4,849 research outputs found

    Stem cells and fluid flow drive cyst formation in an invertebrate excretory organ.

    No full text
    Cystic kidney diseases (CKDs) affect millions of people worldwide. The defining pathological features are fluid-filled cysts developing from nephric tubules due to defective flow sensing, cell proliferation and differentiation. The underlying molecular mechanisms, however, remain poorly understood, and the derived excretory systems of established invertebrate models (Caenorhabditis elegans and Drosophila melanogaster) are unsuitable to model CKDs. Systematic structure/function comparisons revealed that the combination of ultrafiltration and flow-associated filtrate modification that is central to CKD etiology is remarkably conserved between the planarian excretory system and the vertebrate nephron. Consistently, both RNA-mediated genetic interference (RNAi) of planarian orthologues of human CKD genes and inhibition of tubule flow led to tubular cystogenesis that share many features with vertebrate CKDs, suggesting deep mechanistic conservation. Our results demonstrate a common evolutionary origin of animal excretory systems and establish planarians as a novel and experimentally accessible invertebrate model for the study of human kidney pathologies

    Linking recorded data with emotive and adaptive computing in an eHealth environment

    Get PDF
    Telecare, and particularly lifestyle monitoring, currently relies on the ability to detect and respond to changes in individual behaviour using data derived from sensors around the home. This means that a significant aspect of behaviour, that of an individuals emotional state, is not accounted for in reaching a conclusion as to the form of response required. The linked concepts of emotive and adaptive computing offer an opportunity to include information about emotional state and the paper considers how current developments in this area have the potential to be integrated within telecare and other areas of eHealth. In doing so, it looks at the development of and current state of the art of both emotive and adaptive computing, including its conceptual background, and places them into an overall eHealth context for application and development

    From Pillars to AI Technology-Based Forest Fire Protection Systems

    Get PDF
    The importance of forest environment in the perspective of the biodiversity as well as from the economic resources which forests enclose, is more than evident. Any threat posed to this critical component of the environment should be identified and attacked through the use of the most efficient available technological means. Early warning and immediate response to a fire event are critical in avoiding great environmental damages. Fire risk assessment, reliable detection and localization of fire as well as motion planning, constitute the most vital ingredients of a fire protection system. In this chapter, we review the evolution of the forest fire protection systems and emphasize on open issues and the improvements that can be achieved using artificial intelligence technology. We start our tour from the pillars which were for a long time period, the only possible method to oversee the forest fires. Then, we will proceed to the exploration of early AI systems and will end-up with nowadays systems that might receive multimodal data from satellites, optical and thermal sensors, smart phones and UAVs and use techniques that cover the spectrum from early signal processing algorithms to latest deep learning-based ones to achieving the ultimate goal

    A framework based on Gaussian mixture models and Kalman filters for the segmentation and tracking of anomalous events in shipboard video

    Get PDF
    Anomalous indications in monitoring equipment on board U.S. Navy vessels must be handled in a timely manner to prevent catastrophic system failure. The development of sensor data analysis techniques to assist a ship\u27s crew in monitoring machinery and summon required ship-to-shore assistance is of considerable benefit to the Navy. In addition, the Navy has a large interest in the development of distance support technology in its ongoing efforts to reduce manning on ships. In this thesis, algorithms have been developed for the detection of anomalous events that can be identified from the analysis of monochromatic stationary ship surveillance video streams. The specific anomalies that we have focused on are the presence and growth of smoke and fire events inside the frames of the video stream. The algorithm consists of the following steps. First, a foreground segmentation algorithm based on adaptive Gaussian mixture models is employed to detect the presence of motion in a scene. The algorithm is adapted to emphasize gray-level characteristics related to smoke and fire events in the frame. Next, shape discriminant features in the foreground are enhanced using morphological operations. Following this step, the anomalous indication is tracked between frames using Kalman filtering. Finally, gray level shape and motion features corresponding to the anomaly are subjected to principal component analysis and classified using a multilayer perceptron neural network. The algorithm is exercised on 68 video streams that include the presence of anomalous events (such as fire and smoke) and benign/nuisance events (such as humans walking the field of view). Initial results show that the algorithm is successful in detecting anomalies in video streams, and is suitable for application in shipboard environments

    Harnessing Big Data and Machine Learning for Event Detection and Localization

    Get PDF
    Anomalous events are rare and significantly deviate from expected pattern and other data instances, making them hard to predict. Correctly and timely detecting anomalous severe events can help reduce risks and losses. Many anomalous event detection techniques are studied in the literature. Recently, big data and machine learning based techniques have shown a remarkable success in a wide range of fields. It is important to tailor big data and machine learning based techniques for each application; otherwise it may result in expensive computation, slow prediction, false alarms, and improper prediction granularity.First, we aim to address the above challenges by harnessing big data and machine learning techniques for fast and reliable prediction and localization of severe events. Firstly, to improve storage failure prediction, we develop a new lightweight and high performing tensor decomposition-based method, named SEFEE, for storage error forecasting in large-scale enterprise storage systems. SEFEE employs tensor decomposition technique to capture latent spatio-temporal information embedded in storage event logs. By utilizing the latent spatio-temporal information, we can make accurate storage error forecasting without training requirements of typical machine learning techniques. The training-free method allows for live prediction of storage errors and their locations in the storage system based on previous observations that had been used in tensor decomposition pipeline to extract meaningful latent correlations. Moreover, we propose an extension to include severity of the errors as contextual information to improve the accuracy of tensor decomposition which in turn improves the prediction accuracy. We further provide detailed characterization of NetApp dataset to provide additional insight into the dynamics of typical large-scale enterprise storage systems for the community.Next, we focus on another application -- AI-driven Wildfire prediction. Wildfires cause billions of dollars in property damages and loss of lives, with harmful health threats. We aim to correctly detect and localize wildfire events in the early stage and also classify wildfire smoke based on perceived pixel density of camera images. Due to the lack of publicly available dataset for early wildfire smoke detection, we first collect and process images from the AlertWildfire camera network. The images are annotated with bounding boxes and densities for deep learning methods to use. We then adapt a transformer-based end-to-end object detection model for wildfire detection using our dataset. The dataset and detection model together form as a benchmark named the Nevada smoke detection benchmark, or Nemo for short. Nemo is the first open-source benchmark for wildfire smoke detection with the focus of the early incipient stage. We further provide a weakly supervised Nemo version to enable wider support as a benchmark
    • …
    corecore