training, first, a model selection phase is 

performed, where 30% of the training data is used. This size of model selection data is a balance 

between an appropriate sampling of the data distribution and allowing data for ensuing ensemble 

training and testing, because model selection data cannot be reused for ensemble cross-validation. 

For each classifier type described in the previous section, a 5-fold cross-validation is carried out 

on the model selection data (line M3). The individual model selection cross-validation average 

accuracies are ranked, so that rk is the ranking value of the k-th classifier type (line M4). Then 
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(line M5), each classifier is assigned a selection probability according to the expression 𝑝𝑘 =

𝐹𝑖𝑏((𝐶+1)−𝑟𝑘)

∑ 𝐹𝑖𝑏(𝑖)𝐶
𝑡=1

, where Fib(i) is the i-th value of the Fibonacci series. 

The ensemble strategy cross-validation is carried out on the remaining 70% data, involving a 10-

fold cross-validation process. Notice that the test data size at each fold is reduced to a 7% of the 

available data, hence larger model selection data cannot be afforded because of the risk of test 

data misrepresenting the actual data distribution. The following steps are carried out at each fold: 

for each classifier Di in the ensemble the first step is the construction of the randomized rotation 

matrix (line 3) which requires the random partition of the set of features into a K subsets (line 4). 

For each subset of features Fi,j, the algorithm extracts the corresponding sample values in a matrix 

Xi,j (line 6), used to build a component Ci,j rotation matrix (line 7). The randomized rotation matrix 

𝑅𝑖
α is built by composing the component rotation matrices reordering the columns in order to 

match the original variable ordering, as detailed in [ICS2016]. Next (line 9) there is a random 

decision on the type of the classifier, using the selection probabilities {pk} (built in line M5). 

Finally, the Di classifier is trained on the rotated data. In the test phase, a new vector xtest is first 

applied each classifier in the ensemble, obtaining a class hypothesis di, (line C2). Majority voting 

is implemented as follows: the counter cω has the number of classifiers that have casted their vote 

for class ω, (line 3, where δi,j is the Kronecker’s delta function). Finally, the class with the 

maximum votes is selected (line C4) and returned as the classification result. 

  



Methods  64 

 

Algorithm 4.8. Anticipative Hybrid Extreme Rotation Forest 

 

 

4.3.9. Miscellaneous commonly used classifier learning 

k-Nearest Neighbours 

k-Nearest Neighbours k-Nearest Neighbours (k-NN) is the simplest formulation of the 

supervised training, where the training samples are used as class prototypes. The class assigned to 
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the test input pattern is the result of majority voting on the K closest training patterns according to 

some defined distance in pattern space, which most often is the Euclidean distance. 

Adaboost 

Adaboost Adaptive Boosting (AdaBoost) [Schapire1999, Freund1995] is a meta-algorithm for 

machine learning that can be used in conjunction with many other learning algorithms to improve 

their performance. AdaBoost trains a weak classifier in a series of rounds t = 1, …, T. For each 

iteration the distribution of sample weights Wt is updated, indicating the importance of examples 

in the data set for the classification. On each round, the weights of each incorrectly classified 

example are increased (or alternatively, the weights of each correctly classified example are 

decreased), so that the new classifier focuses more on those examples. 





 

67 

 

Chapter 5 

Results 

This chapter reports the results of various experiments on readmission risk prediction carried out 

in this Thesis. We have grouped the experiments according to the target subpopulation they are 

referred to, namely emergency department admissions and heart failure patients. 

The chapter is structured as follows: Section 5.1 defines the evaluation metrics that we have used 

to evaluate and report the results. Section 5.2 briefly presents the methodology followed to 

perform the experiments in the experimental design subsection. Next, Sections 5.3 and 5.4 present 

the results of various experiments carried out on Emergency Department and Heart Failure 

readmission prediction. 

5.1. Evaluation Metrics 

Whenever we conduct an experiment it is crucial to define beforehand the metric that will be used 

to measure the performance. Often, there exist multiple metrics that can be applied, each having 

its own characteristics; its benefits and drawbacks. Hence, it is important to choose the correct 

metric for our specific scenario, to avoid reporting meaningless results. In supervised 

classification, the confusion matrix -also known as error matrix- is the keystone of every 

evaluation metric. A confusion matrix has two dimensions, namely the actual and the predicted 

class, with two classes each -positive and negative-. Table 5.1 shows the confusion matrix of a 

two-class classifier. 
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Table 5.1. Confusion matrix for a binary classifier 

 

In the following we define the evaluation metrics that were used in our experiments. 

Accuracy 

In binary classification, accuracy is defined as the proportion of true results among the total 

population: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
 

 

where TN is a true negative, TP a true positive, FN is a false negative and FP a false positive. In 

heavily imbalanced datasets it is not very meaningful because a simple strategy such as always 

assigning each test sample to the majority class provides high accuracy. 

Sensitivity or Recall 

Sensitivity is a classification performance measure defined as the proportion of correctly 

classified positives: 

Sensitivity =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Sensitivity provides more information about the success on the target class. 

Specificity 

Specificity is defined as the proportion of negatives that are correctly identified as such: 

Specificity =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Precision 

The precision is the ability of the classifier not to label as positive a sample that is negative. 

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
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F-measure 

F-measure is defined as the harmonic mean that combines the values of precision and recall, so 

that: 

Fscore = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

ROC curve 

Receiver Operating Characteristic (ROC) curves are 2-D graphs used to represent the trade-off 

between the True Positive rate (sensitivity) and False Positive rate (1-specificity). Figure 5.1 

shows an example of a ROC curve. 

 

Figure 5.1. Example of a ROC curve. 

AUC 

The Area Under ROC Curve (AUC) sometimes referred as c-statistic, shows the trade-off 

between the sensitivity or 𝑇𝑃𝑟𝑎𝑡𝑒 and 𝐹𝑃𝑟𝑎𝑡𝑒 (1 - specificity): 

 

AUC =
1 + 𝑇𝑃𝑟𝑎𝑡𝑒 − 𝐹𝑃𝑟𝑎𝑡𝑒

2
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where the True Positive rate is equal to the Sensitivity and the False Positive rate is defined as 

FPrate =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

This metric is considered the de facto standard evaluation score in the field of readmission 

prediction. 

Precision recall curve 

When we talk about AUC we usually refer to the area under the ROC curve, although this is not 

necessarily like that. Technically speaking AUC can refer to any kind of curve. Unlike receiver 

operating characteristic curve, precision recall curves (such as Figure 5.2) are not influenced by 

the large values of TN, so that it is considered more suitable to be used in scenarios where the 

negative class outnumbers the positive class. Thus, when dealing with class-imbalanced datasets, 

it would be more meaningful to use the precision-recall curve rather than the ROC curve. 

 

Figure 5.2. Example precision-recall curve. 

5.2. Experimental Design 

This subsection is intended to describe which is the methodology that we have used in most of our 

computational experiments. 

5.2.1. Defining the outcome 
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We design our experiments as a two-class classification problem solved by supervised learning. In 

order to do so, we must define the outcome, which in our experiments is mainly the readmission 

variable (or death, depending on the dataset). The readmission event is illustrated in Figure 5.3. 

 

Figure 5.3. Hospital readmission event. 

Datasets are curated versions of the raw EHR extracted from the hospital which is usually 

structured in an event-centred basis. Our events are hospital admission, either regular admissions 

or ED admissions, although death events can also be present. Those events need to be grouped by 

patient, so that a timeline-like schema per patient is built, as shown in Figure 5.4. Then, we define 

a window length w that will serve to encode the dichotomous outcome as readmitted or not-

readmitted. Window length, or readmission threshold, is usually set to 30-days, although virtually 

any threshold can be applied (e.g. 72 hours, 28 days, etc.). When the time span between a 

discharge and the subsequent admission is lower than w, the index admission is labelled as 

readmitted (i.e. a positive class). 



Results  72 

 

Figure 5.4. Different events among patients 

5.2.2. Validating the model 

The main premise of any validation schema is to ensure the independence of the training and 

testing datasets, that is, instances used to train the model can’t be used to test the model. 

Traditionally, clinical studies construct and validate models following a percentage-split 

approach, by which training and validation sets are randomly split in a certain proportion, e.g. 

50/50 or 70/30. Despite its simplicity, this approach produces unstable results, since it is sensible 

to the split selection (unless dataset is very large). Another widely extended method uses 

bootstrapping, consisting on random sampling with replacement, which reports more stable 

results. 

Machine learning generally uses a cross-validation methodology when it comes to supervised 

classification. K-fold cross-validation is probably the most widely used method, since it has the 

advantage of using all the samples available, while providing balanced reports (not too optimistic 

nor pessimistic). Nevertheless, in order to avoid any random-related bias, it is common practice to 

repeat the process n times and to report the average scores. Figure 5.5 depicts the k-fold cross-

validation process. 
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Figure 5.5. Flowchart of k-fold cross-validation 

When working on a cross-validation scenario it is crucial to scrupulously preserve the 

independence of the test and validation sets through the whole pipeline. The very basic rule is that 

any training task that is performed in a supervised way must be held within the training set of 

each split. For instance, if we do feature selection or minority class oversampling before splitting 

our data, our model may suffer some kind of bias due to the use of training information in the 

validation phase. 

Figure 5.6 shows an example process consisting on a data preparation process followed by k-fold 

cross-validation. Note that class balancing is performed after splitting the data only on the training 

dataset. Next, different models are built using the classification algorithms subject to comparison. 
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Figure 5.6. Flowchart of an example experiment 
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5.3. Emergency Department Readmission Prediction 

In this section, we present the experiments that we performed in order to tackle the Emergency 

Department (ED) readmission risk prediction. Our first approach started with “Araba” dataset, 

targeting the widely-used time span of 30 days. Following we performed a series of experiments 

using the “Chile” dataset, targeting short-time readmissions (less than 72 hours). 

5.3.1. Hospital Universitario Araba dataset 

The dataset, presented in Section 3.1, is composed of 360 instances containing 97 features and the 

dichotomous outcome is set to “readmitted within 30-days from discharge”. 

Methods 

All the experiments were conducted using 10-fold cross-validation. The evaluation metrics that 

we have used are: sensitivity, specificity and accuracy. In order to avoid any random number 

generation bias, we have conducted 10 independent executions with different random generating 

seeds and averaged the results obtained. 

Table 5.2. Distribution of variables by category 

Variable 
No. (%) of variables 

n=96 

Sociodemographic and 

baseline status 
4 (4.2) 

Personal history 43 (44.8) 

Reasons for consultation 16 (16.7) 

Regular medications 33 (34.3) 
 

According to the data shown in Table 5.2 our dataset has a high dimensional feature space. In this 

scenario we have carried out some feature selection techniques. The goal is to find a feature 

subset that would reduce the complexity of the model, so that it would be easier to interpret by 

physicians, while improving the prediction performance and reducing overfitting. 

We used the following feature selection approaches: 

● InfoGain filter: It evaluates the worth of a feature by measuring the information gain with 

respect to the dependent variable. The output of this filter is a list of the attributes ranked by 

their predictive importance. 

● Wrapper: Wrapper methods evaluate subsets of variables, that is, unlike filter methods, do not 

compute the worth of a single feature but the whole subset of features. We have selected SVM 
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as the classification algorithm and AUC as evaluation measure. Since an exhaustive search is 

impractical due to space dimensionality, we used heuristics, following a greedy stepwise 

approach. 

Results 

Besides the original four subpopulations shown in Table 5.3, we have considered an additional 

fifth dataset that encompasses all of them. 

Table 5.3. Comparative information about the subpopulations of the dataset 

    

Readmission within 30 days, no. (%) 

of patients 

 

Overall no. of 

patients 
No Yes 

  n=360 n=296 (82.2) n=64 (17.7) 

Case management 94 (26.1) 73 (77.7) 21 (22.3) 

Heart failure 70 (19.4) 62 (88.6) 8 (11.4) 

Chronic obstructive 

pulmonary disease 
80 (22.2) 64 (80) 16 (20) 

Diabetes mellitus 116 (32.2) 97 (83.6) 19 (16.4) 

Class balancing 

Table 5.4. Confusion matrix of SVM on the diabetes mellitus dataset 

 Readmitted Not readmitted 

Readmitted 97 0 

Not readmitted 19 0 

 

As shown in Table 5.4, class imbalance is causing an accuracy paradox. If we just look at the 

accuracy of the model we get an 83.62% although SVM just behaves as using only the greatest a 

priori probability to make the classification decision.  There are several methods that can be used 

in order to tackle the class imbalance problem. Building a more balanced dataset is one of the 

most intuitive approaches. In our experiment, we have used under-sampling as a preliminary 

approach and continued with an over-sampling using synthetic samples. 

Undersampling with random subsample. 

Given that there is a low number of samples for the minority-class, which is also the most relevant 

for classification, we can anticipate that reducing the amount of samples for the majority-class to 

be comparable to the minority-class and avoid the class imbalance will lead to a model with poor 

generalization capability. 
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Focusing on the diabetes mellitus subpopulation dataset, it is composed of 97 instances belonging 

to the not-readmitted class and only 19 of the readmitted class. An experiment consisting of 

subsampling the dataset to a distribution of 1:1.5 between the minority and majority classes, and 

then applying a Random Forest classifier shows the following results in Table 5.5. 

Table 5.5. Comparison of performance evaluation metrics for RF over original and under-sampled 

versions of diabetes mellitus dataset 

Dataset Accuracy Sensitivity Specificity 

Original 84.48 10.52 98.96 

Under-sampled 61.7 31.57 82.14 

 

As seen in Table 5.5, although the classification sensitivity has increased, it is still low (31.57%) 

despite the sacrifice of both accuracy and specificity performance. Taking into account the low 

number of instances contained in our dataset, we don’t consider under-sampling an effective 

approach. 

Oversampling with SMOTE. 

We used Synthetic Minority Oversampling Technique (SMOTE) for oversampling the minority 

class. In order to avoid overfitting, we applied SMOTE at each fold of the 10-fold cross 

validation. If oversampling is done before 10-fold cross-validation, it is very likely that some of 

the newly created instances and the original ones are both in the training and testing sets, thus 

causing performance metrics being optimistic. 

Our approach is to test the performance of two classifiers, namely SVM and RF, using the over-

sampled dataset, in order to compare it with the results obtained using the original imbalanced 

dataset. The experiment will be carried out by generating a model for each of the subpopulations 

on each of the specified scenarios. Table 5.6 shows the results of our experiment. 

Table 5.6. Performance comparison using SVM and RF classifiers on original and over-sampled 

datasets 

  original  over-sampled 

  specific

ity 

sensitivit

y 

accurac

y 

 specifici

ty 

sensitivit

y 

accuracy 

Case 

management 

SVM 1 0.42 0.87  0.98 0.42 0.86 

RF 1 0.42 0.87  1 0.42 0.87 

Heart failure SVM 1 0 0.88  0.90 0.12 0.81 

RF 1 0 0.88  1 0 0.88 
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COPD SVM 1 0 0.80  0.81 0.37 0.72 

RF 1 0.37 0.87  1 0.43 0.88 

Diabetes 

mellitus 

SVM 1 0 0.83  0.88 0.15 0.76 

RF 1 0.10 0.85  0.96 0.10 0.82 

All SVM 1 0.21 0.86  0.78 0.40 0.71 

RF 1 0.28 0.87  0.99 0.28 0.86 

 

Results show that class-balanced dataset achieved better sensitivity than the original dataset. 

Nevertheless, both accuracy and specificity achieve worse results. It is worth noting that while 

performance is similar for both classifiers using the original dataset, SVM performs much better 

(in terms of sensitivity) when using the over-sampled version. At last, we observe that sensitivity 

improvement is rather small and it is obtained mainly at the expense of worsening both sensitivity 

and accuracy. 

Feature selection 

Our dataset has a high dimensional feature space. With the use of feature selection algorithms, we 

want to find a feature subset that would reduce the complexity of the model (so that it would also 

be easier to interpret by the physicians) while improving the prediction performance and reducing 

overfitting. For that purpose we are using a filter method, with InfoGain as metric and a wrapper 

method. The experiment consists in training a SVM and a RF classifier using the original feature 

set and the generated feature subsets. The performance of the classifiers will be compared in 

terms of sensitivity, specificity and accuracy for each of the subpopulations. 

It’s worth noting that the feature selection must be done using cross-validation. If full training set 

is utilized during attribute selection process, the generalization ability of the model can be 

compromised. 

Table 5.7. Performance comparison of both feature selection methods 

  infoGain  wrapper 

  specifici

ty 

sensitivit

y 

accurac

y 

 specificit

y 

sensitivit

y 

accuracy 

Case 

management 

SVM 0.98 0.33 0.84  0.94 0.23 0.78 

RF 0.89 0.38 0.77  0.89 0.38 0.77 

Heart failure SVM 1 0 0.88  0.90 0.12 0.81 

RF 0.96 0.25 0.88  0.98 0 0.87 
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COPD SVM 1 0.18 0.83  0.95 0.37 0.83 

RF 0.93 0.43 0.83  0.92 0.37 0.81 

Diabetes 

mellitus 

SVM 1 0 0.83  0.98 0.05 0.83 

RF 0.96 0.05 0.81  0.98 0.05 0.83 

All SVM 0.99 0.10 0.83  0.97 0.14 0.83 

RF 0.92 0.25 0.80  0.95 0.18 0.81 

 

In Table 5.7 the results of the experiment are shown. According to these results, although in some 

cases the sensibility has been increased, overall the results are not as promising as expected. 

Actually, even though models are much simpler than the original model (i.e. the one using full 

feature set), the prediction performance has been reduced. Moreover, both feature selection 

methods have performed similarly, even if selected feature subsets differ considerably. 
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5.3.2. Chile ED dataset 

This dataset was provided thanks to the collaboration with Prof. Sebastián Ríos from the 

University of Santiago de Chile, who was collaborating with the Hospital José Joaquín Aguirre 

from University of Chile. Different state-of-the-art classification algorithms were used and 

compared their performance with ensemble approaches. Moreover, different class imbalance 

addressing methods were tested and new approaches proposed. 

Experiment 1, testing class balancing methods  

Results 

In this section we present the results obtained when trying to predict the readmission risk before 

72 hours over the dataset presented in the previous section. 

We have tested two data balancing methods: random undersampling (RUS) and random 

undersampling embedded in a bagging approach. We used the following well-known 

classification algorithms, implemented in the open source machine learning Python library scikit-

learn2, which has also been used for the rest of the experiments: 

1. Decision Tree (DT), setting Gini impurity as splitting criterion 

2. Random Forest (RF), setting Gini impurity as splitting criterion and number of 

estimators=10 

The models were evaluated using 10-fold cross-validation, performing 10 independent executions. 

Accuracy, specificity, sensitivity and AUC were calculated for each execution, so average and 

standard deviation were computed. In order to compare results in a statistically sound way, we 

employed an Analysis of Variance (ANOVA) approach. 

The following data balancing approaches were compared:  

i) Original dataset with its imbalanced class distribution,  

ii) Undersampling with random undersampling and  

iii) RUSBagging.  

Table 5.8 shows the average accuracy, sensitivity, specificity and AUC along with its respective 

standard deviation, for each method and classifier. 

Comparison of classifiers 

According to the results shown in Table 5.8 for both classification algorithms, RF achieve 

significantly better results (p<0.001) than DT using the AUC as performance measure. Although 

                                                
2 http://scikit-learn.org 



Results  81 

DT performs better in the original dataset (anyhow both classifiers perform poorly), when 

preprocessing and class balancing ensemble approaches are utilized RF performs much better. As 

shown in Figure 5.7, the AUC is significantly greater for RF when RUSBagging is used, however, 

sensitivity is sacrificed if compared with DT. Overall, results are poor, however they compare 

well with the state of the art in readmission prediction [Kansagara2011]. 

 

Table 5.8. Mean ± standard deviation of performance metrics for each data balance 

method and classifier model configuration 
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Figure 5.7. ROC curve for DT using undersampling, RUSBagging and original 

 

Figure 5.8. ROC curve for DT and RF algorithms using RUSBagging method 
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The effect of preprocessing and ensemble methods 

Several conclusions can be extracted from the results shown in Table 5.8. 

 

● The models trained without modifying the original class distribution were clearly biased 

towards the majority class. Although accuracy scores were high (>90%), specificity was 

close to 100% while sensitivity tended to zero. Thus, according to the AUC scores, 

models performed similar or just slightly better than a random classifier. 

● Using random undersampling for class balancing had a direct effect in the performance of 

the resulting model. Results show that both DT and RF get better AUC scores, 0.56 and 

0.58 respectively, and sensitivity increases considerably. However, as could be expected, 

both accuracy and specificity tend to decrease. 

● RUSBagging, which embeds random undersampling within a bootstrap aggregating 

algorithm, outperforms both previous methodologies. According to the AUC scores, the 

combination of RUSBagging and Random Forest shows the best performance with a 

mean of 0.60. 

● The performance of the models considering the AUC metric, suggests poor discrimination 

ability. Nevertheless, a systematic review on risk prediction models for hospital 

readmission documented similar AUC scores (ranging from 0.50 to 0.70) in most of the 

studies [Kansagara2011]. 
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Experiment 2, testing AHERF 

The goal in this experiment is to test the improvements achieved by AHERF over conventional 

SVM and RF learning techniques. 

Methods 

All of the reported experimental results are computed as the average of 50 repetitions of a 10-fold 

cross-validation approach, where all feature extraction and classification parameters are estimated 

from the training datasets and applied to the testing datasets as such. We perform a data 

normalization by the independent computation of the z-score of each input variable given by the 

expression 𝑧 =
𝑥−𝜇

𝜎
, where x is the input variable, μ is the variable mean estimation, and 𝜎 the 

variable standard deviation estimation. This normalization removes scale effects reducing all 

variables to the same order of magnitude, and linear shifts. In cross-validation approaches, the μ 

and 𝜎 are estimated on the training data and used as such on the testing data, resulting in some 

minor inconsistencies if there is any sampling bias. 

Model parameter selection. 

The following parameters remain to be specified or selected for each combination of data rotation 

and ensemble of classifiers. All of them are set in the same way for all the cases, because we want 

to avoid any effect from them in the experimental results. 

 

● L: The number of individual classifiers is set to L = 35 for all experiments. 

 

● Classifier intrinsic parameters: The DT depth is set to 10 in all cases, except for some 

defaults in scikit-learn. The number of hidden nodes in the ELM is set to min {N/3, 

1000}. The SFLN architecture trained by ELM has a single output unit encoding the 

output of the classifier as an integer value, both for two-class and many-classes datasets. 

 

● K: The number of partitions of the set of features has been set to K =[n/4]. As the 

effective partitions are random, it is very likely that some of them will be composed of 

only one vector. 

Results 

To avoid random number generation bias, we have conducted each execution using a different 

random number generation seed. Missing values in numerical valued variables (such as glucose 

level or oxygen saturation) are filled with the arithmetic mean of the variable across the 
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population. The original dataset is very imbalanced, i.e. the target readmission class samples 

number is much less than a 0.5% of the dataset. As it is well known, imbalance makes accuracy 

an unreliable performance measure [Lopez2013]. For instance, a 10-fold cross-validation of the 

RF classifier upon the entire dataset achieves over 96.2% accuracy, however its average 

sensitivity is down to 0.4% while specificity reaches 99.8%. The interpretation of the these results 

is that these RF classifiers are guided by the a priori class probability distribution. In essence, RF 

classification is not very different from assigning all data instances the majority class. The goal in 

this experiment is to shown the comparative performance of AHERF, therefore we overlook the 

imbalance problem by building balanced datasets for the computational experiments. The 

majority class is subsampled to the size of the minority class for each repetition of the cross-

validation training process. In our experiment we will consider three different datasets, namely: i) 

full dataset, ii) paediatric patients and iii) adult patients. 

 

Table 5.9. Accuracy, sensitivity and specificity results (average ± standard deviation) of the 

classifiers for the different datasets. 

 

 

Table 5.9 shows the average accuracy, sensitivity and specificity along with its respective 

standard deviation, obtained from the cross-validation experiments. In this table it can be 

appreciated that sensitivity is much higher than in the reference experiment with the raw 

unbalanced data, approaching the value of specificity for all the classifier training algorithms, due 

to the balance of the training dataset. Also, it can be appreciated that AHERF reports results that 

are significantly better than those of those of SVM and RF (p < 10−6 in one-sided t-tests using all 

results of cross-validation folders). Focusing on the sensitivity results, which are more relevant 

than accuracy and specificity to compare classifier architectures over imbalanced datasets when 

we are specially concerned by the minority class, we find that AHERF reaches results over or 

close to 70%, hence it approaches the required performance for real life application. Taking into 

account that the adult and paediatric populations have quite different statistics, we have performed 

separate experiments for them, as well as on the entire dataset. It can be appreciated that results on 
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the separate populations are better than on the entire dataset, which confirms that there are 

specific discriminant features for these subpopulations. Sensitivity is lower in the paediatric than 

in the adult population, because the class imbalance is greater in the paediatric dataset than in the 

adults dataset. Most emergency admissions of children are related to traumatic events that once 

healed do not relapse. Chronic conditions that are a major cause for readmissions, such as 

respiratory diseases, are less frequent than in the adult population. More precisely, carrying two-

sided t-test in the paediatrics population between sensitivity classifier results, we find that 

AHERF is significantly (p<0.0001) better than SVM and RF, with a performance increase of 22% 

and 8% respectively. Not surprisingly, RF performance is 15% greater than that of SVM. These 

differences are bigger if we consider the specificity results measuring success detecting the 

majority class. If we consider the adult population, we find again that AHERF is significantly 

better than RF and SVM (two-sided t-test, p<0.0001), with a sensitivity performance increase of 

23%, while the difference between RF and SVM is not significant. The greater performance 

increase from AHERF to RF and SVM in the adults population than in the paediatrics population 

is due to the greater sensitivity of the RF and SVM classifiers to the class imbalance ratio. If we 

consider the effect on the AHERF we find that there is an increase in sensitivity of 2% from the 

paediatrics to the adults population, which is barely significant (t-test, p=0.013). Pulling together 

paediatrics and adult population, there is a decrease in sensitivity of AHERF of 5% and 3% 

relative to the adult and paediatrics results, respectively, due to the fact that discriminant variables 

are different for each population, so that building a monolithic classifier lose predictive power. 

The results of AHERF suggest that the approach is promising for a practical implementation of 

institution specific readmission risk prediction systems. 
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Experiment 3 testing a new strategy for dealing with highly imbalanced 

classification problems 

Bagging Ensemble Method 

Our dataset is highly imbalanced (IR = 28.16), thus we need powerful correcting methods to 

overcome the bias towards the majority class. Since our dataset has more than 96,000 negative 

samples, undersampling the majority class may achieve good results, while the risk of discarding 

crucial information during undersampling is low. We have found that oversampling methods, as 

SMOTE or ADASYN, perform better in low imbalance ratios. Moreover, we experimentally 

found that the random generation of samples involving the qualitative variable that specifies the 

case of the admission gives very bad results. Oversampling qualitative or categorical variables is 

an open issue not addressed here. 

 

 

Figure 5.9. Bagging ensemble with resampling 

Our method combines a class-balancing preprocessing technique (random undersampling) with 

bootstrap aggregating, also known as bagging. Bagging consists in creating bootstrapped replicas 

of the original dataset with replacement (i.e. different copies of the same instance can be found in 

the same bag), so that different classifiers are trained on each replica. Originally each new dataset 

or bag maintained the size of the original dataset. Nevertheless, under-bagging and over-bagging 
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strategies embed a resampling process, so that bags are balanced by means of undersampling or 

oversampling techniques. To classify an unseen instance, the output predictions of the weak 

classifiers are collected performing a majority vote in order to produce the joint ensemble 

prediction. The purpose of this combination is to create a model to classify imbalanced data, 

improving the generalization capacity without sacrificing overall accuracy. As shown in Figure 

5.9, our approach consists in applying a balancing pre-process to each subset obtained from the 

bootstrap. Following, an ensemble classifier is built, combining ELM and Decision Tree 

classifiers using soft voting as combination strategy. The black-box nature of ELMs (and 

ensemble methods in general) is combined with the comprehensibility of a decision tree. Some 

works [Lin2013] have combined ELM with DT due to its interpretable ability as 'IF-THEN'-like 

rule generator. 

Results 

In order to evaluate the effectiveness of our proposed approach, henceforth denoted bagging 

ensemble, we compare its performance with other well-known classifiers, namely: Naive Bayes, 

Decision Tree, Random Forest and Extreme Learning Machine. We have evaluated each method 

using i) the original data distribution, and ii) applying random undersampling (RUS) as a 

preprocessing technique to achieve a training dataset with balanced a priori class distribution. Our 

experiments were implemented using the open source machine learning library scikit-learn. All 

the evaluations were performed using 5-fold cross-validation. 

 

According to the results shown in Table 5.10, it is clear that class imbalance conditions overall 

performance of the model, regardless of the classifier we use. When original skewed data is 

employed, high accuracy scores (above 90% in all cases) and fairly poor recall scores are 

achieved. This behaviour, sometimes referred as 'accuracy paradox', is caused by a high class 

imbalance that imposes a strong bias towards the majority (normal admission) class. When 

random undersampling is applied, accuracy decreases and recall increases due to the a priori class 

probability balancing. Tree-type algorithms (DT and RF) achieve better AUC scores when class 

balancing techniques are applied (increases of 3.6% and 6.8% respectively). This improvement, 

on the other hand, does not occur when using Naive Bayes and ELM, which perform similarly in 

both scenarios. 

 

Table 5.10. Comparison of different machine learning methods (mean ± standard deviation) 

measured by AUC, recall, specificity, and accuracy. RUS (random undersampling) is applied. 
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The Area under the ROC curve (AUC) is the most widely used metric to evaluate readmission 

risk prediction in the literature. According to the results shown in Table 5.10, our bagging-

ensemble achieves the best score followed by Random Forest with random undersampling 

preprocessing. Figure 5.10 shows the ROC curves for different classifiers using random 

undersampling for data balancing. We can see that bagging-ensemble (red) is the best performing 

method, followed by random forest (blue dots). The individual classifiers with better sensitivity 

performance are DT and ELM with class-balancing. This explains why bagging-ensemble has the 

best sensitivity scores (47.4%). Random Forest and Naive Bayes, on the other hand, score poorly 

in comparison (37.3% and 21.1% respectively). 

 

When it comes to decision tree classifiers, in our preliminary experiments we have used the 

default configuration of the CART algorithm implemented in scikit-learn. In that case, the 

maximum depth of the tree is not specified beforehand, so that tree's depth is set according to a 

certain termination criterion. In order to analyse the effect of the maximum tree depth in the 

overall performance of the model we have evaluated several decision trees with different 

'maximum tree depth' values. Figure 5.11 shows the AUC scores of decision tree classifiers 

trained using both original and balanced datasets. Both configurations achieve the best results at a 

depth of 5-10 and results get worse afterwards, although trends are different. However, when we 

explore the behaviour of recall scores, we find that classifiers trained with imbalanced dataset 

achieve poor results as shown in Figure 5.12. Class balancing, on the other hand, improves 

classifiers' performance to a 55%. 

 

In order to determinate the impact that the number of hidden units of the ELM has in the 

performance of our bagging ensemble, we have conducted a test consisting of measuring the 

recall scores of models with different hidden unit values. Figure 5.13 shows a peak at 30 hidden 

units and a plateau at around 150 units. According to this results, in our tests we have used 30 

hidden units. 
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Figure 5.10. Comparison of ROC curves for different methods with random undersampling 

 

 

Figure 5.11. AUC versus maximum DT depth. 
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Figure 5.12. Recall versus maximum DT depth 

 

 

Figure 5.13. Recall versus number of hidden units in the ELM. 
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5.4. Heart Failure readmission prediction 

Work on the problem of readmission risk prediction in heart failure (HF) has been done in a R&D 

project involving HF patient telemonitoring and predictive modelling (INCAR project funded by 

the Basque Government by means of HAZITEK 2016 program). We collaborated with 

cardiologists from OSI Bilbao Basurto, Dr. Nekane Murga and Dr. Vanessa Escolar who gave us 

access to anonymized and curated EHR and telemonitoring data. A thorough description of the 

dataset was reported in Chapter 3. 

Our approach consisted in experimenting with different feature selection techniques and 

conventional classification algorithms. We used basal information of the patients collected from 

hospital’s EHR. 

5.4.1.  Experiment 1: feature selection 

Methods 

In this experiment our goal is to make a preliminary data analysis in order to figure out which 

features are more related to the HF readmission risk, using only baseline health status data as 

reported the dataset description in Chapter 3. The dataset is composed of 60 attributes collected 

from 119 patients with cardiovascular disease (CVD) from which 30 of them were readmitted 

within 30 days (if a patient is readmitted more than once, only the first admission is included) and 

12 died. We make use of feature subset selection techniques that allow us identifying the most 

significant variables or groups of variables of our dataset. In this section we will present the 

results obtained from the application of the following feature selection algorithms to our dataset: 

● Correlation-based Feature Selection (CFS) 

● Random Forest, embedded FS (RF) 

● Sequential Forward Selection + SFS-SVM 

● Sequential Backward Selection + SBS-SVM 

To avoid the bias that may be introduced by circularity analysis, we carry out the feature selection 

process independently for each LOO cross-validation iterations, i.e. we carry out 10 feature 

selection processes. 

In order to analyse which features are associated with HF readmission or death, we built 

classification models using different feature subsets following a wrapper approach. In this models, 

the outcome was the unplanned readmission or death within 30 days after discharge from HF 
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hospitalization (0 for not readmitted, 1 for readmitted or dead). The evaluation of the models was 

made by performing 10 independent executions using leave-one-out accuracy estimation. We 

used the well-known Random Forest (Gini as splitting criterion and 10 estimators) and SVM 

(radial basis function kernel, C=1 and gamma=1/number of features) classification algorithms, 

implemented in the open source machine learning library scikit-learn. 

Results 

Table 5.11. Mean accuracy and its standard deviation for each classification algorithm and FS 

method 

 none CFS RF SFS-SVM SBS-SVM 

RF .6227 ± .02 .6193 ± .03 .6353 ± .03 .6605 ± .02 .6454 ± .02 

SVM .6471 ± .00 .6471 ± .00 .6471 ± .00 .6639 ± .00 .6639 ± .00 

 

Table 5.11 shows the mean accuracy along with the standard deviation of each model trained with 

the specified configuration. Results show that wrapper methods (using SVM) outperform other 

feature selection techniques. However, we observe that our models, regardless of the underlying 

method they utilize, perform poorly (below 67% accuracy). 

In order to assess the stability of the feature selection processes, Table 5.12 shows the list of 

features that have been selected by each method. For those randomized algorithms the number of 

times each feature was selected is shown. According to the results shown, several conclusions can 

be extracted: 

● We observe that SBS method tends to be more stable in their feature sets, since the 

majority of the selected features are present in multiple runs. It is noteworthy that ‘years since 

first diagnostic’ is a feature that is present in every execution, despite it is not present in the rest 

of methods. The reason may be related with the hill-climbing algorithm underlying, that is 

influenced by a local peak at the end part of the feature vector, so that features in this positions 

are more likely to be selected. 

● On the other hand, SFS method selects a greater number of features although many of the 

selected features are only present in one of the runs. 

● There is not a single feature that reaches the total consensus, that is, it is selected by all 

the methods at least in one run. Nevertheless, urea and pacemaker rhythm are two of the top 

features in terms of consensus, since they are present in all the FS method groups (i.e. filter, 

embedded and wrapper) and in many runs. 

 

Figure 5.14 and Figure 5.15 show the ROCs of the SVM and RF, respectively, after SBS-SVM 

feature selection. Both approaches improve over random choice, but some improvement of RF 
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over SVM can be appreciated. Nevertheless, the results are far being excellent. Most of the blame 

goes to the poor informative value of the original variables. 
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Figure 5.14. Roc curve (SVM + SBS-SVM) 

 

Figure 5.15. ROC curve (RF + SBS-SVM) 
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Table 5.12. List of variable included in the model by each method and number of times they were 

selected in the 10 randomized runs 

Attribute CFS RF SFS-SVM SBS-SVM 

Gender   1  

Smoker   1  

Weight x 2 5  

Height  1   

HR  4   

SO2   2  

SBP  5   

Implant-dev   7  

Need oxygen   1  

Urea x 10  7 

Creatinine  4   

Sodium  1 1  

Potassium x  1  

Hemoglobin   1  

Total cholesterol x 1  2 

HDL cholesterol  2 2  

Triglycerides x 3  6 

Torasemide x  2  

Thiazide x    

ACEIs   1  

ARB   3  

Ivabrandine x    

COPD   1  

Connective tissue disease x    

Peptic ulcer x  4  

Diabetes mellitus   2  

Any tumour   1  

Moderate/severe liver disease    1 

Metastatic solid tumour    1 

Osteoarthritis/arthrosis/spondylitis    1 

Osteoporosis x   3 

Sinus rhythm   1  

Atrial fibrillation    4 

Pacemaker rhythm x  8 7 

Admission days  1 4 4 

Age    2 

Years first diagnostic    10 
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5.4.2. Experiment 2 comparison of classifiers upon complete feature set 

Methods 

In this experiment we wanted to gain more insights about Basurto dataset and its potential 

predictive capabilities. Rather than focusing on feature selection, we worked on preliminarily 

analysing the dataset from a prediction ability point of view by evaluating different model 

configurations. We first performed a dimensionality reduction process in order to visualize the 

dataset and get some insights about its linear separability, possible overlaps etc. 

Afterwards, we tested different well-known classification algorithms and compare its performance 

in terms of area under the ROC curve (AUC). In a preliminary phase we compared the following 

classifiers: 

● CART Decision Tree 

● Random Forest 

● Support Vector Machine (SVM) with radial basis function (RBF) 

● SVM with linear kernel 

All the classifiers used the default configuration of the parameters as provided by scikit-learn. 

In a second phase we compared different resampling techniques for overcoming the class 

imbalance. In order to do so, we selected the two different algorithms, namely Random Forest and 

SVM with linear kernel, and evaluated their performance using different oversampling 

procedures. The following configurations were evaluated: 

● Original class distribution 

● Random Oversampling (ROS) 

● Synthetic Minority Oversampling Technique (SMOTE) 

● Adaptive Synthetic Sampling Approach (ADASYN) 

In the manner of the classification algorithms, we used the default configuration parameters as 

provided by the imbalanced-learn module3 for scikit-learn. 

Results 

Figure 5.16 and Figure 5.17 show the scatter plot of the dataset after reducing the dimensionality 

by means of PCA to the 2 and 3 first components respectively. Although, PCA is not a specific 

technique to find the optimal projection separating the two classes, it is illustrative enough when 

the classes are well separable. The visualization shows that there is not clear immediate separation 

between classes.  

                                                
3 https://github.com/scikit-learn-contrib/imbalanced-learn 
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Figure 5.16. Scatter plot of the first 2 components of PCA 
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Figure 5.17. 3D Scatter plot of the first 3 components of PCA 

 

Table 5.13 provides the 10-fold cross validation AUC scores of each classifier. In order to reduce 

the bias produced by the random splitting of the dataset, we repeat each experiment 50 times and 

average the results obtained (standard deviation is also provided). According to the results we 

observe that the predictive ability of the models is poor with AUC scores ranging from 0.47 for 

Decision tree, which performs worst, to 0.58 for SVM with linear kernel, the best performer (yet 

very low). 

Table 5.13. 10-fold cross-validation of AUC over the different classification algorithms 

 AUC (mean ± standard 

deviation) 
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DT 0.476 ± 0.050 

RF 0.500 ± 0.059 

SVM (RBF) 0.525 ± 0.039 

SVM (linear) 0.587 ± 0.034 

 

It's worth noting that tests are performed using the original dataset, which has a skewed class 

distribution with an imbalance ratio of 1:4. To minimize the class imbalance problem, we decided 

to use oversampling methods, since undersampling wasn’t feasible due to the small size of the 

dataset. Table 5.14 and Figure 5.18 show the comparison of AUC over the original distribution 

and the different oversampling procedures. The adaptive oversampling provides better results, 

though not statistically significant (p>0.01). According to the AUC results, it can be observed that 

SVM improves more when using oversampling techniques in comparison to random forest. All 

oversampling procedures perform similarly with small variations that are not statistically 

significant (ANOVA test). In addition, it can be observed that standard deviation is high. Figure 

5.19 shows the ROC curves for the different classifiers for an instance of their execution. 

 

Table 5.14. ROC AUC scores for SVM and RF classifiers with the original data distribution and 

distributions after different class imbalance correction procedures (mean+-standard deviation) 

 Original 

distribution 

Random 

oversampling 

SMOTE ADASYN 

SVM 0.56 +- 0.03 0.65 +- 0.08 0.67 +- 0.05 0.68 +- 0.04 

RF 0.53 +- 0.06 0.54 +- 0.08 0.56 +- 0.09 0.58 +- 0.05 
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Figure 5.18. AUC comparison for different class distributions 

 

 

Figure 5.19. ROC plot of different classifiers for an instance of their execution. 
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(a) 

 

(b) 
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(c) 

Figure 5.20. Performance comparison of Random Forest and SVM classifiers using normal 

distribution, weighting and resampling (SMOTE) 

In this Chapter we have collected all the experimental results of the Thesis, hence its 

length. Overall, it can be concluded that the prediction accuracy of readmissions is low in 

all cases, as has been acknowledged in the literature, almost independently of the 

classifier building approach used. The poor informative value of the available variables is 

mostly responsible of the results (primarily administrative and demographic) as well as 

the very limited clinical inspection at the admission time.  

Regarding ED readmission prediction results using several strategies for class balancing 

have shown some improvement, but not sufficient as to declare the problem satisfactorily 

solved from a machine learning point of view. Future work must address better strategies 

for planning data gathering in clinical studies, so that new and more informative variables 

can be detected. 

We have also presented a preliminary study for identifying risk factors associated to unplanned 

readmission or death, over a HF clinical dataset. Different classification algorithms and feature 

selection methods were employed in order to increase the prediction ability of the models and 

reduce their complexity in terms of number of features. Results have shown that sequential 

(backward or forward) feature selection methods in combination with SVM perform the best in 

terms of estimated prediction accuracy. Nevertheless, according to the overall poor performance 

of the models, we hypothesize that baseline status data by itself may not have sufficient predictive 

capacity. As future work with HF we aim to study the monitored data to further improve the 

prediction of patient readmission or mortality. Additionally, we aim to develop a system that 
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incorporates preventive actions. For that, we will develop a patient guidance system in a mobile 

platform, which will be based on the knowledge obtained from the predictive models, and the 

preventive actions that clinicians define. 
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Chapter 6 

Conclusions 

This Thesis deals with the prediction of patient readmissions in the healthcare system. This issue 

has been recognized as a key indicator of healthcare quality from both the economical/financial 

and patient attention points of view, justifying the relevance of the thesis topic. Two specific areas 

have been addressed, the emergency department (ED) and the monitoring of heart failure (HF) 

patients. The definition of the appropriate time period in order to consider a patient visit to the 

hospital as a readmission is a matter of debate and political decisions, even in our restricted study 

we have to deal with two such thresholds (i.e. 30 and 3 days). Since readmission risk can be 

moving from one geographical setting to another, recent trends favour the construction of specific 

prediction models using machine learning techniques and methodologies trying to predict if a 

patient admission will lead to a readmission. Traditionally, readmission prediction models have 

been built using a set of classical well-known statistical tools. Although increasingly authors 

propose machine learning as a way to improve the prediction ability of the models, we 

encountered several issues that have not been addressed.  

An important challenge that we have found attacking the problem is that experimental datasets are 

heavily class imbalanced, which is challenging for most of the machine learning tools. 

Consequently, specific methods for dealing with imbalanced datasets can be of great use in this 

setting. Additionally, we took care of using an appropriate performance measure, such as AUC or 

sensitivity, because accuracy can be misleading in imbalanced datasets. We have concluded that 

the precision-recall curve would be more meaningful than the ROC curve, although the de facto 

standard in the field is still the latter. 

We have taken special care to carry out pure cross-validated experiments without corrupting test 

results with training data influences (circular analysis) i.e. by carrying all preprocessing and 

classifier building exclusively over the training data. 
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We carried out a detailed analysis of the state-of-the-art approaches addressing the issue of class 

imbalance. We have worked testing different methods for alleviating the majority class using real 

life medical datasets and evaluated their effect on model’s predictive capabilities. We also 

contribute an ensemble method that combines resampling with bagging and ensemble of 

classifiers, which, outperforms other class-balancing procedures, albeit having its limitations. 

Nevertheless, the results achieved by all classifier building algorithms are modest, in agreement 

with most of the literature. The main reason is that the variables are not very informative so that 

we tried feature selection methods in order to enhance feature discrimination power. There was 

not any dramatic improvement, even when these procedures usually improve the predictive power 

of the classifier, by improving the signal to noise ratio and simplifying the search space. This 

leads us to confirm that from poor quality variables it is not possible to build good feature 

descriptors. 

We have even contributed a new architecture, the AHERF, as a hybrid of ELMs and rotation 

forests, which produces some improvement in the results and limited robustness against the class 

imbalance problem, encouraging further experimentation and evolution of this architecture. 

 

For the future work recommendations, the most important one is the realization of data gathering 

studies including a wider spectrum of variables, so that future computational experiments have a 

better base for the development of feature selection and classifier building approaches. These 

studies must incorporate improved data capture methods and devices which facilitate the work of 

the clinicians and reduce the error and/or the missing data. 

Finally, we found that, to the best of our knowledge, there is no readmission dataset publicly 

available. For this reason, up to now each study makes use of its own healthcare institution’s data, 

what causes a lack of comparability among different studies. In this regard, we made publicly 

available a synthetic dataset that is a transformation based on real clinical data (due to right 

holder’s permission issues). Nevertheless, we will keep on the effort of making public a real 

anonymized dataset, so that it can serve as the benchmark for future models. 
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Appendix A 

HF patient telemonitoring program 

This appendix is devoted to the description of the telemonitoring program at OSI Bilbao-Basurto 

which is related to INCAR project (RIS3 EUSKADI SALUD-2016). 

Inclusion-exclusion criteria 

Inclusion criteria 

• Hospitalization or emergency visit due to decompensation of Heart Failure (with need and 

administration of diuretics) in the previous 6 months, and at least one of the following 

three conditions. 

o Left ventricular ejection fraction <45% (at least once in the last year or on the last 

electrocardiogram, if it is older). 

o Left ventricular ejection fraction> 45% but BNP> 400 (or more NT- but BNP> 

1500) at least once during the last year. 

o Diagnosis of HF confirmed by a cardiologist. 

• Ability to use telemonitoring devices (either by patient or caregiver). 

• Existence of telephone line at the patient's home. 

• The patient gives written informed consent to use telemonitoring 

 

Exclusion criteria 

• Myocardial infarction or percutaneous coronary intervention in the last 3 months or 

planned. 

• Coronary artery bypass graft, valve replacement or correction in the last 6 months. 

• Severe comorbidity with life expectancy <12 months. 
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• Inability to use the devices provided. 

• Cognitive inability to participate. 

• Denial of written informed consent. 

Patient profiling 

Left Ventricular ejection fraction (LVEF) 

• >50% -> Normal or HF with diastolic dysfunction 

• 40-50% -> Intermediate ejection fraction 

• 30-40% -> Depressed ejection fraction 

• <30% -> Very depressed ejection fraction 

(values <15% or >75% are discarded) 

Etiology 

• Ischemic 

• Not ischemic 

Cardiac rhythm 

• Sinus rhythm 

• Atrial fibrillation 

• Pacemaker 

Evolution 

• <1 year 

• >1 year 

Anemia 

Hemoglobin (Hb) <11 -> Yes 

Hb>11 -> No 

(values Hb>17 or Hb<6 are discarded) 

Questionnaire 

Questions’ answers were encoded to ensure data alignment. For that, the polarity of the questions 

was modified if necessary in a way that negative answers were given the maximum score and 

positive answers were given the minimum score. 
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# Question Response Encoding 

1 With respect to previous three days, I feel: Better=0 

Same=0 

Worse=1 

2 Does the medication do me good? Yes=0 

No=1 

3 In the last 3 days, have I taken any medication 

without supervision from my doctor? 

No=0 

Yes =1 

4 Am I following the diet and exercise 

recommendations given by my doctor and nurse? 

Yes =0 

No=1 

5 In the last 3 days my ankles are: Better=0 

Same=0 

Worse=1 

6 Can you take walks like previous days? Yes =0 

No=1 

7 Do I feel breathless or shortness of breath when I 

lie in bed? 

No=0 

Yes =1 

8 Do I notice that I have begun to have cough or to 

expel phlegm? 

No=0 

Yes =1 

9 Have I noticed fatigue at rest? No=0 

Yes =1 

10 If fatigue – Can I take walks on flat? Yes =0 

No=1 
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Appendix B 

Systematic Review 

The following table contains the data extracted during the systematic review process. 

 

# Identifier population FS Method Classification 

algorithm 

Readmission 

rate (%) 

No. of 

instances 

Readmission Discrimination 

(AUC) 

1 abdelrahman2014 HF Wrapper 

(final), 

information 

gain, gain 

ratio, 

symmetrical 

uncertainty 

LR, voting 

feature 

intervals 

(VFI) 

19 2787 30-day 0,86 

2 alassaad2015 80< PCA - 

collinear 

variables 

Cox 

regression 

68 368 12-month 0,71 
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removed -> 

backward 

elimination 

3 Allaudeen2011 all univariate 

GEE 

GEE 17 10359 30-day NR 

4 Allen2012 Systolic HF Stepwise LR LR 13,3 4584 30-day 0,64 

5 allison2014 OPAT backwards 

selection LR 

LR 26 782 30-day 0,61 

6 amalakuhan2012 COPD  RF 47 106 12 month 0,72 

7 amarasingham2010 HF univariate 

LR and 

multivariate 

LR 

LR 24,7 (3,1) 1372 30-day (or 

death) 

0,72 (0,86) 

8 Au2012 HF Random 

Forest 

RF 18,77 59652 30-day 0,54-0,61 

9 baillie2013 all  NR 14,4 120396 30-day 0,61 

10 baltodano2016 ventral hernia 

repair 

univariate 

LR 

LR 4,7 17789 30-day 0,71 

11 bergese2017 pediatric ED  Classification 

Tree, ANN 

2,2 28341 120-hour NR 

12 Berman2011 advanced 

liver disease 

univariate -> 

forward 

stepwise LR 

LR 20 554 30-day NR 

13 betihavas2015 HF backward 

elimination 

Cox 

Cox 

regression 

13 280 28-day 0,8 

14 Billings2012 all  LR 12,2 576868 30-day 0,7 

15 cai2016 all CBFS with 

best-first 

search 

Bayesian 

network 

NR 32634 7-day 0,82 

16 Coleman2004 65< backward 

elimination 

LR NR 1401 30-day 0,77-0,83 
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LR 

17 cui2015 all bivariate LR 33,7 61926 12 month 0,7 

18 Deschodt2015 75< univariate -> 

backward 

LR 

LR 18,5-29,1 442 1-month, 3-

month 

NR 

19 Dharmarajan2013 HF, AMI, 

Pneumonia 

Univariate 

Cox 

regression 

LR 24,8 (HF) 1330157 

(HF) 

30-day NR 

20 Donze2013 all univariable 

LR -> 

backward 

elimination 

LR 

LR 22,3 10731 30-day 0,67-0,71 

21 dorajoo2017 All backward 

elimination 

LR 

LR 45 1291 15-day 0,65 

22 Epstein2011 HF, 

Pneumonia 

(65<) 

univariate -> 

sequential 

removal LR 

HGLM 11-32 (HF) 234477 30, 60, 90-

day 

NR 

23 fisher2016 In 

rehabilitation 

& high risk 

univariate Classification 

Tree, HGLM 

25,3 25908 30-day 0,58-0,69 

24 Garrison2013 all bivariate 

wilcoxon 

rank sum, 

ficher, chi2 

LR 30,4 276 30-day NR 

25 Halfon2006 all univariate -> 

backward 

elimination 

Poisson R. 

Poisson 

regression 

5,1 

(potentially 

avoidable) 

131809 30-day 0,67-0,72 

26 Hao2015 all variance 

minimization 

criterion 

Survival RF NR 211232 30-day 0,72 
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27 Hasan2010 all LR LR 17,5 10946 30-day 0,61-0,65 

28 Jencks2009 65< or disabled Cox 

regression 

19,6 11855702 30-day, 180-

day 

NR 

29 kaur2016 Paediatric 

ICU 

univariate 

LR -> 

forward & 

backward 

LR 

LR 33 256 48-hour 0,61 

30 Keenan2008 HF stepwise 

selection LR 

LR 23,6 567447 30-day 0,61 

31 leong2017risk HF bivariate LR 9,8 1475 30-day 0,76 

32 lopez2011 64< forward 

stepwise LR 

LR 1,3 28430 180-day 0,76 

33 low2016 Asian adults univariate 

LR -> 

multivariate 

LR 

LR 15,5 74102 30-day 0,78 

34 Marcantonio1999 65< bivariate -> 

backward 

elimination 

LR 

LR 50 308 30-day NR 

35 mclaren2016prior HF univariate LR 18 1999 30-day 0,63 

36 mcmanus2016 AMI (65<) PCA-based 

feature 

reduction 

LR 13,18 804 30-day 0,63 

37 Morris2014 ED (60<) stepwise LR LR NR 585888 90-day NR 

38 Nguyen2014 COPD univariate GEE 18 4596 30-day NR 

39 Nijhawan2012 HIV univariate 

LR 

LR 25 2476 30-day 0,72 

40 ouanes2012 ICU univariate LR 3 3462 7-day 0,74 

41 padhukasahasram2015 HF  cox 

regression,  

? 789 ? 0,69 
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survival forest 

42 Pereira2015 75< univariate 

LR -> 

forward 

selection LR 

(& Kaplan-

Meier, cox, 

Gehan or 

Wilcoxon) 

LR, Cox 

regression 

1,8/6,1/10 11521 72-hour, 30-

day, 90-day 

0,77 

43 pugh2014 65< univariate GLM 22,7 105450 30-day 0,65 

44 Shulan2013 Veterans multivariate 

LR 

(stepwise) 

LR 16,15 8718 30-day 0,8 

45 Silverstein2008 65< forward 

addition & 

backward 

elimination 

LR 

LR 11,72 29292 30-day 0,65 

46 Singal2013 Cirrhosis univariate 

LR -> 

Multivariate 

LR 

LR 27 836 30-day, 90-

day 

0,66 

47 tsui2015 65< multivariate 

LR 

LR 7,8 1167521 28-day 0,81 

48 turgeman2016 HF Pearson 

correlation 

ensemble 

(Boosted C5,0 

& SVM) 

28 4840 30-day 0,65-0,85 

49 vanDiepen2014 cardiovascular 

ICU 

univariate -> 

stepwise LR 

LR 4,4 10799 any 0,799 

50 Wallmann2013 Cardiac-

related 

disease 

backward 

elimination 

LR 

LR 4,5 35531 30-day 0,75 

51 Walraven2010 all backward LR 8 4812 30-day 0,684 
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stepping LR 

52 walsh2014 all LASSO LASSO, 

SVM 

7,16 92530 30-day 0,68-0,92 

53 Wang2012 HF backward 

selection -> 

forward 

selection 

Cox 

Cox 

regression 

4,2 198640 30-day, 12-

month 

0,80-0,82 

54 Watson2011 HF univariate & 

multivariate 

LR 

LR 12,75 729 30-day 0,67 

55 Yu2015 HF, AMI, Pneumonia SVM, Cox 

regression 

18,87 74746 30-day 0,63-0,74 

56 Zapatero2012 all LR LR 12,4 999089 30-day NR 

57 Zheng2015 HF  SVM, RF 21,63 1641 30-day NR 

58 Mortazavi2016 HF  RF,SVM, 

Boosting, LR 

14,8 1004 30-day, 180-

day 

0,67 

59 Krumholz2016 HF Random 

Forest 

Cox 

regression 

17,1 1004 30-day 0,62-0,65 

60 Bradford2016 HF univariate logistic 

regression 

13,3 2420 30-day 0,68 

61 Lin2016 65< univariate logistic 

regression 

14,6-19,1 39156, 

178286 

30-day, 1-

year 

0,64-0,65 

62 Corrigan1992 adults  cox 

regression 

30,14 4219 1-year not reported 

63 Vigod2015 acute 

psychiatric 

unit 

stepwise 

logistic 

regression 

logistic 

regression 

9,2 65499 30-day 0,63 

64 Tulloch2015 psychiatric stepwise 

removal LR 

cox 

regression & 

LR 

14,6 7891 90-day 0,65 

65 Tabak2017 all univariate 

LR 

LR 11,9 1195640 30-day 0,69-0,72 
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66 Spiva2014 all LR LR 27,1 598 30-day 0,77 

Abbreviations:  

NR, Not Reported 

HF, Heart failure 

ICU, Intensive Care Unit 

AMI, Acute Myocardial infarction 

ED, Emergency Department 

COPD, Chronic Obstructive Pulmonary Disease 

HIV, Human Immunodeficiency Virus 

OPAT, Outpatient Parenteral Antimicrobial Therapy 

RF, Random Forest 

SVM, Support Vector Machine 

ANN, Artificial Neural Network 

LR, Logistic Regression 

GLM, Generalized Linear Model 

GEE, Generalized Estimating Equation 

HGLM, Hierarchical Generalized Linear Model 

CPHM, Cox Proportional Hazards Model 

LASSO, least absolute shrinkage and selection operator 

PCA, Principal Component analysis 

CBFS, Correlation-Based Feature Selection 

 

 

 





 

119 

 

 

Bibliography 

[Greenland1989] Greenland, S. (1989). Modeling and variable selection in epidemiologic 

analysis. American journal of public health, 79(3), 340-349 

[Futoma2015] Futoma, J., Morris, J., & Lucas, J. (2015). A comparison of models for 

predicting early hospital readmissions. Journal of biomedical informatics, 56, 

229-238. 

[Ross2008] Ross, J. S., Mulvey, G. K., Stauffer, B., Patlolla, V., Bernheim, S. M., 

Keenan, P. S., & Krumholz, H. M. (2008). Statistical models and patient 

predictors of readmission for heart failure: a systematic review. Archives of 

internal medicine, 168(13), 1371-1386. 

[Leppin2014] Leppin, A. L., Gionfriddo, M. R., Kessler, M., Brito, J. P., Mair, F. S., 

Gallacher, K.,  et al. (2014). Preventing 30-day hospital readmissions: a 

systematic review and meta-analysis of randomized trials. JAMA internal 

medicine, 174(7), 1095-1107. 

[Brereton2007] Brereton, P., Kitchenham, B. A., Budgen, D., Turner, M., & Khalil, M. 

(2007). Lessons from applying the systematic literature review process 

within the software engineering domain. Journal of systems and software, 

80(4), 571-583. 

[Tranfield2003] Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a methodology for 

developing evidence‐informed management knowledge by means of 

systematic review. British journal of management, 14(3), 207-222. 



Bibliography  120 

[Crone2012] Crone, S. F., & Finlay, S. (2012). Instance sampling in credit scoring: An 

empirical study of sample size and balancing. International Journal of 

Forecasting, 28(1), 224-238. 

[Jencks2009] Jencks, S. F., Williams, M. V., & Coleman, E. A. (2009). Rehospitalizations 

among patients in the Medicare fee-for-service program. New England 

Journal of Medicine, 360(14), 1418-1428. 

[Chawla2002] Chawla, N. V., Bowyer, K. W., Hall, L. O., & Kegelmeyer, W. P. (2002). 

SMOTE: synthetic minority over-sampling technique. Journal of artificial 

intelligence research, 16, 321-357. 

[Kansagara2011] Kansagara, D., Englander, H., Salanitro, A., Kagen, D., Theobald, C., 

Freeman, M., & Kripalani, S. (2011). Risk prediction models for hospital 

readmission: a systematic review. Jama, 306(15), 1688-1698. 

[Lopez2013] López, V., Fernández, A., García, S., Palade, V., & Herrera, F. (2013). An 

insight into classification with imbalanced data: Empirical results and current 

trends on using data intrinsic characteristics. Information Sciences, 250, 113-

141. 

[Ponikowski2016] Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H., Cleland, J. G., Coats, 

A. J., et al.. (2015). 2016 ESC Guidelines for the diagnosis and treatment of 

acute and chronic heart failure. European heart journal, ehw128. 

[Mosterd2007] Mosterd, A., & Hoes, A. W. (2007). Clinical epidemiology of heart failure. 

Heart, 93(9), 1137-1146. 

[Krumholz1997] Krumholz, H. M., Parent, E. M., Tu, N., Vaccarino, V., Wang, Y., Radford, 

M. J., & Hennen, J. (1997). Readmission after hospitalization for congestive 

heart failure among Medicare beneficiaries. Archives of internal medicine, 

157(1), 99-104. 

[Urma2017] Urma, D., & Huang, C. C. (2017). Interventions and Strategies to Reduce 30-

day Readmission Rates. Hospital Medicine Clinics. 

[Kripalani2014] Kripalani, S., Theobald, C. N., Anctil, B., & Vasilevskis, E. E. (2014). 

Reducing Hospital Readmission: Current Strategies and Future Directions. 



Bibliography  121 

Annual Review of Medicine, 65, 471–485. http://doi.org/10.1146/annurev-

med-022613-090415 

[Balla2008] Balla, U., Malnick, S., & Schattner, A. (2008). Early readmissions to the 

department of medicine as a screening tool for monitoring quality of care 

problems. Medicine, 87(5), 294-300. 

[Swain2015] Swain, M. J., & Kharrazi, H. (2015). Feasibility of 30-day hospital 

readmission prediction modeling based on health information exchange data. 

International journal of medical informatics, 84(12), 1048-1056. 

[Kmietowicz2010] Kmietowicz, Z. (2010). Hospitals will be fined for emergency readmissions, 

says Lansley. BMJ: British Medical Journal (Online), 340. 

[CMS2011] Centers for Medicare and Medicaid Services (CMS), HHS. (2011). Medicare 

program; hospital inpatient prospective payment systems for acute care 

hospitals and the long-term care hospital prospective payment system and 

FY 2012 rates; hospitals' FTE resident caps for graduate medical education 

payment. Final rules. Federal Register, 76(160), 51476. 

[Kadi2017] Kadi, I., Idri, A., & Fernandez-Aleman, J. L. (2017). Knowledge discovery 

in cardiology: A systematic literature review. International Journal of 

Medical Informatics, 97, 12-32. 

[Desai2012] Desai, A. S., & Stevenson, L. W. (2012). Rehospitalization for heart failure. 

Circulation, 126(4), 501-506. 

[Braga2014] Braga, P., Portela, F., Santos, M. F., & Rua, F. (2014). Data mining models 

to predict patient's readmission in intensive care units. In ICAART 2014-

Proceedings of the 6th International Conference on Agents and Artificial 

Intelligence. 

[HSA2011] Critical coverage for heart health: Medicaid and cardiovascular disease 

(2011). American Heart & Stroke Association, Retrieved from 

http://www.heart.org/idc/groups/heartpublic/@wcm/@adv/documents/downl

oadable/ucm_428187.pdf 

[Anand2006] Anand, S. S., Razak, F., Davis, A. D., Jacobs, R., Vuksan, V., Teo, K., & 

Yusuf, S. (2006). Social disadvantage and cardiovascular disease: 

http://www.heart.org/idc/groups/heartpublic/@wcm/@adv/documents/downloadable/ucm_428187.pdf
http://www.heart.org/idc/groups/heartpublic/@wcm/@adv/documents/downloadable/ucm_428187.pdf


Bibliography  122 

development of an index and analysis of age, sex, and ethnicity effects. 

International Journal of Epidemiology, 35(5), 1239-1245. 

[Ceia2002] Ceia F, Fonseca C, Mota T, Morais H, Matias F, De Sousa A, Oliveira AG. 

Prevalence of chronic heart failure in Southwestern Europe: the EPICA 

study. Eur JHeart Fail 2002;4:531 – 539 

[Riley2009] Riley, J. P., & Cowie, M. R. (2009). Telemonitoring in heart failure. Heart, 

95(23), 1964-1968.- Inglis, S. (2010). Structured telephone support or 

telemonitoring programmes for patients with chronic heart failure. Journal of 

Evidence‐Based Medicine, 3(4), 228-228. 

[Cleland2005] Cleland, J. G., Louis, A. A., Rigby, A. S., Janssens, U., Balk, A. H., & Ten-

HMS Investigators. (2005). Noninvasive home telemonitoring for patients 

with heart failure at high risk of recurrent admission and death: The Trans-

European Network-Home-Care Management System (TEN-HMS) study. 

Journal of the American College of Cardiology, 45(10), 1654-1664. 

[Lusignan2001] Lusignan, S., Wells, S., Johnson, P., Meredith, K., & Leatham, E. (2001). 

Compliance and effectiveness of 1 year's home telemonitoring. The report of 

a pilot study of patients with chronic heart failure. European Journal of Heart 

Failure, 3(6), 723-730. 

[U4H2017] United4Health. Transforming patient experience with telehealth in Europe. 

Last accessed 2017-02-03. http://united4health.eu/ 

[WHO2011] World Health Organization, “Global health and ageing,” World Health 

Organization, Geneva, Switzerland, 2011. 

[Carpenter2011] Carpenter CR, Heard K, Wilber S, Ginde AA, Stiffler K, Gerson LW, et al. 

Research priorities for high-quality geriatric emergency care: medication 

management, screening, and prevention and functional assessment. Acad 

Emerg Med 2011 Jun;18(6):644-54. 

[Han2009] Han JH, Zimmerman EE, Cutler N, Schnelle J, Morandi A, Dittus RS, et al. 

Delirium in older emergency department patients: recognition, risk factors, 

and psychomotor subtypes. Acad Emerg Med 2009 Mar;16(3):193-200. 



Bibliography  123 

[Guidelines2014] New guidelines for geriatric EDs: guidance focused on boosting 

environment, care processes. ED Manag 2014 May;26(5):49-53. 

[Friedman2001] Friedman, J. H. (2001). Greedy function approximation: a gradient boosting 

machine. Annals of statistics, 1189-1232. 

[Breiman1996] Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140. 

[Breiman2001] Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. 

[Besga2015] Besga, A., Ayerdi, B., Alcalde, G., Manzano, A., Lopetegui, P., Graña, M., 

& González-Pinto, A. (2015). Risk factors for emergency department short 

time readmission in stratified population. BioMed research international, 

2015. 

[Burges1998] Christopher Burges. A tutorial on support vector machines for pattern 

recognition. Data Mining and Knowledge Discovery, 2(2):167–121, 1998. 

[Vapnik1998] V. Vapnik. Statistical learning theory. Wiley-Interscience, 1998. 

[Quinlan1993] Quinlan, J. R. C4.5: Programs for Machine Learning. Morgan Kaufmann 

Publishers, 1993. 

[Quinlan1986] Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 

81-106. 

[Breiman1984] L. Breiman, J. Friedman, R. Olshen, C. Stone, Classification and Regression 

Trees, Wadsworth and Brooks, Monterey, CA, 1984 

[Huang2006] G.-B. Huang, Q.-Y. Zhu, C.-K. Siew, Extreme learning machine: Theory and 

applications, Neurocomputing 70 (1–3) (2006) 489 – 501. 

[Huang2015] G. Huang, G.-B. Huang, S. Song, K. You, Trends in extreme learning 

machines: A review, Neural Networks 61 (2015) 32 – 48. doi: 

http://dx.doi.org/10.1016/j.neunet.2014.10.001. 

[Huang2011] G. B. Huang, D. H. Wang, Y. Lan, Extreme learning machines: a survey, 

International Journal of Machine Learning and Cybernetics 2 (2011) 107–

122. 

http://dx.doi.org/10.1016/j.neunet.2014.10.001


Bibliography  124 

[Ayerdi2014] B. Ayerdi, J. Maiora, A. d’Anjou, M. Graña, Applications of hybrid extreme 

rotation forests for image segmentation, International Journal of Hybrid 

Intelligent Systems 11 (1) (2014) 13–24. 

[Ayerdi2015] B. Ayerdi, I. Marques, M. Graña, Spatially regularized semisupervised 

ensembles of extreme learning machines for hyperspectral image 

segmentation, Neurocomputing 149, Part A (2015) 373–386. 

[Chyzhyk2015] D. Chyzhyk, A. Savio, M. Graña, Computer aided diagnosis of schizophrenia 

on resting state fmri data by ensembles of ELM, Neural Networks 68 (2015) 

23 – 33. doi: http://dx.doi.org/10.1016/j.neunet.2015.04.002. 

[ICS2016] Ayerdi, B., & Graña, M. (2016). Anticipative Hybrid Extreme Rotation 

Forest. Procedia Computer Science, 80, 1671-1681. 

[Schapire1999] R. Schapire, Y. Singer, Improved boosting algorithms using confidence-rated 

predictions, Machine Learning 37 (3) (1999) 297–336. 

doi:10.1023/A:1007614523901. 

[Freund1995] Y. Freund, R. Schapire, A decision-theoretic generalization of on-line 

learning and an application to boosting, in: European Conference on 

Computational Learning Theory, 1995, pp. 37, 23. 

[Wolpert1996] D. H. Wolpert, The lack of a priori distinctions between learning algorithms, 

Neural computation 8 (7) (1996) 1341–1390. 

[Wolpert1997] D. Wolpert, W. Macready, No free lunch theorems for optimization, IEEE 

Trans. on Evol. Comp. 1 (1) (1997) 67 – 82. 

[Ditzler1997] Ditzler, G., & Polikar, R. (2013). Incremental learning of concept drift from 

streaming imbalanced data. ieee transactions on knowledge and data 

engineering, 25(10), 2283-2301. 

[Haixiang2017] Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., Bing, G.: 

Learning from class-imbalanced data: Review of methods and applications. 

Expert Systems with Applications 73, 220 - 239 (2017) 

[Sun2009] SUN, Y., WONG, A.K.C., KAMEL, M.S.: Classi_cation of imbalanced data: 

A review. International Journal of Pattern Recognition and Arti_cial 

Intelligence 23(04), 687-719 (2009) 



Bibliography  125 

[Yang2006] Yang, Q., Wu, X.: 10 challenging problems in data mining research. 

International Journal of Information Technology & Decision Making 5(04), 

597{604 (2006) 

[Mazurowski2008] Mazurowski, M.A., Habas, P.A., Zurada, J.M., Lo, J.Y., Baker, J.A., 

Tourassi, G.D.: Training neural network classi_ers for medical decision 

making: The e_ects of imbalanced datasets on classi_cation performance. 

Neural networks 21(2), 427{436 (2008) 

[Chawla2003] Chawla, N.V., Lazarevic, A., Hall, L.O., Bowyer, K.W.: Smoteboost: 

Improving prediction of the minority class in boosting. In: European 

Conference on Principles of Data Mining and Knowledge Discovery. pp. 

107{119. Springer (2003) 

[Wang2009] Wang, S., Yao, X.: Diversity analysis on imbalanced data sets by using 

ensemble models. In: Computational Intelligence and Data Mining, 2009. 

CIDM'09. IEEE Symposium on. pp. 324{331. IEEE (2009) 

[Galar2012] Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.: A 

review on ensembles for the class imbalance problem: bagging-, boosting-, 

and hybridbased approaches. IEEE Transactions on Systems, Man, and 

Cybernetics, Part C (Applications and Reviews) 42(4), 463{484 (2012) 

[Borovicka2012] Borovicka, T., Jirina Jr, M., Kordik, P., & Jirina, M. (2012). Selecting 

representative data sets. In Advances in data mining knowledge discovery 

and applications. InTech. 

[Barandela2003] Barandela, R., Sánchez, J. S., Garcıa, V., & Rangel, E. (2003). Strategies for 

learning in class imbalance problems. Pattern Recognition, 36(3), 849-851. 

[He2008] He, H., Bai, Y., Garcia, E. A., & Li, S. (2008, June). ADASYN: Adaptive 

synthetic sampling approach for imbalanced learning. In Neural Networks, 

2008. IJCNN 2008.(IEEE World Congress on Computational Intelligence). 

IEEE International Joint Conference on (pp. 1322-1328). IEEE. 

[Mani2003] Mani, I., & Zhang, I. (2003, August). kNN approach to unbalanced data 

distributions: a case study involving information extraction. In Proceedings 

of workshop on learning from imbalanced datasets. 



Bibliography  126 

[Tomek1976] Tomek, I., “Two modifications of CNN,” IEEE Trans. Systems, Man and 

Cybernetics, vol. SMC-6, Nov. 1976, pp. 769-772. 

[Yen2009] Yen, S. J., & Lee, Y. S. (2009). Cluster-based under-sampling approaches for 

imbalanced data distributions. Expert Systems with Applications, 36(3), 

5718-5727. 

[Fan1999] Fan, W., Stolfo, S. J., Zhang, J., & Chan, P. K. (1999, June). AdaCost: 

misclassification cost-sensitive boosting. In Icml (pp. 97-105). 

[Sun2007] Sun, Y., Kamel, M. S., Wong, A. K., & Wang, Y. (2007). Cost-sensitive 

boosting for classification of imbalanced data. Pattern Recognition, 40(12), 

3358-3378. 

[Freund1995] Freund, Y., & Schapire, R. E. (1995, March). A decision-theoretic 

generalization of on-line learning and an application to boosting. In 

European conference on computational learning theory (pp. 23-37). Springer 

Berlin Heidelberg. 

[Du2012] Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., & Liu, S. (2012). Multiple 

classifier system for remote sensing image classification: A review. Sensors, 

12(4), 4764-4792. 

[Seiffert2010] Seiffert, C., Khoshgoftaar, T. M., Van Hulse, J., & Napolitano, A. (2010). 

RUSBoost: A hybrid approach to alleviating class imbalance. IEEE 

Transactions on Systems, Man, and Cybernetics-Part A: Systems and 

Humans, 40(1), 185-197. 

[Lin2013] Lin, S.J., Chang, C., Hsu, M.F.: Multiple extreme learning machines for a 

two-class imbalance corporate life cycle prediction. Knowledge-Based 

Systems 39, 214{223 (2013) 

[AbdelRahman2014] AbdelRahman, S. E., Zhang, M, Bray, B. E., and Kawamoto, K. (2014). 

A three-step approach for the derivation and validation of high-

performing predictive models using an operational dataset: congestive 

heart failure readmission case study. BMCmedical informatics and 

decision making, 14(1):41. 



Bibliography  127 

[Alassaad2015] Alassaad, A., Melhus, H., Hammarlund-Udenaes, M., Bertilsson, M., 
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