
Studies in Analytical
Reproducibility:

the Conquaire Project
Philipp Cimiano, Christian Pietsch, Cord Wiljes (Eds.)

Cim
iano, Pietsch, W

iljes (Eds.)
Studies in A

nalytical Reproducibility: the Conquaire Project

Cognitive Interaction Technology

Cluster of Excellence

Bielefeld University

Quaireon

Bielefeld University

Studies in
Analytical Reproducibility:

the Conquaire Project

Editors:

Philipp Cimiano, Christian Pietsch, Cord Wiljes

2020

Acknowledgements
This work is part of the Conquaire project, which is funded by the German Na-
tional Science Foundation (DFG). DFG-funded research project number 277747081
(German Abstract): http://gepris.dfg.de/gepris/projekt/277747081
This work was supported by the Cluster of Excellence Cognitive Interaction
Technology ’CITEC’ (EXC 277) at Bielefeld University, which is funded by the
German Research Foundation (DFG)."

German Research Foundation

Funded by

Cimiano, P., Pietsch, C., Wiljes, C. eds: Studies in Analytical Reproducibility:
the Conquaire Project. Bielefeld (2020).

ISBN 978-3-943363-06-7
DOI https://doi.org/10.4119/unibi/2942780

Philipp Cimiano https://orcid.org/0000-0002-4771-441X
Christian Pietsch https://orcid.org/0000-0001-8778-1273
Cord Wiljes https://orcid.org/0000-0003-2528-5391

License
This work is licensed under the Creative Commons Attribution 4.0 International
License (CC BY 4.0).

Copyright ©cover illustration by Mark Airs. All rights reserved Mark Airs /
Ikon Images.

http://gepris.dfg.de/gepris/projekt/277747081
https://doi.org/10.4119/unibi/2942780
https://orcid.org/0000-0002-4771-441X
https://orcid.org/0000-0001-8778-1273
https://orcid.org/0000-0003-2528-5391

Contents
Preface . vii

1 Introduction . 1
1.1 Motivation . 1
1.2 Overview of Conquaire Infrastructure and Workflow 4
1.3 Case Studies in Computational Reproducibility 8
1.4 Analysis . 11

1.4.1 Levels of Reproducibility 11
1.4.2 Data formats used by case study partners 12
1.4.3 Tools used by case study partners 12
1.4.4 Reproducibility Analysis 12

1.5 Summary . 14
Bibliography . 15

2 Conquaire Infrastructure for Continuous Quality Control . . 17
Fabian Herrmann, Christian Pietsch, Philipp Cimiano
2.1 Introduction . 17
2.2 Why we use Git and GitLab . 19

2.2.1 Git . 19
2.2.2 GitLab . 20

2.3 Conquaire Continuous Quality Control Infrastructure 21
2.3.1 Overview . 21
2.3.2 Example of pre-configured YAML file 22
2.3.3 Quality checks . 23

2.4 Summary . 26

3 Reproducibility of whole-body movement analyses of insects 29
Yannick Günzel, Fabian Hermann, Vidya Ayer, Philipp Cimiano, Volker
Dürr
3.1 Introduction . 30
3.2 Methods . 31

3.2.1 Data workflow: acquisition and processing pipeline . . . 31
3.2.2 Data acquisition: Experimental procedure 31
3.2.3 Manual editing and annotation 33
3.2.4 Secondary processing: Whole-body kinematics 34

3.3 Analytical Reproducibility . 37
3.3.1 Analysis pipeline, data formats and software tools 37

iii

Contents

3.3.2 Technical Challenges and Issues 38
3.4 Conclusion . 41
Bibliography . 42

4 Reproducing Trajectory Analysis of Bumblebee Exploration
Flights . 43
Vineet Sharma, Olivier Bertrand, Jens Lindemann, Cord Wiljes, Martin
Egelhaaf, Philipp Cimiano
4.1 Introduction . 44
4.2 Experiment settings and data acquisition pipeline 45
4.3 Computational Environment for Reproducibility 48

4.3.1 Software Migration . 48
4.3.2 Virtualization . 50
4.3.3 Continuous Integration supporting quality control 51

4.4 Conclusion . 54
Bibliography . 56

5 Reproducing experiments of ice nucleation in atmospheric
chemistry . 57
Fabian Herrmann, Evelyn Jantsch, Philipp Cimiano, Thomas Koop
5.1 Introduction . 58
5.2 Methods . 60

5.2.1 Experiment settings and Data acquisition pipeline 60
5.2.2 Methods applied to analyze the experimental data 61
5.2.3 Main Results . 63

5.3 Analytical Reproducibility . 64
5.3.1 Research Data - Primary 64
5.3.2 Research Data - Analyzed and Processed 64
5.3.3 Data Workflow Lifecycle 65
5.3.4 Summary of Reproducibility Experiment 66

5.4 Conclusion . 67
Bibliography . 69

6 Visualization of economic agent-based simulations 71
Sander van der Hoog, Philipp Cimiano
6.1 Introduction . 72
6.2 Methods . 74

6.2.1 The FLAME Environment 74
6.2.2 Simulation Data . 75

6.3 Analytical Reproducibility . 77
6.3.1 Data Analysis Pipeline 77
6.3.2 Plotting with FLAViz 81

6.4 Summary and limitations . 83

iv

Contents

6.5 Conclusion . 84
Bibliography . 85

7 Reproducing experiments on early verb understanding in in-
fants . 87
Vidya Ayer, Christian Witte, Philipp Cimiano, Katharina J. Rohlfing,
Iris Nomikou
7.1 Introduction . 88
7.2 Methods . 89

7.2.1 Experimental settings and data acquisition pipeline . . . 89
7.2.2 Methods applied to analyze the data 90
7.2.3 Main Results . 90

7.3 Analytical Reproducibility . 91
7.3.1 Data Workflow Lifecycle 91
7.3.2 Reproducibility Results 93

7.4 Summary of computational reproduction experiment 95
7.5 Conclusion . 95
Bibliography . 96

8 Reproducing an experiment in automatic disfluency detection 97
Frank Grimm, David Schlangen, Julian Hough, Philipp Cimiano
8.1 Introduction . 97
8.2 Methods . 99
8.3 Analytical Reproducibility . 102
8.4 Summary of reproducibility experiment 107
8.5 Conclusion . 111
Bibliography . 112

9 Reproducing the analysis of sequential visual processing . . . 113
Rebecca Foerster, Philipp Cimiano, Werner X. Schneider
9.1 Introduction . 114
9.2 Methods . 115

9.2.1 Experiment settings and Data acquisition pipeline 115
9.2.2 Methods applied to analyze the experiment data 118

9.3 Analytical Reproducibility . 121
9.3.1 Research Data . 121
9.3.2 Analytical Reproducibility status 122
9.3.3 Discussion of reproducibility experiment 124

9.4 Conclusion . 125
Bibliography . 127

v

Contents

10 Reproducibility in Human-Robot Interaction Research: A
Case Study . 129
Florian Lier, Sebastian Meyer zu Borgsen, Sven Wachsmuth, Jasmin
Bernotat, Friederike Eyssel, Robert Goldstone, Selma Šabanović
10.1 Introduction . 130
10.2 Experimental Settings and Methods 132

10.2.1 The JSE Experiment . 132
10.2.2 Replication in Indiana 133

10.3 Analytical Reproducibility: Results & Lessons Learned 139
10.3.1 Technical Obstacles & Procedural Issues 139
10.3.2 Results of the Pilot Study on Reproducibility in HRI . . 140

10.4 Analysis of reproducibility experiment 140
10.5 Conclusion . 142
Bibliography . 144

11 Conclusion . 145

vi

Preface
This book is a direct result of the Conquaire (Continuous Quality Control for
Research Data to Ensure Reproducibility) project, which was funded by the
DFG between 2016 and 2019. The goal of the project was to understand in how
far principles from continuous quality control and test-driven development as
nowadays being state-of-the-art in software engineering can be applied to the
management of research data to increase its quality and potential for re-use.

In order to arrive at such an understanding, we have been closely working
together with researchers from different disciplines at Bielefeld University rang-
ing from biology, over chemistry, economics, linguistics, psychology through to
computer science / robotics. All in all, we have been working with eight re-
search groups and have defined a case study in reproducibility with each of
these groups. Within these use cases we have aimed at reproducing one central
part of a previously published research article. In doing this, we have limited
ourselves to reproducing the computational analysis leading to the particular
result, as reproducing the actual experiments would have been outside of the
scope of the Conquaire project.

The book that lies in front of you documents these eight case studies and
describes what we have done to reproduce the specific results. In most cases,
reproducing the analytical result, in spite of data and scripts being available,
has only been possible by close interaction and guidance by the authors of
the original publication, which in all cases are direct co-authors of the chapter
describing our reproducibility experiments.

The work conducted in the case studies has provided us with a detailed under-
standing of the analytical workflows used by all the case study partners and has
allowed us to get a deep understanding of barriers and challenges in reproducing
published results. Thus, we can give a number of clear recommendations at the
end of the book, representing the lessons learned from the practical attempt to
reproduce a number of published results.

This exercise in understanding requirements and problems for analytical re-
producibility would not have been possible without funding by DFG. Most crit-
ically, it would not have been possible without the effort and dedication of the
eight research groups we have worked with for the last three years. We would
like to thank all of them for their patience with us and for bearing with us while
walking on the sometimes stony path of achieving reproducibility. We thank all
of the research groups for providing us data, scripts, describing their workflows,
etc. All of these groups have been engaged in this project because they were
interested in finding how to improve their workflows to make their results trans-

vii

Preface

parent, reproducible and thus better accessible to the scientific community. We
thank all of these groups for engaging in the project in spite of the risk that
comes with a higher level of transparency and exposure. By being transpar-
ent, one risks that others can discover some flaws in the way things have been
done. This is quite a risk in science, a risk that nevertheless we have to take as
progress in science should always be weighted higher than the consequences for
particular individuals.

We would like to thank all the student researchers involved in Conquaire who
have supported the activities of reproducing results. We would like to thank
in particular Lukas Biermann and Fabian Herrmann as they have been central
to the success of many case studies, having worked day-to-day with many of
the above mentioned research groups and having developed central pieces of the
Conquaire infrastructure for supporting continuous quality control of research
data. We would also like to thank Vidya Ayer, who has been working on the
project since its start. She has been key in pulling together the different chapters
that this book consists of and provided a very early draft version of a manuscript
for the book. Finally, we would like to thank John P. McCrae for contributing
to the Conquaire project proposal. Many of the key ideas of Conquaire go back
to him.

It has been a pleasure and very rewarding to work with all these scientists
and learning about their very specific research questions, goals, and methods.
We hope that you find this book as exciting to read as it was for us to edit it.

Bielefeld, 29th September 2019

Philipp Cimiano, Christian Pietsch, Cord Wiljes

viii

1 Introduction

Abstract
Data quality, FAIR-ness and reproducibility are important criteria to fulfill in
the research lifecycle. They allow scientists to validate each others’ results and
are thus key to the integrity of science. Within the DFG-funded Conquaire
project, we have strived to develop a detailed understanding of the challenges
involved in ensuring data quality, achieving FAIR-ness and computational re-
production of results. As a way to derive requirements and lessons learned, we
have analyzed in detail the research practices and workflows of a number of re-
search groups participating in the Conquaire project from different disciplines.
On the basis of these case studies, we have identified categories of reproducibility
and attempted to highlight challenges and propose best practices. This chap-
ter briefly introduces the goals of the Conquaire project which has focused on
the reproduction of the so called analytical phase of an experiment. We briefly
introduce the research disciplines and research groups involved and present a
summary of our overall findings. The remainder of the book describes the dif-
ferent use cases in detail and concludes with some recommendations for best
practices.

1.1 Motivation
Reproducibility is a cornerstone of the scientific process. While the reproduction
of an experiment can be extremely difficult, the ability to reproduce the (com-
putational) analysis of the data that supported a certain conclusion (e.g. the
validation of a hypothesis) should be a minimum requirement on every piece of
published research. We call this type of reproducibility analytical reproducibility.

An illustrative example of data sharing and independent validation of scien-
tific results by others, or in this particular case refutation, is conveyed by a
recent case. In 2010, Harvard researchers Kenneth Rogoff and Carmen Rein-
hart published their paper “Growth in a Time of Debt” [9]. They had analyzed
historical data from 20 industrialized countries since WWII and concluded that
economic crises arise when the size of a country’s debt rises above 90% of the
Gross Domestic Product (GDP). This result had a significant impact on po-
litical decisions worldwide, until in 2013 the student Thomas Herndon tried to
replicate the analysis. He contacted Reinhart and Rogoff and they provided him
with the actual working spreadsheet. Inspection of this spreadsheet disclosed

1

1 Introduction

several serious errors, which rendered the results invalid1. The above case is thus
a very good example of the efficiency of the scientific process, albeit a rather
simple one in which both the data and the analytical procedures used to analyze
the data were available in the form of a spreadsheet and could thus be directly
analyzed and modified. In many scientific disciplines, reproducing research re-
sults is more complicated as research can involve advanced and high-tech devices
needed to measure certain phenomena, complex experimental protocols, data in
different formats (structured vs. unstructured), different modalities (text, an-
notations, video, audio, 3D data) etc., which make it difficult to reproduce a
certain scientific experiment.

While reproducing an experiment can be very challenging, as a baseline, given
the primary or derived data resulting from an experiment, the reproduction of
the (computational) analysis procedures that yielded a particular result should
be feasible. In fact, an important step in the generation of scientific results lies
in the computational analysis of the primary data or derived secondary data. In
most cases, software packages (such as SPSS, R, Excel) are used in this part of
the process to test a hypothesis by performing some computational or statistical
analyses of the primary or derived data. We will refer to this part of the process
as analytical phase. While being able to fully reproduce an experiment can be
extremely difficult, reproducing the analytical phase seems more feasible as it
would essentially require access to the primary and/or derived data as well as
to the analytical tools used by the researchers to derive some result.

Thus, a significant step forward towards supporting reproducibility in science
would be analytical reproducibility, which consists of making sure that a third
party researcher is able to reproduce the computational and statistical analysis
performed on primary and derived data to yield a particular conclusion, thus
being able to independently verify the results and conclusion. A crucial question
is how research data infrastructures should be extended to support analytical
reproducibility, data sharing and thus independent validation of (analytical) re-
search results.

As a prerequisite for a research result or scientific paper to be analytically
reproducible and useful for other researchers, the following conditions need to
be met:

1. the primary or secondary data is available,

2. the data is syntactically well-formed and ready-to-use,

3. the data is appropriately documented,

4. the analysis procedures (e.g. scripts) that were used to process or analyze
the data are available, and

1See the correction published by C. Reinhart on her website: http://www.carmenreinhart.
com/user_uploads/data/36_data.pdf

2

http://www.carmenreinhart.com/user_uploads/data/36_data.pdf
http://www.carmenreinhart.com/user_uploads/data/36_data.pdf

1.1 Motivation

5. these analytic procedures can be run on the data to reproduce the actual
result published in a paper.

Analytical reproducibility is often hampered by the fact that one of the above
conditions is not met. In order to be reproducible, research data needs to have
a certain quality which we operationalize in the context of Conquaire as its
readiness to be re-used by others, e.g. to reproduce the computational analyses
described in a scientific publication. Typically, researchers have no institutional
support nor resources to ensure data quality in the above sense. Thus, curating
data to make it fit for publication and sharing requires substantial resources
that researchers do not typically receive credit for. If the data is published, this
is typically done in a delayed fashion after the research project or dissertation
work has been concluded.

However, it is well-known from other areas (e.g. software engineering) that
quality control is better taken into account at the start of the research project.
Continuous integration [1] (p. 209) in software engineering is aimed at increasing
quality of software by specifying a number of tests that the software should pass
in order to continuously monitor compliance with these. Drawing inspiration
from software engineering, principles of continuous integration could be applied
to research data management to realize continuous monitoring of data quality
and ensure that at each step in the research cycle, the data fulfills a number
of defined tests. Ultimately, as a final test on the quality of the research data,
the proof that third parties can reproduce and validate the (computational)
analyses that produced a certain result could be seen as final culmination of a
continuous data quality assurance cycle.

In our previous research data management efforts, we learned that researchers
are generally willing to create data of high quality, share this data and make
their results reproducible as part of their duties as a researcher and to meet
expectations of their community. However, to ensure reproducible research,
extensive effort [2], maintenance and documentation is required, which rarely
happens due to the demanding challenges related to data processing, validation
and publishing. Therefore, researchers need to be supported in this process by
an appropriate institutional infrastructure that hosts their data and implements
corresponding workflows that allow them to ensure research data quality and
reproducibility along the whole research lifecycle. Such an infrastructure that
supports continuous research data quality monitoring and at the end makes the
data publicly available to allow for reproduction of the computational analy-
sis is not yet available. The DFG-funded Conquaire project had the goal of
examining case studies as a basis to develop best practices and prototypically
implement institutional support to ease the work of scientists in making their
work reproducible by third parties.

3

1 Introduction

1.2 Overview of Conquaire Infrastructure and
Workflow for Research Data Management

For an academic institution, it is important to have an infrastructure-based
approach when creating research data management services for researchers.
Within the Conquaire project, we have developed a number of best practices
and workflows that support researchers in ensuring reproducibility and quality
of their research data, concentrating on the analytical phase of an experiment.

Figure 1.1: Schematic description of Conquaire workflow for research data man-
agement

Conquaire envisions that scientists commit their data and scripts early in the
research cycle into a distributed version control system (DVCS) such as Git, a
content-addressable key-value data store based file system. A University-wide
installation offers various advantages for collaboration: regular data backups
that are version controlled, hence retrievable, and security features for data
that cannot be corrupted.

The Conquaire project decided to adopt Git as the DVCS , largely to take ad-
vantage of features that ensure a distributed collaborative environment. GitHub,
a social site for software development, uses the Git DVCS as the underlying tech-
nology to create a cloud-hosted platform for sharing program code and related
technical artifacts. With several collaborative features, the site is free for open-
source projects and the intrinsic social features make it very popular among
programmers, scientists and technical people wanting to share their work and

4

1.2 Overview of Conquaire Infrastructure and Workflow

collaborate. A Stackoverflow survey2 ranked Git usage at 69.3%, almost double
than the second source control - SVN at 36.9%, making Git the front runner
among distributed version control systems.

Since GitHub is a cloud-hosted platform, we looked for alternative free and
open source software (FOSS) implementations that could be installed on the
University infrastructure. We found Gitlab, a free software framework imple-
mentation of a web-based Git-repository manager that supports self-hosting
with features similar to GitHub3, i.e. an issue-tracker, wiki, CI/CD pipeline,
etc. that was layered around the user with different permission levels. These
variable permission layers for different feature access plays an important role in
collaborating and sharing knowledge across physical boundaries. Like GitHub,
the collaborative features of Gitlab include allowing a user to make multiple
commits, pull requests, make changes and edit their documents, create forks or
branches, revert to an old version, and/or merge those changes into the master
branch.

When a user makes a Git commit, it consists of three steps that involve Git
creating, (i) a tree graph in order to represent the content of the files being
committed to the project, (ii) a commit object that is stored and tracked in the
.Git/objects folder, and (iii) an object that points to the current branch at
the new commit object.

To record the current state of the repository, Git creates a tree graph from
the index, which records the location and content of every file within the project
repository. The tree graph is composed of two types of objects: blobs and trees.
The command Git add stores blobs that represent the content of files; while trees
are stored when a commit is made and it represents a directory in the working
copy.

Thus, the distributed features of the key-value data store ensure that the Git
history stores the old version, the new version, and an interim version that the
user stores in their forked (or, working copy) version. The Git project environ-
ment aids data sharing and reproducibility when a user checks research data
into a version controlled repository, by ensuring they can reproduce the exact
state of the project over a timeline. Thus, multiple users can easily collaborate
without fear of their work being erased or overwritten thanks to many Git fea-
tures for collaboration like merging, fetching, pulling changes to a local branch,
branching, stashing, pushing changes, tagging objects, etc.

Conquaire Workflow

The architecture of the Conquaire quality control system is depicted in Figure
1.2, where the workflow consists of two integrated streams:

2https://insights.stackoverflow.com/survey/2015
3https://conquaire.uni-bielefeld.de/2018/04/17/Git/

5

https://insights.stackoverflow.com/survey/2015
https://conquaire.uni-bielefeld.de/2018/04/17/Git/

1 Introduction

Figure 1.2: Research data acquisition and processing pipeline.

A. Data preparation and quality checking (marked red)

• Step 1: The researcher uploads data to the version control system server.
This can be done by the GitLab Browser-based frontend, from the shell
using Git commands or with any other available Git-GUI (e.g. GitHub
Desktop, Tortoise Git).

• Step 2: Uploading one or more files onto the Git-Server automatically
triggers the Gitlab CI-runner, which executes the quality checking proce-
dures on the Conquaire quality checking server. These fetch the necessary
files from the Git-repository and perform quality checks.

• Step 3: The result of the quality check is returned to the researcher. It
gives a detailed analysis of all files that were commited and provides a
report on which tests were passed or failed by the data. The researcher
may then correct the data according to the test results and resubmit it to
the Git-repository. This cycle can be iterated as long as it is necessary.

B. Data publication und Re-Use (Steps 4-6, marked green)

6

1.2 Overview of Conquaire Infrastructure and Workflow

• Step 4: If a researcher decides to publish the data, she/he can choose to
do this on the publication repository PUB4, hosted by Bielefeld University,
which allows for data publication and has a direct interface to Gitlab. For
the publication of a dataset, the researcher only needs to enter the URL
of the GitLab repository and some basic metadata (creator, year, license)
into the PUB interface.

• Step 5: PUB will automatically fetch the results of the Conquaire qual-
ity checks from the Conquaire server, and select and display the results
visually via quality badges.

• Step 6: If a visitor wishes to download the data, it is fetched from GitLab.

An important dimension of the workflow/architecture consists in automatic
quality checks that can be applied to research data. Every time the researcher
commits changes to the Git repository, the in-built CI runner in Gitlab au-
tomatically executes a pipeline that is described in a YAML file inside the
root directory of the project. This pipeline performs different tests that check
whether all the necessary background information is provided (FAIR metrics5)
and the data has valid syntax and semantics. The quality checking tests are im-
plemented in Python-3x and cover two open file types that are commonly used,
i.e., .csv and .xml, with the possibility of an extension to work with other file
types as well.

In each case, the quality testing framework searches for specific file types and
checks if the files can be parsed and whether the data fulfills some predefined
criteria. The researcher must provide .fmt or .dtd files with their own specifi-
cations (i.e., data value types and ranges) to evaluate the quality of their data.
For every file and every commit into their Git repository, a log file (bearing the
commit hash) is created that lists errors and warnings that were reported by
the test.

Figure 1.3: Example feedback from quality tests.

4https://pub.uni-bielefeld.de/
5http://fairmetrics.org/

7

https://pub.uni-bielefeld.de/
http://fairmetrics.org/

1 Introduction

At the end, the feedback is provided directly to the researcher, helping them
to find errors and correct them right away before publishing the results. The
feedback is stored on the server and an e-mail with an overall summary of the
test results is sent to the researcher. In addition to the personal feedback, a
colored badge icon in the PUB entry is created, representing the overall quality
to other researchers who want to work with the data. The badge is based on the
worst test result across the repository and has three possible categories: valid
data (green), well-formed data (yellow), and erroneous data (red). This is to
encourage researchers to make sure that only high-quality data is published to
guarantee reproducibility.

We have applied the the workflow mentioned before to a number of specific
case studies from different disciplines in Conquaire. The case studies have been
instrumental in validating the concept and workflow proposed by Conquaire but
also in understanding the practical feasibility, obstacles, etc. of the workflow
when applied to concrete cases. In these case studies, we aimed for reproducing
one particular result from an already published paper. This historical perspec-
tive might look a bit odd at first sight.

However, we realized quickly that we would not be able to change the current
workflows followed by researchers in the middle of a research project as this
would be too disruptive and would delay their research process, a price that none
of the groups involved in Conquaire as case study partners would be willing to
pay. Therefore, with each of these case study partners, we identified one central
result that Conquaire would try to reproduce. This book describes all these
case studies and derives lessons learned and makes recommendations on best
practices to follow to ensure reproducibility of analytical workflows.

1.3 Case Studies in Computational
Reproducibility

Here, we briefly describe the eight case studies analyzed in Conquaire and in
particular the main results that were reproduced from the published paper for
each research group.

Biological Cybernetics: The Biological Cybernetics research group at
Bielefeld University led by Prof. Volker Dürr researches the adaptive locomotion
abilities of stick and leaf insects. In collaboration with the group, we attempted
to reproduce the main results of the paper by Theunissen et al. [6] with the
title ‘Comparative whole-body kinematics of closely related insect species with
different body morphology’. In this paper, the authors investigated the walking
behaviour of three different species of stick insects. This was done by recording
whole-body kinematics of the animals, using a commercial marker-based motion
capture system and custom written MATLAB scripts. The main objective of

8

1.3 Case Studies in Computational Reproducibility

the study was to relate inter-species differences in kinematics to differences in
overall morphology, including features such as leg-to-body-length ratio that were
not an obvious result of phylogenetic or ecological divergence. The researchers
discovered major differences related to antenna length, segment lengths of tho-
rax and head, and the ratio of leg length over body length, with the long-legged
Medauroidea having the strongest difference in intra-leg coordination of mul-
tiple joints, leg posture, and time courses of leg joint angles. We discuss an
experiment in reproducing the main results of this paper in Chapter 3.

Neurobiology: The Neurobiology Research Group at Bielefeld Univer-
sity led by Prof. Martin Egelhaaf works on understanding flight and navigation
behaviour of bumblebees. The goal was to reproduce results from a paper [7]
with the title ‘Taking a goal-centered dynamic snapshot as a possibility for lo-
cal homing in initially naive bumblebees’, studying the first learning flights of
bumblebees, which are highly individual and variable. The Conquaire project
reproduced the analytical workflows and was able to reproduce the 3D trajec-
tory generated by using triangulation from two 2D trajectories. This case study
is reported in more detail in Chapter 4.

Atmospheric Chemistry: The Physical Chemistry group at Bielefeld
University led by Prof. Thomas Koop investigates the conditions under which
ice nucleation occurs. In this book, we describe a case study consisting in the
replication of the central result in the paper ‘BINARY: an optical freezing array
for assessing temperature and time dependence of heterogeneous ice nucleation’
by Budke and Koop [3]. The study investigates the conditions under which ice
nucleation occurs using Snomax®, a commercial ice inducer containing freeze-
dried nonviable bacterial cells from Pseudomonas syringae as a test substance
for the investigation of heterogeneous ice nucleation processes. The main result
of the paper was an analysis of the relation between the ratio of nucleations in
dependence of different temperature ranges. The original analytical workflow
was implemented via the GUI of OriginPro. In chapter 5, we describe how this
workflow could be reproduced using a Python script.

Psycholinguistics: In our collaboration with the Psycholinguistics research
group at Paderborn University led by Prof. Katharina Rohlfing, we attempted
to independently reproduce the main findings of the paper by Namikou et al.
with the title ‘Evidence for early comprehension of action verbs’ [8]. The re-
produced study adopted a preferential looking time paradigm and conducted a
so called paired-picture trial in which a verb under investigation was semanti-
cally associated to one of two pictures shown, the target picture, and another
picture, the so called ‘confounder’. Using an eye tracker, the difference between
proportion of looking times at the matching image before the verb was spo-
ken compared to looking times after the verb was spoken was measured. As a

9

1 Introduction

result, the study showed positive differences for 10-month olds, sign of early un-
derstanding of the verbs. For 9-month olds, in contrast, the study was not able
to reliably demonstrate verb understanding. We describe this reproduciblity
experiment in Chapter 7.

Applied Computational Linguistics: The Applied Computational Linguis-
tics at Bielefeld University is led by Prof. David Schlangen and performs re-
search in the area of dialogue systems. Within Conquaire, our goal was to
reproduce the main results of the published paper ‘Joint, Incremental Dis-
fluency Detection and Utterance Segmentation from Speech’ [5], published in
the proceedings of the international conference on the European chapter of the
Association for Computational Linguistics (EACL). This paper was concerned
with the task of disfluency detection and utterance segmentation and proposed
a simple deep learning system working on transcripts and Automatic Speech
Recognizer (ASR) output. For this purpose, the Dialogue Systems Group at
Bielefeld University developed a library that relies on a mixed data model of
live automatic speech recognition (ASR) data and a cleaned text corpus of open
data to evaluate the performance of deep learning systems for disfluency detec-
tion in conversational systems and related tasks on speech data. We describe our
experiments with this library on reproducing the results of the above mentioned
paper in Chapter 8.

Neuro-Cognitive Psychology With the neuro-cognitive psychology re-
search group at Bielefeld University, we reproduced the results for their pub-
lished manuscript entitled ‘Expectation violations in sensorimotor sequences:
shifting from Long-Term Memory (LTM)-based attentional selection to visual
search’ [4]. The research of the group focuses on the area of visual attention, eye
movements, working memory, transsaccadic learning, and sensorimotor learning.
The group works on understanding visual processing in humans via controlled
behavioral experiments in laboratory environments alongside real-world studies.
The main result of the article mentioned above was that the finding that ex-
pectation violations in a well-learned sensorimotor sequence in humans caused
a regression from LTM-based attentional selection to visual search. We describe
our efforts to partially reproduce these experimental results in Chapter 9.

Economic Theory And Computational Economics: The Economic The-
ory And Computational Economics (ETACE) group lead by Prof. van Hoog
applies agent modeling approaches to study dynamic equilibrium models re-
sulting from the interaction of heterogeneous rational agents, allowing insights
into the application of different industrial policy measures in different regions,
the existence of varying spatial frictions on goods and labour markets, the spa-
tial dynamics of industrial activity, technical change and growth, the micro-
and macro-prudential regulations and their effects on micro-fragility and macro-

10

1.4 Analysis

financial stability, and financiation of the real sector and the need for produc-
tive credit for economic development. Conquaire supported the ETACE group
in implementing the FLAViz library that implements a data analytic process-
ing pipeline allowing the computational analysis and visualization of simulation
data generated in the FLAME environment. This library is a key step towards
ensuring computational reproducibility of the analyses of the available simula-
tion data; we describe it in more detail in Chapter 6.

Robotics and Cognitive Systems Research: The Central Facility Lab
group led by Dr. Wachsmuth at the Cognitive Interaction Technology Excel-
lence Center at Bielefeld University is concerned with aspects of system and
software engineering in robotic and cognitive systems. Within the context of
Conquaire, we attempted to reproduce a human-robot experiment that studied
the well-known Joint Simon effect [10]. Using the end-to-end experimental work-
flow described in this chapter it was possible for a psychologist from Indiana
University who was not an expert in robotics to reproduce an experiment origi-
nally carried out at Bielefeld University. We regard this as a clear success story
of experimental reproducibility and see this as a best practice of reproducibility.

1.4 Analysis

1.4.1 Levels of Reproducibility
As a result of the project, Conquaire has developed a taxonomy of categories of
analytical reproducibility:

1. Publication Only: No data or analysis code is available, neither publicly
nor elsewhere beyond the written publication.

2. Non-reproducible: Data and analysis code is available, but results can
not be reproduced because reproduction requires manual intervention, e.g.
changing the order of script execution, unknown script parameters, im-
ported libraries have changed and code can not be run, etc.

3. Limited analytical reproducibility: Results are in principle repro-
ducible, but reproduction is hindered by: 1) the need to use commercial
or proprietary software instead of open and free software (software lock-in)
or 2) data is in non-standard formats and has to be transformed into com-
mon formats, 3) reproducing the analytical workflow requires interaction
with or guidance by the original authors due to insufficient documentation.

4. Full analytical reproducibility: Data is ready to use and in standard
formats, analysis code is available and documented and can be run without
any modifications; software used is free and open. Results are thus fully
reproducible without any need of modification, data conversion, etc.

11

1 Introduction

5. Sustainable analytical reproducibility: Stability in environment (hard-
ware and software) ensures full analytical reproducibility over a long term
period.

1.4.2 Data formats used by case study partners
Our observation of the data formats and data sizes shows that three groups
used proprietary software formats and the rest used open data formats. One
research group required high-performance computing (HPC) facilities, unavail-
able at Bielefeld University, to generate large amounts of simulated data with a
visualization pipeline to process their data, while the rest of the groups had a
long tail of research data with a multitude of formats used for images, video and
audio data. However, research groups that had raw data in the form of large
videos, images and audio could not use Gitlab to store the raw data due to its
file size limit of 2GB per file with the GitLFS extension. The most common data
formats were CSV (and .tsv), Matlab (.m, .mat), Python (.py), XML, YAML
(.yml), and Jupyter (.ipynb) notebooks.

1.4.3 Tools used by case study partners
Most research groups had a combination of technical tools used for processing
and analyzing data. The most common programming language was Python
(Theano, Pandas, Numpy, Scipy, scikit/sklearn, jupyter, etc.), closely followed
by Matlab, for analysis and visualization. The technical stack also included
other tools like MySQL, C, Java and their libraries for processing tasks. The
proprietary toolkits included Origin and SPSS that handled the data processing
spectrum, from analysis to visualization.

1.4.4 Reproducibility Analysis
From our eight case studies, we regard one as clearly fulfilling the criteria of
full analytical reproducibility, i.e. in the case of the human-robot-interaction
experiment attempting to reproduce the Joint Simon effect in a study involving
multiple sites. All other case studies can be categorized as examples of at least
limited analytical reproducibility with some of them reaching the status of full
analytical reproducibility by the end of the project’s lifetime.

The reproduction of the work from the Applied Computational Linguistics
group on disfluency detection featured a high level of reproducibility as code
and data were available in a public Git repository. Nevertheless, we could not
reconstruct the exact version of the software used for the experiments, so that
the results are only an approximation of the results of the original paper. If the
version used in the experiments described in the paper was directly reference-
able, we would definitely have a case of full analytical reproducibility as we could

12

1.4 Analysis

reproduce the results after minimal interaction with the authors of the original
paper.

In some of these cases, the analytical pipeline relied on proprietary and com-
mercial software such as Matlab, SPSS or OriginPro (this was the case for the
Biological Cybernetics, Atmospheric Chemistry and Neuro-Cognitive Psychol-
ogy group) as well as commercial operating systems (Microsoft) to run their
analytical pipelines. In most of the cases the pipeline could be reproduced by
open source tools such as R with some effort, but there is no guarantee that re-
sults are equivalent as implementations of statistical / analytical methods could
potentially produce different results. In three cases (Neurobiology, Psychology,
Atmospheric Chemistry), we were able to re-implement the analyses using open
source tools (Python) and reproduce the results exactly. Yet, this was only
possible due to intense guidance by the authors of the original article. By the
end of the project, these three projects could be regarded as reaching the status
of full analytical reproducibility.

The case study conducted with the Economic Theory And Computational
Economics group deviates from the other case studies in that we did not repro-
duce a specific result, but jointly developed a library that allows to plot results
from large-scale economic simulations, essentially allowing to project variables
and visualize them. We still regard this as an example of limited analytical
reproducibility as the data is in principle available, but too large to be stored
in a Git repository. With the developed library, we enable users to analyse data
from existing simulation data generated in the FLAME environment. This li-
brary thus fulfills a generic purpose and would allow for full reproducibility if
the data would be available.

For the case study with the Biological Cybernetics group, we have a case
of limited reproducibility due to the fact that not all the data has been made
publicly available, but only sample data. Further, the analytical toolchain re-
lies on a commercial tool, Matlab. The same holds for the use case with the
Neuro-Cognitive Psychology group, whose analytical workflow also builds on a
commercial system, the SPSS Software. Nevertheless, for both projects the data
are openly available and recoding the scripts in free and open languages is only
a matter of further effort.

In sum, we found no case of non-reproducibility or publication-only. In all of
these use cases, the central results from the selected papers could be reproduced,
albeit with some effort. In some cases, they could be reproduced under strong
guidance of the authors and with commercial software only. In three cases, we
could fully implement the analytical workflow using open-source tools, Python
in particular, so that three out of eight cases can be counted as cases of full
analytical reproducibility.

13

1 Introduction

1.5 Summary
The Conquaire project has analyzed in detail eight case studies in computational
reproducibility involving research groups from areas as varied as computer sci-
ence / robotics, psychology, (computational) linguistics, biology, chemistry and
economics. On the basis of accompanying the work of these groups over three
years, it has developed a detailed understanding of the variety and heterogeneity
of analytical research workflows.

In terms of infrastructure, Conquaire has developed infrastructure on top of
a Git system that allows researchers to commit their data early in the research
process into a distributed versioning system, with the benefit of providing a
backup service but most importantly versioning the data and making different
versions of the data referenceable. The project has also implemented continuos
integration principles on top of the Git system, allowing research to define tests
that their data have to pass as a basis to ensure data quality. It has implemented
a badge system that publishes the results of the tests via the Bielefeld University
PUB system to create incentives for researchers to make their data consistent
and ready to be reused by others.

From a conceptual point of view, Conquaire has developed a taxonomy of
reproducibility levels corresponding to different levels on the spectrum of re-
producibility. We distinguish between 5 levels of reproduciblity: Publication
Only, Non-reproducible research, Limited analytical reproducibility, Full ana-
lytical reproducibility and Sustainable analytical reproducibility. Our analysis
of eight use cases allows us to conclude that only one of the projects considered
came close to fullfilling the requirements of Sustainable Analytical reproducibil-
ity; three projects satisfy the criteria of full analytical reproducibility. In all case
studies, we could successfully reproduce one central result from one of the pub-
lished papers. The main obstacles for analytical reproducibility found were i)
the lack of documentation and thus reliance on guidance by the original authors,
ii) the reliance on some manual steps in the analytical workflow (e.g. clicking
on a GUI) , iii) the reliance on non-open and commercial software, and iv) lack
of information about which particular version of software and/or data was used
to generate a specific result.

From our point of view, the project has been a success. First, we were able to
reproduce more results than originally expected. Second, the detailed analysis
of existing workflows has lead to a thorough understanding of the complexity
and heterogeneity of involved analytical workflows. The fact that the data and
scripts were available in a university-wide Git system is already a big success,
as it makes research artifacts directly accessible. The use of social rewards was
an interesting idea to explore, yet it remains to be seen if this sort of incentive-
creating mechanisms is accepted by the community of researchers.

Overall, the Conquaire project has come to the conclusion that there is hope
for improving the state of affairs regarding the reproducibility of research results
if we provide institutional support for scientists to provide their code and data

14

References

into an institutional repository if not a public repository as a first step to making
artifacts referenceable and accessible in line with the FAIR principles. There
is clearly a difficult and challenging agenda in front of us to make this happen
at broad scale, but the Conquaire project has provided proof-of-concept that
reproduction is feasible.

References
[1] Booch, G. (1991). Object Oriented Design: With Applications.

Benjamin/Cummings.

[2] Buckheit, Jonathan B.; Donoho, D. L. (2005). On the computations
analyzing natural optic flow: quantitative model analysis of the blowfly
motion vision pathway. WaveLab and Reproducible Research,
25(27):6435–6448.

[3] Budke, C. and Koop, T. (2015). BINARY: an optical freezing array for
assessing temperature and time dependence of heterogeneous ice nucleation.
Atmospheric Measurement Techniques, 8(2):689–703.

[4] Foerster, R. M. and Schneider, W. X. (2015). Expectation violations in
sensorimotor sequences: shifting from ltm-based attentional selection to
visual search. Annals of the New York Academy of Sciences, 1339:45–59.

[5] Hough J, S. D. (2017). Joint, incremental disfluency detection and
utterance segmentation from speech. In Proceedings of European Chapter of
the Association for Computational Linguistics (EACL).

[6] LM, T., HH, B., and V, D. (2015). Comparative whole-body kinematics of
closely related insect species with different body morphology. J Exp Biol,
218:340-352.

[7] Lobecke, A., Kern, R., and Egelhaaf, M. (2018). Taking a goal-centred
dynamic snapshot as a possibility for local homing in initially naïve
bumblebees. The Journal of experimental biology, 221(Pt 2):jeb.168674.

[8] Nomikou, I., Rohlfing, K., Cimiano, P., and Mandler, J. (2018). Evidence
for early comprehension of action verbs. Language Learning and
Development.

[9] Reinhart, C. and Rogoff, K. (2005). Growth in a time of debt. American
Economic Review Papers and Proceedings, 100(2):573–578.

[10] Stenzel, A., Chinellato, E., Bou, M. A. T., del Pobil, Á. P., Lappe, M.,
and Liepelt, R. (2012). When humanoid robots become human-like
interaction partners: corepresentation of robotic actions. Journal of
Experimental Psychology: Human Perception and Performance, 38(5):1073.

15

2 Conquaire Infrastructure for
Continuous Quality Control

Fabian Herrmann1, Christian Pietsch2, Philipp Cimiano1

1 – Semantic Computing Group, Faculty of Technology & Cognitive Interaction
Technology Excellence Center, Bielefeld University

2 – Bielefeld University Library, Bielefeld University

Abstract
In this chapter, we briefly describe the Git-based infrastructure that has been
implemented as a result of the Conquaire project to support analytical repro-
ducibility. The infrastructure implemented relies on principles of continuous
integration as used in software engineering projects. Importantly, we rely on
a distributed version control system (DVCS) to store computational artifacts
that are key to reproducing the analytical results of an experiment. Using a
DVCS has the benefit that artifacts can be versioned and each version can be
uniquely addressed via a revision number. The DVCS implementation we rely
on is Git, extended by GitLab as a web interface and collaboration platform.
The heart of the infrastructure implemented in the Conquaire project is the so
called Conquaire server. We assume that each research project deposits rele-
vant data and code in a Git repository. In the background, a GitLab CI Runner
on the Conquaire server is triggered by Git push events on the local GitLab
server and executes a number of tests on the data and runs the code or script
to reproduce a particular result. By this, we ensure that results can be repro-
duced independently of the original researchers on a separate machine. In this
chapter, we briefly describe the infrastructure implemented and how tests are
automatically executed when updates are committed to the Git repository.

2.1 Introduction
Principles of continuous integration have long been applied in software engi-
neering to increase the quality of software artifacts and to prevent issues and
failures due do integration of code developed in a distributed fashion by multiple
developers in large software engineering projects. The heart of any continuous
integration setup is typically a so-called integration server that runs a number

17

2 Conquaire Infrastructure for Continuous Quality Control

of tests once updates of the software are committed and pushed, and possibly
rejects the committed changes if they do not pass a number of tests. In contin-
uous integration, software developers are encouraged to submit smaller changes
in regular intervals to prevent errors and the well known ‘integration hell’.

Inspired by continuous integration principles, in Conquaire we have attempted
to transfer these principles from the domain of software engineering into the
domain of research data management. The starting point for any continuous
integration is the availability of a repository into which data and code can be
committed. Thus, a central part of the Conquaire architecture is a Distributed
Version Control System (DVCS) that allows researchers to deposit their artifacts
into a central repository. An important advantage of such a repository is that
data and code can be versioned and each version can be uniquely referenced
by a specific revision number. This allows to pinpoint and reference the exact
version of code and data that was used to obtain a certain result, a central
element of reproducibility.

Within Conquaire, we selected Git as a DVCS and GitLab as a web interface
and collaboration platform to implement a university-wide repository allowing
researchers to store their digital and computational research artifacts, code and
data in particular. A key component of the Conquaire architecture is the so
called Conquaire server, which in Conquaire acts as a continuous integration
server. Upon a new commit, the GitLab CI Runner on the Conquaire server ex-
ecutes a number of predefined tests on code and data and runs code or scripts on
data with the goal of reproducing a specific result. A central goal of Conquaire
is to support the reproduction of a certain result independently on a separate
machine that is out of the direct control of the original researchers.

The Conquaire server applies a number of quality checks on the data and
publishes the results of these tests on a web server, sending an email to the
person that committed the data to inform about the result of the test. Thus,
researchers can get informed on the fact whether there are any problems with
their data so that they can react early. We distinguish in Conquaire between
generic tests that are specific for a certain file format (e.g. CSV or XML) and
tests that are specific to the particular research projects. After tests are run,
corresponding badges are generated indicating whether the tests were passed
or not and rendered within a report that summarizes the results of the test.
Conquaire is thus using principles from gamification to score the quality of data
and thus create incentives for researchers to strive for high quality data that
passes all tests.

In this chapter, we briefly describe the Conquaire approach to continuous
integration as well as the core pieces and modules of the infrastructure imple-
mented as part of the Conquaire project to verify quality of the data. In Section
2.2, we motivate our choice for Git and GitLab. In Section 2.3, we describe how
we have implemented the Conquaire continuous integration infrastructure.

18

2.2 Why we use Git and GitLab

2.2 Why we use Git and GitLab

2.2.1 Git
One of the inspirations for this project came from the observation that GitHub
had become popular not just among software developers, but also among other
knowledge workers such as scientists. GitHub, as the name suggests, is built
around Git (although second-class support for SVN was added later). So, of
course, we looked at Git first, but we avoided committing ourselves to Git in
the project proposal because a fair evaluation of all options was to be part of
the project. We have to admit that we did not conduct a deep and thorough
research to find alternatives. Git is the dominant versioning software today,
and there is no foreseeable competitor. According to a survey by the popular
question and answer website StackOverflow in 20151, out of 16,694 participants
who answered this question, 69.3% used Git, 36.9% used SVN, 12.2% used TFS,
7.9% used Mercurial, 4.2% used CVS, 3.3% used Perforce, 5.8% used some other
versioning software, and 9.3% used no versioning software at all. Other studies2

come to similar conclusions.
Teaching researchers how to use a versioning software that is not widely used

(such as Mercurial or Perforce) or is limited to one operating system (such
as TFS) or is obsolete (such as CVS) was out of the question as we will not
always be there to support them. Eventually, when they require help from
other colleagues or their system administrator, Git will most likely be one of
the versioning software they will know and provide support for. Of course,
there are other criteria besides popularity that must be considered. A clear
benefit of distributed versioning systems is that they can be used offline as they
maintain the full history, including branches, locally. This is crucial to ensure
long-term availability of data as lots of copies keep stuff safe, as the saying
goes. As SVN is not a distributed versioning system, this alternative is ruled
out. It goes without saying that any software used for archiving should be open
source and freely licensed (FOSS). At the very least, its storage format must
be documented openly. Freely available source code is a very precise way of
documenting a storage format. Table 2.2 summarizes the main features that
lead us to the decision to use Git to implement a university-wide distributed
version control system.

We see two main disadvantages of using Git: (1) problems related learnabili-
ty/usability and (2) lack of support of large files. Regarding learnability, finding
out how hard it is for non-technical users to learn to use Git will be one of the
outcomes of this project. Our working hypothesis is that for versioning research
data, it is sufficient to learn a small subset of Git, which should not be too
challenging. With respect to large files, the problem is that Git was originally
not intended to be used with large files. The same is true for most versioning

1https://insights.stackoverflow.com/survey/2015
2https://rhodecode.com/insights/version-control-systems-2016

19

https://github.com
http://safepln.org/
https://insights.stackoverflow.com/survey/2015
https://rhodecode.com/insights/version-control-systems-2016

2 Conquaire Infrastructure for Continuous Quality Control

software name popularity actively maintained distributed cross-platform FOSS
CVS low no no yes yes
Git high yes yes yes yes
Mercurial low yes yes yes yes
Perforce low yes no yes no
SVN medium yes no yes yes
TFS low yes no no no

Table 2.2: Features of different versioning systems

systems. They are intended for tracking changes that are caused by intellectual
efforts: these rarely result in large files directly. Still, we want to include large
files such as video recordings when documenting research projects. By large
in this context, we mean a file larger than 50 MB. GitHub for instance warns
users when pushing a file larger than 50 MB and does not accept files larger
than 100 MB. Video files will often be larger than 100 MB. Fortunately, a free
(MIT-licensed) and open-source extension to Git called Git Large File Storage
(or Git LFS) can be used to alleviate this problem. It works around Git’s size
limitations by uploading large files to a separate storage area while tracking
only metadata about these large files inside Git.

Using Git on the command line can be demanding. In our experience, graph-
ical user interfaces (GUIs) that promise a more intuitive interaction style with
Git often do not live up to expectations. Instead, we recommend a web interface.

2.2.2 GitLab
The web interface we use for Git is GitLab. GitLab started out as a GitHub
clone, and became popular very quickly because it is available as a freely licensed
community edition that includes source code needed for running a GitLab in-
stance on premises.

Other web interfaces for Git such as Gogs and its derivatives were ruled out
early on because they do not offer crucial enterprise features such as single sign-
on (SSO) via LDAP or SAML2. Rolling out our source code hosting facility
university-wide is part of the Conquaire project goals, so we needed to integrate
with the Shibboleth-based identity management system of Bielefeld University.
GitLab’s SAML2 authentication method does just that.

GitLab proved to be an excellent choice because the makers of GitLab added
the right features as our project progressed. For example, GitLab CI evolved
from a simple continuous integration tool to a very powerful one, culminating in
Auto DevOps, a feature set that provides a range of quality checks for software
source code – not unlike what Conquaire provides for research data. However,
Auto DevOps arrived only towards the end of the Conquaire project, so it did
not influence our design decisions.

20

2.3 Conquaire Continuous Quality Control Infrastructure

2.3 Conquaire Continuous Quality Control
Infrastructure

2.3.1 Overview
A part of the Conquaire project was the development of automated data quality
tests. The quality checks are integrated into the GitLab platform from the
University of Bielefeld. The checks are written in Python 3.6 and use the lxml
package3 for parsing XML files as the only external requirement. The pipeline
of the quality check is shown in Figure 2.1 below. All steps are described in
sections below.

FAIR check

Search AUTHOR, LICENSE, README files.

Create feedback as LOG file.

CSV check

Search for .csv and optional associated .ini files.

Parse located files and check for validity.

Create feedback as LOG and HTML file.

XML check

Search for .xml and optional associated .dtd files.

Parse located files and check for validity.

Create feedback as LOG and HTML file.

Results and badge

Create global result HTML file
containing feedback from individual tests.

Create badge.json as global result indicator.

Notify user

Send mail to user containing the badge
and a link to global result HTML file.

Figure 2.1: Workflow of Conquaire Quality Check.

By adding a preconfigured YAML file (in this case: .gitlab-ci.yml) to a repos-
itory on the GitLab instance, the checks are automatically executed via a con-
tinuous integration runner on the GitLab server.
The runner creates a docker container. As the docker image we use the python:3.6-
alpine image because it is lightweight and only contains an installed version of
Python 3.6. In addition to that, we install the lxml package and a SMTP4

3https://lxml.de/
4https://wiki.debian.org/sSMTP

21

https://lxml.de/
https://wiki.debian.org/sSMTP

2 Conquaire Infrastructure for Continuous Quality Control

instance to notify the user about the results from a check. The user is informed
via email about the result of applying the test. The mail contains information
about the repository and a URL to a HTML site containing the detailed feed-
back which can be rendered by any browser. The mail also shows the user the
overall test result which is displayed as a badge icon. The same icon is displayed
in PUB if the user decides to create a data publication.

2.3.2 Example of pre-configured YAML file
The pre-configured file has to be stored in the root folder of the repository. For
each commit to the repository, it is automatically executed by the CI runner
and performs the Conquaire quality checks for the given repository. The user
only has to change the value of the -d parameter as it represents the local path
to the data inside the repository. In the given example, a folder named data
inside the repository contains the files which should be tested.
qua l i ty −check :

Use s ma l l e s t docker python image .
image : python :3.6 − a lp i n e
be f o r e_sc r i p t :

Create temporary mail c o n f i g u r a t i o n f i l e s .
− mkdir / e tc /ssmtp
− echo " root=${GITLAB_USER_EMAIL}" > / etc /ssmtp/ssmtp . conf
− echo " mailhub=conqua i re . uni−b i e l e f e l d . de " >>

/ etc /ssmtp/ssmtp . conf
− echo " hostname=g i t l ab −runner . conqua i re . uni−b i e l e f e l d . de "

>> / etc /ssmtp/ssmtp . conf
I n s t a l l lxml and ssmtp package f o r sending feedback mail .
− apk add py3−lxml ssmtp

s c r i p t :
Execute qua l i t y check ing p i p e l i n e .
− / usr / bin /python3 /opt/ conqua i re / qual i ty_checks / s r c /main . py

−f / var /www/html/ feedback /
− l " https : // conqua i re . uni−b i e l e f e l d . de/ feedback /"
−r " $ (pwd) "
−d " data "
−gn " ${GITLAB_USER_NAME}"
−ge " ${GITLAB_USER_EMAIL}"
−gu " ${CI_PROJECT_URL}"
−gp " ${CI_PROJECT_PATH}"
−gs " ${CI_COMMIT_SHA}"

Choose docker CI runner on g i t l a b s e r v e r .
tags :

− dockerexec

22

2.3 Conquaire Continuous Quality Control Infrastructure

The whole pipeline is executed in a docker container and makes use of con-
tinuous integration variables provided by GitLab. They are automatically filled
with the information from the users GitLab profile.

2.3.3 Quality checks
The Conquaire Quality Check pipeline involves a variety of tests that are au-
tomatically performed on the Git repository. Each time a commit occurs, the
GitLab CI runner calls our pipeline, and several scripts are executed to guaran-
tee that the provided data is in the best possible state. The three main checks
that are implemented are the FAIR check, the CSV check, and the XML check.
The pipeline is designed to be very modular and flexible to make it as easy as
possible to extend it with further checks, i.e., for additional file types.

Every check begins with searching the repository and generating a list of every
file with the specific type using the bash find command. For each file that was
found, the corresponding test script is called to perform the actual checks and
generate a log file with errors and warnings that were observed. The details of
the three specific checks are described below. In the end, an overall feedback file
is created, showing the results of the checks with links to the log files, making
it possible to look into the data and correct it if necessary. The contributor is
informed about the results of the pipeline via email.

FAIR check

In our adaptive implementation of the FAIR metrics5, we check if the three nec-
essary files exist in the repository: the AUTHORS, LICENSE, and README
files.
The files have to be placed in the root directory of the repository to fulfill the
test condition. The files have to have either no extension, plain text (.txt) or
markdown (.md).
We suggest to save the files as markdown files. The markdown file type is used
as a standard in GitLab and many other websites because it has an easy to learn
syntax and can be displayed in a web browser.

The AUTHORS file should contain a list of all the contributors and their
emails for the possibility to contact them. The LICENSE file should describe
how the data can be further used and distributed by other researchers, either by
declaring one of the common licenses or providing their own. The README file
should contain every other information that is related to the data and necessary
or helpful to understand the research that was done, e.g., a description of the
data or the experiment to obtain it.

5http://fairmetrics.org/

23

http://fairmetrics.org/

2 Conquaire Infrastructure for Continuous Quality Control

CSV check

In the CSV file format (.csv), data is organized as a table with comma separated
values. The first step in the CSV check is to test whether the file can be opened
and the table is well-formed, i.e., it has a header and a consistent number of
rows and columns.
The researcher can provide an additional format declaration file (.ini) with his
own specifications of the data, e.g., the type of the column and the expected
range of the values. The quality check reports a warning if a required entry is
missing or a value is out of range or has a wrong type, e.g., a non-numeric value
in a numeric column.

Figure 2.2: Example result of the CSV check.

The log file lists all the errors and warnings that were found, and the row and
column in which they occurred. In addition to that, the corresponding cell is
marked in the table, allowing to conveniently find problematic entries, as seen
in the example in Figure 2.2.

XML check

In the XML file format (.xml), data is organized as a tree structure using tag-
based markup language. The first step in the XML check is to test whether
the file can be opened and the document is well-formed, i.e., the syntax of the
markup language tags is correct.
The researcher can provide an additional doctype definition file (.dtd) with his
own specifications of the data, e.g., the required attributes and some restric-
tions to the values. The quality check reports an error if there is a mismatch
of opening and closing tags, and a warning if the specifications are not fulfilled,

24

2.3 Conquaire Continuous Quality Control Infrastructure

e.g., a value is missing.

Figure 2.3: Example result of the XML check.

The log file lists all the errors and warnings that were found, as well as the line
in which they occurred. In addition to that, the corresponding line is marked
in the document, allowing to conveniently find problematic entries, as seen in
the example in Figure 2.3.

After successful execution, the Conquaire quality check pipeline produces an
overall result HTML file which contains visual feedback of all individual tests
and links to the resulting log and optional HTML files. An example is provided
in Figure 2.4. The feedback shows one of three different colors and badges. A
green badge represents a successful test result, i.e., the data is valid. A yellow
badge indicates well-formed data and the log files can contain some warnings. A
red badge indicates not well-formed data or missing FAIR files. The user should
check the log files and fix the errors before submitting a data publication. The
URL of the overall result is provided to the user via email. This mail is sent
automatically after every commit. In addition to that, an overall badge icon
is created. This badge is equivalent to the badge of the worst individual check
result. This badge is displayed in PUB6 if the user decides to create a data
publication from the repository. The badge is equal to one of the three different
symbols shown in Figure 2.4.
Thus, the Conquaire quality checks are designed to help the researchers to clean
up data, remove inconsistencies and make it fit for use by others.

Fulfilling the FAIR metrics is highly important for the reproducibility of the
data as they are necessary to provide other researchers the information and legal

6https://pub.uni-bielefeld.de/

25

https://pub.uni-bielefeld.de/

2 Conquaire Infrastructure for Continuous Quality Control

Figure 2.4: Example result of the overall result.html.

basis to use the data for their consecutive works. The file type specific checks
help finding and fixing errors before releasing the data to the public. This is
fundamental for reproducibility as only valid data can be used to recreate the
experiment results.

2.4 Summary
In this chapter, we have briefly described how the Conquaire infrastructure
implemented at Bielefeld University applies continuous integration principles
to support reproduction of analytical results but also ensure high quality and
valid data. The basis of the infrastructure is a distributed version control system
(DVCS) that stores different versions of computational artifacts. In this chapter,
we have argued why we have selected Git as a basis to implement this DVCS at
Bielefeld University and why we have selected GitLab as a graphical and web-
based user interface to access Git and foster collaboration. We have further
described how the Conquaire infrastructure automatically runs a number of
quality checks on the data once a new commit has been performed. The user
merely has to add a YAML file to the root directory of the repository. This
YAML file will trigger the GitLab CI runner to execute a number of standard
tests on CSV and XML files to check whether the data is consistent, syntactically
well-formed and complies with schema declarations. The results of each test are
written into a log file and used to generate a report that is published as a website
on a web server. A link to this report is sent to the user committing the data for
inspection of the results of the tests, giving access to the detailed logs. Building
on principles of gamification and to create incentives for committing ready-to-
use-data, the Conquaire systems assigns badges to the data corresponding to

26

2.4 Summary

whether they passed the tests or not and visualizes these badges in the reports
generated and optionally on a PUB page where the data has been published.

During the Conquaire project, we have run a number of Git workshops with all
case study partners, confirming our hypothesis that the subset of Git commands
that is needed to commit data into the repository can be easily learned by our
target population. On the basis of our experience, we can definitely recommend
Git, GitLab and our architecture for continuous integration to implement an
institutional infrastructure for hosting data and checking their quality as a basis
to ensure reproducibility of research results.

27

3 Reproducibility of
whole-body movement
analyses of insects

Yannick Günzel1, Fabian Hermann2, Vidya Ayer2, Philipp Cimiano2, Volker Dürr1

1 – Biological Cybernetics, Faculty of Biology, Bielefeld University
2 – Semantic Computing Group, Faculty of Technology & Cognitive Interaction

Technology Excellence Center (CITEC), Bielefeld University

Abstract
In this chapter we describe the attempt to reproduce a selected figure of the pa-
per “Comparative whole-body kinematics of closely related insect species with
different body morphology” [1]. In this paper, the authors investigated the
walking behaviour of three different species of stick insects. This was done
by recording whole-body kinematics of the animals, using a commercial marker-
based motion capture system and custom written MATLAB scripts. The main
objective of the study was to relate inter-species differences in kinematics to
differences in overall morphology, including features such as leg-to-body-length
ratio that were not an obvious result of phylogenetic or ecological divergence.
The present chapter describes an effort to reproduce one of the figures that
was published in the original study that evaluates climbing behaviour by means
of (i) snapshots of body posture, (ii) 3D trajectories of front legs and body,
and (iii) the gait pattern of a representative trial. We show that the figure
could be reproduced successfully, albeit requiring detailed interaction with the
authors as well as use of commercial software. Accordingly, we classify this
use case as corresponding to our category limited analytical reproducibility.
The data and scripts are available in the following Git repository: https:
//gitlab.ub.uni-bielefeld.de/conquaire/biological-cybernetics.

Keywords
Insect Locomotion, Whole-body kinematics, MATLAB

29

https://gitlab.ub.uni-bielefeld.de/conquaire/biological-cybernetics
https://gitlab.ub.uni-bielefeld.de/conquaire/biological-cybernetics

3 Reproducibility of whole-body movement analyses of insects

3.1 Introduction

The overall goal of the Biological Cybernetics lab at Bielefeld University is
to understand the mechanisms underlying the control of natural movement and
action sequences. To this end, the lab studies the adaptive locomotion abilities of
insects with a research focus on the function of active tactile sensing (touch) and
distributed proprioception (the sense of posture). A key methodology of the lab
is whole-body motion capture of unrestrained walking and climbing insects (e.g.,
[2] [1]), which was also in the focus of the present data management study. More
recently, whole-body motion capture has been combined with ground-reaction
force measurements and the corresponding calculation of single-joint torques
[3], as well as coincident muscle activity recordings during unrestrained walking
[4]. Insects have become important model animals for the study of flexible
and adaptive locomotion (e.g., [5] [6]). Although a wide range of behavioural
(e.g., [7]), biomechanical (e.g., [8]) and neurophysiological ([9], [10]) studies on
insect locomotion have contributed to a detailed understanding of multi-legged
locomotion in general, there are very few studies on comparative kinematics of
insect walking or climbing. Legged locomotion through natural or naturalistic
environments is very complex and variable. Leg kinematics may not only differ
strongly among species, but also within the same species it is adaptive and
context-dependent. Inter-species differences in locomotion are often difficult to
interpret, because both morphological and ecological differences among species
may be strong and, as a consequence, confound each other’s effects. Moreover, in
species from phylogenetically distant taxa, i.e., that diverged a long time ago in
evolution, differences in motor behaviour may simply be a result of evolutionarily
divergent morphological or physiological constraints. The experimental data
of the present case study was taken from a study that is to date the only
example of a whole-body kinematics comparison of different insect species [1].
The species compared differed in body morphology, despite close phylogenetic
relationship and similar ecology. Carausius morosus, Aretaon asperrimus and
Medauroidea extradentata (= Cuniculina impigra) belong to the same order of
insects (Phasmatodea: stick and leaf insects). All three species are flightless
and live a herbivorous and nocturnal life style. Accordingly, the main objective
of that study was to relate inter-species differences in kinematics to differences
in overall morphology, including features such as leg-to-body-length ratio, that
were not an obvious result of phylogenetic or ecological divergence. The original
study suggests that major differences among species were related to antenna
length, segment lengths of thorax and head, and the ratio of leg length over
body length.

30

3.2 Methods

3.2 Methods
This section describes the material and methods used in the research project
published in [1]. After illustrating the overall workflow (subsection 3.2.1), we
describe the acquisition of the original experimental data (subsection 3.2.2),
the manual editing and annotation procedures (subsection 3.2.3), as well as the
secondary data processing (subsection 3.2.4). Note that subsections 3.2.2 to
3.2.4 repeat previously published method section parts of [2] and [1].

3.2.1 Data workflow: acquisition and processing pipeline
The overall data workflow used in this project is summarized in the chart shown
in Fig. 3.1 (left column). There were three processing episodes: (i) data acqui-
sition, (ii) manual editing and annotation, and (iii) secondary processing. The
coloured boxes illustrate the procedure for recording the different types of data
and how it was ultimately processed to reconstruct body and leg kinematics as
displayed in Fig. 3 in the paper of Theunissen et al. [1]. The colours of the
boxes indicate the software used for a given step in the data processing pipeline
(yellow: Vicon Nexus; green: PixeLINK Capture; blue: MATLAB). The boxes
and connecting arrows are labelled with the data file types produced, the relative
file paths to the corresponding subdirectories, and the names of custom-written
MATLAB (MathWorks, Natick, MA, USA) scripts.

3.2.2 Data acquisition: Experimental procedure
For the experiments described in [1], adult stick insects of the species Carausius
morosus (de Sinéty 1901), Aretaon asperrimus (Brunner von Wattenwyl 1907)
and Medauroidea extradentata (Redtenbacher 1906) were used. Animals were
bred in a laboratory culture at Bielefeld University.

In each experimental trial, an animal was placed on a horizontal walkway (40
x 490 mm), along which it walked freely. There were four walking/climbing
conditions as characterised by the height of two stairs placed on the walkway:
in the flat (walking) condition, the walkway was used without stairs; in the
climbing conditions low, middle and high, a staircase with two stairs of step
height, h, was placed at the end of the walkway (40 x 200 mm; low: h = 8 mm,
middle: h = 24 mm, high: h = 48 mm). The flat walking condition served as
the reference condition. The four conditions were presented in a randomised
sequence of at least 40 trials, resulting in approximately ten trials per condition
per animal. The whole setup was painted in opaque black and was surrounded
by black drapery in order to minimise visual contrast. The room was darkened
and illuminated only by red light LEDs of the Vicon cameras (see below) and
indirect light emanating from a TFT computer monitor.

A marker-based motion capture technique was applied, for which each animal
was labelled by 17 or 18 retro-reflective markers (Fig. 3.2). Marker diameter

31

3 Reproducibility of whole-body movement analyses of insects

Figure 3.1: Research data acquisition and processing pipeline. For raw
data acquisition, whole body motions were recorded with a marker-
based motion capture system (Vicon) and an additional digital video
camera. Furthermore, the anatomy of the animal, along with the
marker positions on different body segments were recorded with a
microscope camera. In a first step of manual editing and anno-
tation, marker trajectories of selected episodes were labelled and,
potentially, connected in case of recording gaps. This step resulted
in a .c3d-file, a file format described in section 3.3.1. The body
pictures were used to generate a body model containing, for ex-
ample, segment lengths and information about marker position in
a body-centred coordinate system. The model is stored in a MAT-
LAB .mat-file. Finally, the kinematic reconstruction was achieved in
MATLAB by combining marker trajectories with the body documen-
tation. The resulting processed data, i.e., joint angle time courses,
gait pattern, and velocity were saved as another MATLAB file.

32

3.2 Methods

was 1.5 mm. Markers were glued to the cuticle by use of transparent nail polish.
Two markers were attached to each leg, one to the distal femur and one to the
distal tibia (Fig. 3.2, right panel). Additionally, five markers were attached to
thorax and head, with three markers defining the body-fixed coordinate system
of the metathorax and one additional marker on the prothorax and head (Fig.
3.2 B, left panel). In most animals, a further marker was placed on the rostral
mesothorax. Care was taken that neither the nail polish nor the markers con-
strained the movement of any joint. Segment dimensions and the positions of all
markers on their respective body segment were measured from high-resolution
photographs (0.02 mm per pixel) taken under a stereo lens (Olympus SZ61T,
equipped with a digital camera (Pixelink PL-B681CU), controlled by µScope
software (top right green box in Fig. 3.1).

A Vicon MX10 motion capture system with eight T10 cameras (Vicon, Ox-
ford, UK) was used for data acquisition of marker positions (top yellow box in
Fig. 2). Temporal resolution of the motion capture system was 200 Hz; spatial
resolution was approximately 0.1 mm. The time of entry of the animal into the
capture volume was used as starting frame of the recording. The recording was
stopped when the animal reached the far end of the setup. Trials were discarded
if the animal climbed the side walls of the setup instead of the stairs, or stopped
walking before the first stair. In this case, the same trial condition was repeated.

An additional digital video camera (Basler A602fc, Ahrensburg, Germany)
equipped with a near range zoom lens (Edmund Optics, Barrington, NJ, USA)
was used to record a complementary image sequence for visual inspection, e.g.,
for validation of the kinematic analysis. The video showed a side view of the
climbing sequence of the first stair, with a temporal resolution of 50 Hz (syn-
chronized with the Vicon system) and a spatial resolution of approximately
0.14 mm per pixel. The software Nexus 1.4.1 (Vicon, Oxford, UK) was used for
controlling the motion capture process and for subsequent offline analysis.

3.2.3 Manual editing and annotation: trajectory
labelling and body model

Within Nexus, each of the markers was identified and labelled at least once
per trial by hand (second yellow box in Fig. 3.1). Markers were then tracked
automatically, provided that each marker was recorded by at least two cameras.
The resulting trajectories of spatial coordinates of all markers were inspected
for filling of small trajectory gaps. Generally, marker detection was very robust.
On average, less than 5 gaps per 60 s occurred in single marker trajectories in
case of C. morosus trials, with mean trial durations of 11.29 ± 4.8 s, equivalent
to 2258 ± 964 frames (mean ± standard deviation). Gaps shorter than 200
ms (40 frames) were filled by use of an interpolation algorithm of the software
Nexus.

A body model was established for each animal, using a custom-written Graph-

33

3 Reproducibility of whole-body movement analyses of insects

ical User Interface in MATLAB (top right blue box in 3.1) that loaded all
available photos and prompted the user to click on segment limits and marker
locations (middle blue box in 3.1). The body model consisted of a branched
kinematic chain (Fig. 3.2B) with a four-segmented body axis and six three-
segmented limbs. The corresponding body model file contains information about
body and leg segment dimensions, attachment locations of side chains on the
main chain (i.e., the locations of the thorax-coxa joints), the marker coordinates
relative to the base of their carrying segment, and bias rotations of the marker-
fixed coordinate system defined by the three makers on the root segment (Fig.
3.2B, left panel) relative to the body-centred coordinate system defining the
sagittal, horizontal and transverse planes of the body.

3.2.4 Secondary processing: Whole-body kinematics
Whole-body kinematics yielded the joint angle time courses associated with
42 degrees of freedom (DoF) of the body model. All calculations were done in
MATLAB (lower blue box in 3.1), using the toolbox C3Dserver (Motion Analysis
Laboratory, Erie, PA, USA), for importing C3D data from Vicon Nexus (sub-
section 3.3.1).

Scaling and filtering: Joint angles were calculated by use of two data sets
coming from (i) the segment lengths and marker positions on the animal, as
calibrated under the stereo lens, and (ii) the marker trajectories, as obtained
from motion-capturing.

Since the body model measurements were more precise than the Vicon cali-
bration, the marker trajectories were scaled by the factor lBM/lMC, where lBM
is the distance of two markers in the body model with fixed distance (e.g., two
markers on the metathorax), and lMC is the corresponding mean distance of
the same markers in the motion capture data. lBM/lMC ranged from 0.94 to
1.00, mainly depending on the calibration quality of the Vicon system. After
scaling of marker trajectories, the time courses of all marker coordinates were
low-pass filtered in MATLAB, using a 4th-order Butterworth filter with a cut-off
frequency of 20 Hz.

The motion capture data yielded information about the animal’s position
and posture in each frame in a right-handed, world-fixed coordinate system
(CS) with the x- and y-axes aligned with the long and traverse axes of the
setup walkway, respectively, and the z-axis pointing upwards. The centre of
the segment border between the 1st and 2nd abdominal segment (note that, in
stick insects, the 1st abdominal segment is fused to the metathorax) was taken
as origin for a thorax-fixed root CS. With regard to this root CS, all positions
of the other thorax segments and the coxae were expressed in right-handed
Cartesian coordinates, with the x-axis pointing rostrad within the sagittal plane,
i.e., from the origin towards the head, the horizontal y-axis pointing towards
the left within the horizontal body plane, and the z-axis pointing dorsad within
the sagittal plane.

34

3.2 Methods

Figure 3.2: A marker-based motion capture and whole-body kinemat-
ics calculations. A: Insects were labelled with reflective markers.
B: For kinematic analysis, the body was modelled by a branched
kinematic chain. The main body chain (left) consists of the three
thorax segments (Root, T2, T1) and the head. Six side chains (right)
model the legs, with the segments coxa, femur and tibia (cox, fem,
tib; only right legs are shown, labelled R1 to R3). All rotation axes
(DoF) are indicated (3 for the root segment, 2 for thorax/head seg-
ments, and 5 per leg). DoF are denoted according to the subsequent
segment and the axis of the local coordinate system around which
the rotation is executed. Leg DoF are: cox.x, cox.y, cox.z (labelled
for R2 in right panel), fem.y and tib.y (labeled for R1 in right panel).
[Fig. 1 A, B of [2]]

35

3 Reproducibility of whole-body movement analyses of insects

Calculating the main body chain: The main kinematic chain included the three
thorax segments and the head. The root segment (metathorax, including the
fused 1st abdominal segment) had six DoF: three translational DoF indicating
the position of the body in the external coordinate frame [x0, y0, z0] and three
rotational DoF, indicating roll, pitch and yaw rotation around the x0-, y0-, and
z0-axis, respectively. The other three segment joints of the main body chain
had two rotational DoF each, indicating pitch and yaw rotation around the
segments y- and z-axes, respectively. This resulted in twelve DoF for the main
chain. In four animals with 17 markers (without second mesothorax marker),
the metathorax-mesothorax joint was assumed to be immobile.

The rotation of the root segment with respect to the world coordinate system
was determined from the axis orientations of a body-fixed root coordinate system
([xR, yR, zR] in Fig. 3.2B). The latter was defined by the three markers on the
root segment, such that xR pointed in the direction of the main chain and zR was
orthogonal to the plane defined by the three markers. The calibration images of
the asymmetric side marker on the root segment yielded a bias rotation angle.
Back-rotating the marker-fixed root coordinate system by this angle yielded
alignment [xR, yR, zR] with the sagittal, horizontal and frontal body planes.
Measures taken from calibration images were then used to calculate the origins of
all connecting segments. In case of the root segment, these were the mesothorax
(T2) and the hind leg coxae (R3.cox, L3.cox). Next, the vector connecting
the root-T2 joint with the marker on T2 was calculated. After back-rotating
this vector by its bias rotation with respect to [xR, yR, zR], as determined
from calibration images, its polar coordinate angles yielded the joint rotation
angles around the axes T2.z and T2.y. The resulting T2-fixed coordinate system
was used to calculate the origins of the prothorax (T1) and of the middle leg
coxae. The rotation angles of the T2-T1 joint and T1-head joint, along with the
remaining segment origins of the main body chain were calculated in analogy
to the calculation steps taken for T2.

Calculating the six side chains: Each thorax segment was connected to two
kinematic side chains, modelling the left and right legs (see Fig. 3.2, right panel,
where R1 to R3 label the right front to hind legs). The side chains consisted of
a coxa with three rotational DoF in the thorax-coxa joint (ThC-joint [protrac-
tion/retraction, levation/depression, supination/pronation]), the trochantero-
femur (subsequently called femur) with one DoF in the coxa-trochanter joint
(CTr-joint, [levation/ depression]), and the tibia with one DoF in the femur-
tibia joint (FTi-joint, [extension/flexion]). For calculation of the leg joint an-
gles, the first step was to determine the „leg plane“ spanned by the two leg
markers and the origin of the corresponding side chain. If the normal vector
of this plane was expressed within the coordinate system of its connecting tho-
rax segment, its polar coordinate angles gave the protraction/rectraction and
supination/ pronation of the ThC-joint, along with the rotated z- and x-axes
defining the leg plane. The sum of levation/depression in the ThC- and CTr-
joints was then calculated by expressing the vector connecting the ThC-joint to

36

3.3 Analytical Reproducibility

the femur marker within the xz-coordinate system of the leg plane. From the
known segment lengths of coxa and femur, along with the exact marker position
on the femur, the relative contribution of the ThC- and CTr-joint to femoral
levation could be determined by triangulation. Finally, the known femur length
was used to determine the location of the FTi-joint, and the vector connecting
the latter to the tibia marker was used to calculate the extension/flexion of the
FTi-joint (with consideration of the bias rotation caused by the misalignment
of the tibial marker and the tibial axis).

3.3 Analytical Reproducibility
All data files and MATLAB scripts for analysis as listed in Fig. 3.1 were
made available by the Biological Cybernetics group. As a result, the data and
scripts are available at https://gitlab.ub.uni-bielefeld.de/conquaire/
biological-cybernetics. Data that were not part of the reproducibility check
(e.g., raw video files, fotos and data files used by the proprietary software Nexus
only) will not be discussed.

3.3.1 Analysis pipeline, data formats and software tools
As described in section 3.2 the research group used MATLAB for all computa-
tional data analysis and creation of plots. Accordingly, the original codebase is
fully written in MATLAB. The motion data was recorded with a Vicon motion
capture system, operated by the proprietary software Nexus. The reproducibil-
ity check thus started with the labelled marker trajectory data that was exported
from Nexus in the C3D format. The .c3d-files were loaded into MATLAB with
the help of C3Dserver. Specific versions of MATLAB need to be installed for
processing the loaded data from the C3Dserver.

C3Dserver and file formats

The C3Dserver is a 32/64-bit C3D Software Development Kit (SDK) for Mi-
crosoft Windows® platforms only. It simplifies C3D file programming and data
access by providing the users with high-level commands to create, modify and
process data. The C3Dserver can be freely downloaded and installed on all
64-bit and 32-bit versions of Microsoft Windows from XP through Windows
10 using the standard Microsoft user environment. Data saved from the Vicon
motion tracker has to be loaded into MATLAB with the help of the C3Dserver.
While the server is available as 32-bit and 64-bit versions with identical C3D
access functions, one can only run 32-bit applications on a 32-bit installation as
the 64-bit C3Dserver DLL will not be installed on a 32-bit server. On the other
hand, if the C3Dserver is installed on a computer with a 64-bit operating system,
then we can install distinct 32-bit and 64-bit DLLs, making it easier to use the

37

https://gitlab.ub.uni-bielefeld.de/conquaire/biological-cybernetics
https://gitlab.ub.uni-bielefeld.de/conquaire/biological-cybernetics

3 Reproducibility of whole-body movement analyses of insects

C3Dserver with both 32-bit and 64-bit applications. The 64-bit DLL will be
installed as C:\ProgramFiles\CommonFiles\MotionLabSystems\C3Dserver\
c3dserver64.dll. The 32-bit DLL will be installed in C:\ProgramFiles(x86)
\CommonFiles\MotionLabSystems\C3Dserver\c3dserver.dll.

3.3.2 Technical Challenges and Issues
Scientific research groups use a variety of file formats with various machines
using standard formats to read in data and output it. Here, the captured data
is stored in a .c3d-file that can be exchanged and accessed via the C3Dserver, but
it is predominantly supported to run on the Windows platform only. The C3D
file format is a public domain file format for storing motion and other 3D data
recorded in various laboratory settings. The C3Dserver, whose server features
include several MATLAB supporting functions that allow files to be analysed
with additional MATLAB functions being written to perform operations on the
data in .c3d-file.

The biggest challenge we thus faced was the requirement of the proprietary
C3Dserver for data processing, analysis and visualisation that was only avail-
able for machines running the Windows operating systems. Since there was no
software support for Linux to read in the motion tracking data to MATLAB, we
could not recreate the full pipeline on a Linux machine. The Library is main-
taining the infrastructure for research data management (RDM), hence, they
would have the additional work of installing, both MATLAB and the Windows
server, patching and updating them regularly, including maintaining licensed
version upgrades which can get expensive over time. The kinematic reconstruc-
tion was achieved in MATLAB by combining marker trajectories with the body
documentation. The resulting processed data, i.e., joint angle time courses, gait
pattern, and velocity, were saved as another .mat-file.

Another problem was related to the backslash used in PATHS on the Win-
dows machine. All relative paths in the code supported Windows, which uses
a backslash instead of (forward)slash on *nix machines. While analysing the
MATLAB data with C3Dserver and MATLAB on Windows, this is not an is-
sue. However, a user trying to use the MATLAB code on a *nix machine would
have to replace and correct all the paths before running the code to reproduce
the figures from that point onwards. For example: For Figure 3.3B the *nix
user can type these code commands from the terminal after they loaded the
data beforehand:
figure; hold on
% Trajectory of the tibia-tarsus joint of the left front leg
plot3(data.L1.tar.pos(:,1), data.L1.tar.pos(:,2), data.L1.tar.pos(:,3),’r’, ’LineWidth’, 2)
% Trajectory of the tibia-tarsus joint of the right front leg
plot3(data.R1.tar.pos(:,1), data.R1.tar.pos(:,2), data.R1.tar.pos(:,3),’g’, ’LineWidth’, 2)
% Trajectory of the head
plot3(data.Hd.pos(:,1), data.Hd.pos(:,2), data.Hd.pos(:,3),’k’, ’LineWidth’, 2)
% Equal aspect ratio
axis equal

Furthermore, the most severe limitation was due to the use of proprietary
software tools, like Windows-only SDK. As there was no free and open source

38

3.3 Analytical Reproducibility

software (FOSS) support for the SDK, it was impossible to recreate or plug into
the analysis pipeline with a Linux machine. Since MATLAB uses Gnuplot as
the plotting engine, we could pipe-in (read) the data with Octave2, an open
source MATLAB clone, and plot the data. As the plotting engine (Gnuplot)
is the same for Octave and MATLAB the figure rendering is similar to the
published paper. Thus, the three figures in the paper can be reproduced using
FOSS toolkits in a Linux environment if the data was created beforehand with
the help of the C3Dserver and MATLAB on Windows.

As a result of our reproduction experiment, we could reproduce the walking
and climbing behaviour for those experimental runs that were committed into
the corresponding GIT repository. Figure 3.3 shows on the left the original panel
from the paper published by Theunissen et al. [1] for C. morosus. On the right,
our reproduction of the same trial is depicted. As the figure shows, asides from
the rendering of the obstacle and the colouring, we could successfully reproduce
the plots from the original paper.

39

3 Reproducibility of whole-body movement analyses of insects

Figure 3.3: Representative trial of unrestrained walking and climbing
behaviour of C. morosus as one of the three species inves-
tigated in the original paper published by Theunissen et al.
[1] (Figure 3). The left panel L shows the original figure section.
The right panel R shows the movement as reproduced in the repro-
duction study conducted in the context of this chapter. The A, B
and C subcomponents of the diagram show the following: A: Move-
ment of the body axis (cyan lines), head (red circles) and front legs
(black lines), illustrated by superimposed stick figures every 100 ms.
B: Trajectories of the tibia-tarsus joint of left (red) and right (green)
front legs, and of the head (black line) super-imposed on the setup in
side and top view. Note that the caption of the original publication
says metathorax instead of head at this place. This mislabelling was
discovered during the replicability study. The authors apologise for
this error. The mislabelling has no effect on any claims made in the
original paper. C: Podogram of the gait pattern, i.e., time sequences
of the alternating swing-stance-phases of all six walking legs, where
each black line depicts the duration of a stance phase of one of the
legs. Red and green lines mark the first stance phases on the next
stair in left and right legs, respectively. L1 to L3: left front, middle
and hind leg; R1 to R3: corresponding right legs.

40

3.4 Conclusion

3.4 Conclusion
We have described a reproducibility case study in the field of biology. We have
in particular attempted to represent the main results of a study in whole-body
movement analysis of three species of stick insects. The main objective of the
study was to relate inter-species differences in kinematics to differences in overall
morphology, including features such as leg-to-body-length ratio, which were not
an obvious result of phylogenetic or ecological divergence. We have shown that
we could successfully reproduce a main figure of the paper “Comparative whole-
body kinematics of closely related insect species with different body morphology”
by Theunissen et al. [1]. We classify this case as one of limited analytical
reproducibility. While we could reproduce the whole-body movements for a
number of experimental runs that the authors provided in a GIT repository,
this has only been possible by direct guidance of the authors. Further, the
reproduction relies on use of commercial software, in particular MATLAB as
well as the C3Dserver running on Windows only.

Acknowledgements
We would like to thank Florian Paul Schmidt for uploading the files to the
biological-cybernetics repo in the Gitlab Conquaire group. We would like to
thank Lukas Biermann for helping with the reproduction of the analyses in
MATLAB.

References
[1] Theunissen LM, Bekemeier HH, and Dürr V. Comparative whole-body

kinematics of closely related insect species with different body
morphology. J Exp Biol, 218:340-352, 2015.

[2] Theunissen LM and Dürr V. Insects use two distinct classes of steps
during unrestrained locomotion. PLOS one, 8:e85321, 2013.

[3] Dallmann CJ, Dürr V, and Schmitz J. Joint torques in a freely walking
insect reveal distinct functions of leg joints in propulsion and posture
control. Proc R Soc, B 283:20151708, 2016.

[4] Dallmann CJ, Hoinville T, Dürr V, and Schmitz J. A load-based
mechanism for inter-leg coordination in insects. Proc R Soc Lond B Biol
Sci, 284:20171755, 2017.

[5] Ritzmann RE and Büschges A. Adaptive motor behavior in insects. Curr
Opin Neurobiol, 17:629-636, 2007.

41

References

[6] Dürr V, Theunissen LM, Dallmann CJ, Hoinville T, and Schmitz J.
Motor flexibility in insects: Adaptive coordination of limbs in locomotion
and near-range exploration. Behav Ecol Sociobiol, 72:15, 2018.

[7] Cruse H, Dürr V, Schilling M, and Schmitz J. Principles of insect
locomotion. In: Arena P, Patanè L (eds) Spatial temporal patterns for
action-oriented perception in roving robots., volume pp 43-96. Springer,
Berlin, 2009.

[8] Full RJ, Blickhan R, and Ting LH. Leg design in hexapedal runners. J
Exp Biol, 158:369-390, 1991.

[9] Burrows M. The Neurobiology of an Insect Brain. Oxford University
Press, Oxford, 1996.

[10] Büschges A. Lessons for circuit function from large insects: towards
understanding the neural basis of motor flexibility. Curr Opin Neurobiol
22:602-608, 2012.

42

4 Reproducing Trajectory
Analysis of Bumblebee
Exploration Flights

Vineet Sharma1, Olivier Bertrand2, Jens Lindemann2, Cord Wiljes1, Martin Egelhaaf2,
Philipp Cimiano1

1 – Semantic Computing Group, Faculty of Technology & Cognitive Interaction
Technology Excellence Center (CITEC), Bielefeld University

2 – Faculty of Biology, Bielefeld University

Abstract

This chapter describes a case study in using a combination of virtualization
technology, Git as well as a continuous integration (CI) server to support sus-
tainability of analytical pipelines. The case study was designed to reproduce
one processing step in the analytical pipeline described in the paper “Taking a
goal-centered dynamic snapshot as a possibility for local homing in initially naive
bumblebees” [1]. In this paper, the researchers report their findings regarding
the exploratory flights of bumblebees in unknown territories. Trajectories were
recorded using two cameras and triangulated, yielding 3D trajectories of the
flights. The original analytical workflow was implemented in MATLAB. As a
result of Conquaire, the analytical workflow could be reproduced using Python,
yielding trajectories that faithfully match the original trajectories. In Conquaire,
we implemented an analytical workflow that relies on virtualization as well as
on a continuous integration server. The main function of the virtualization is
to preserve the computational environment so that it can be easily executed by
third parties without the need to reproduce the exact computational environ-
ment nor to install any libraries. A continuous integration server was used to
implement basic mechanisms for quality control over the data, leading to the
discovery of some minor mistakes that could be directly corrected. The case
study has demonstrated the usefulness of using a combination of virtualization
and continuous integration to support analytical reproducibility in the natural
sciences, neuroethology in particular.

43

4 Reproducing Trajectory Analysis of Bumblebee Exploration Flights

Keywords
Insect spatial locomotion, bumblebee flights, analytical reproducibility, virtual-
ization, continuous integration

4.1 Introduction
Animals move in their environment in a quest for food, a mating partner, or
a place to raise their offspring. The animals, therefore, need to solve spatial
tasks, viz. orientating themselves, identifying and reaching a target (such as a
mating partner or a food source), following habitual routes (for e.g., between
their home and food sources). Even in cluttered environments, animals manage
to solve these complex spatial tasks without collisions with obstacles in their
path. These abilities are not only observed in vertebrates but also in insects
with small brains. Indeed, flying insects can chase their partner [2], learn the
surroundings of their nest [3, 1], cross cluttered environments [4, 5], and follow
routes [6, 7]. Given the small number of nerve cells in insect brains and the
limited reliability of neurons in general, extracting information required to solve
navigational tasks needs to rely on extremely efficient neural mechanisms. As
a consequence of millions of years of evolution, these mechanisms are tightly
linked to the sophisticated locomotion and gaze strategies of insects.

The research focus of the Neurobiology group at Bielefeld University is to
elucidate the computational principles, down to the level of neurons and neural
networks that generate and control visually guided behaviour in complex and
cluttered environments. Understanding the computational principles involved
in visually guided behaviour requires, first, monitoring the behaviour of the
animal over long periods, and second, reconstructing the visual perception of
the environment from the animal’s perspective.

The visual processing and behaviour of insects is extremely fast, and hence
monitoring their behaviour and reconstructing it requires high frequency and
precision recording techniques to obtain the position and orientation of the ani-
mal. The position of an animal in an environment can be accurately derived via
triangulation or 3D reconstruction of high-frequency data from video recordings
of the animal taken with several synchronized cameras. This method requires
a precise orientation and positioning of the camera, as well as a correction of
potential distortions due to the lens, and an accurate detection of the position
and orientation of the insect on the camera (obtained by feature extraction).
However, no tracking software is error-free, and thus, the recording even after
manual reviewing may contain errors (especially for extended recordings, e.g. of
several 10,000 frames) that need to be automatically post-processed by a later
processing stage.

Lobecke et al. [1] recorded the behaviour of naive bumblebees exiting their
nest for the first time. This behaviour can last for several minutes, and the

44

4.2 Experiment settings and data acquisition pipeline

monitoring of the animal’s behaviour resulted in the collection of several thou-
sand images on which the bumblebees’ positions were automatically tracked and
manually reviewed. The orientations of the bumblebees during their learning
flights were obtained from the recorded positions using the Camera Calibration
Toolbox from MATLAB [8]).

In this chapter, we discuss a case study in applying a combination of contin-
uous integration principles, virtualization and Git to support reproducibility of
one computational step in the experimental pipeline described by Lobecke et al.
[1]. Our main motivation for this case study is to develop best practices that
support the execution of the original analytical workflow by third parties. For
this reason, we explore how virtualization technology can be used to create a
reproducible computational environment that can be directly executed without
the need to install software. An approach based on virtualization prevents prob-
lems related to broken dependencies due to later non-availability of the required
version of software and packages. In addition to using virtualization, we make
use of an integration server to specify and execute a number of integrity tests
that ensure validity of the data.

The structure of this chapter is as follows: in the following section 4.2, we
describe how the data in the original study by Lobecke et al. was collected. In
section 4.3, we describe the technical environment we have set up to preserve
the computational environment and thus ensure executability of the analytical
workflow. We also describe how we have used continuous integration (CI) prin-
ciples to implement a set of quality checks and integrity tests that ensure the
validity of the data.

4.2 Experiment settings and data acquisition
pipeline

The behaviour of naive bumblebees was recorded with two cameras (Falcon2
3M, Teldyne Dalsa, Inc) at 148fps, an exposure time of 1/1000s and a spatial
resolution of 2048x2048 px. The focal lens of the cameras was 8mm, and the
physical pixel size was 6 µm. The behaviour of bumblebees was continuously
monitored for several hours on a hard disk array using the software Marathon
Pro (GS Vitec, Germany). Relevant sequences of learning flights were stored as
8-bit jpeg images for the flight analyses. From the series of images, the position
of the bumblebee on the image was obtained by segmenting the image into
background and foreground and fitting an ellipse around the foreground (the
bumblebee) by using the software ivTrace[9]1).

After this automated procedure, the position and orientation of the bumble-
bee on the images were manually reviewed and potential errors were corrected
by watching the video frame by frame and using the software ivTrace. In a paral-

1https://opensource.cit-ec.de/projects/ivtools

45

https://opensource.cit-ec.de/projects/ivtools

4 Reproducing Trajectory Analysis of Bumblebee Exploration Flights

lel step, the Camera Calibration Toolbox for MATLAB by Jean-Yves Bouguet2

was used for the camera calibration and the 3D stereo triangulation. A checker-
board pattern (5 cm per square) was used for the calibration and the difference
between checkerboard points recorded by the camera and checkerboard points
reprojected to the images from their triangulated 3D positions was determined.
The average position error for the top and the side camera were 0.11 and 0.09
px, respectively.

Lobecke et al. [1] reported that the first learning flights of bumblebees are
highly variable and depend on the recorded individual. The learning flight was
recorded along a prolonged time-span and at a high spatio-temporal resolution.
The bumblebees’ flight positions and orientations were then reconstructed by
using triangulation from two synchronized cameras. Fig. 4.1 depicts the com-
putational workflow of the calibration to triangulation process. Fig. 4.3 depicts
an example of a trajectory of a bumblebee flight. For more detailed depiction,
see [1].

All data files, MATLAB and Python scripts for analysis as listed in Fig.
4.1 were made available by the Neurobiology group. The XML-file (Fig. 4.7)
contains parameters of the camera that were used for recording the bee flight
movement. They are used in the triangulation process to calculate trajectories
using two tra format files. The dataset is the basis for a publication by Lobecke
et al. (2018) [1]. The tra files (Fig. 4.8) contain the trajectory values in 2D
format from two cameras, one located on top and the other located on the side
of the bee. The MATLAB file format contains resulting trajectory information
in 3D format.

2http://www.vision.caltech.edu/bouguetj/calib_doc/

46

http://www.vision.caltech.edu/bouguetj/calib_doc/

4.2 Experiment settings and data acquisition pipeline

Figure 4.1: Procedure to calculate the trajectories of bumblebee flights, original
procedure as described in Lobecke et al. [1]

Figure 4.2: Example trajectory of a bumblebee flight, seen in 3D (cf. Lobecke
et al. [1])

47

4 Reproducing Trajectory Analysis of Bumblebee Exploration Flights

4.3 Computational Environment for
Reproducibility

In this case study, we set up a computational environment that builds on three
key components to support 3rd party execution of the analytical pipeline for
computing the 3D trajectories:

• Git Repository: The original data and the scripts to compute 3D tra-
jectories from the 2D data of the two cameras were uploaded to a Git
repository. The benefit of using Git is that data and scripts are stored in
a versioned fashion so that particular versions of data and scripts can be
referenced. Further, the data is backuped.

• Virtualization: We rely on virtualization technology to create a virtual
image of the computational environment that can be shared and executed
on any machine that runs the same virtualization software. In our case,
we rely on VMWare.

• Continuous Integration: We deploy a continuous integration server that
pulls the data and scripts from the Git repository, builds the analytical
pipeline, and executes a number of integrity tests on the data.

In the following, we describe the virtualization and continuous integration
approach in more detail. Before, however, we briefly describe how the original
MATLAB code that was used in the original experiment was migrated to an
open source programming language, Python in particular.

4.3.1 Software Migration
The original code used in the study carried out by Lobecke et al. was written
using the commercial software MATLAB. As part of Conquaire, the scripts
were ported to the open source programming language Python. Some data files
remained in MATLAB format, which did not constitute a problem as Python’s
scipy library can be used to read in MATLAB files. The resulting Python
code is available in a shared GitLab repository3. The Python script reads the
position of the bees from the two cameras, performs the triangulation for the
two camera images and produces the 3D trajectories as output. Note, that the
reconstruction of the camera calibration from the data as depicted in Fig. 4.3
was only necessary for reproduction purposes. For future data, the calibration
parameters for the python scripts would also be generated from a checkerboard
calibration processes.

Using this Python script, we could successfully reproduce the 3D trajecto-
ries from the original experiment. Fig. 4.4 plots the 2D projection of the 3D

3https://GitLab.ub.uni-bielefeld.de/olivier.bertrand/tra3dpy

48

https://GitLab.ub.uni-bielefeld.de/olivier.bertrand/tra3dpy

4.3 Computational Environment for Reproducibility

Figure 4.3: Procedure to obtain the trajectories of bumblebees. In shaded gray:
The original procedure followed in Lobecke et al. [1]. In shaded
green: the reproduced and adapted procedure. In parenthesis, the
software/tools used to accomplish the task.

trajectories computed by the original MATLAB workflow in comparison to the
Python-based workflow. One can appreciate that the deviations are minor and
barely visible. A statistical analysis of the differences for all 18 investigated
flight experiments is shown in Fig. 4.5. The average error along x- and y-axis
is a maximum of 0.024 mm and is much smaller than the maximum error of
measurement and therefore negligible. In contrast, the average error along the
z-axis is larger (0.3 mm). However, the differences are clearly small and within
an acceptable range.

Figure 4.5: Distribution of differences between original MATLAB and new
Python calculation for the three dimensions, x, y and z respectively

49

4 Reproducing Trajectory Analysis of Bumblebee Exploration Flights

Figure 4.4: A close magnified snapshot displaying comparing the 2D projections
to x- and z-axes of the 3D trajectories computed by the MATLAB
analytical workflow (red) and the Python-based workflow (green).

4.3.2 Virtualization

A virtual machine was set up with the necessary libraries and dependencies
required to run the toolbox. A linux-based virtual environment was created
using VMWare. The virtual machine was provided with 2GB RAM and 50GB
of storage. The CI server Jenkins was installed and the Python environment
needed to execute the Python tool mentioned above was setup. In particular,
Python version 3.4 was installed. The benefit of the virtualization is that the
computational workflow can be executed by a third party without any need
for installing operating systems, software nor libraries except for setting up a
machine that runs VMWare and that supports execution of the virtual image.
Thus, the party interested in running the computational workflow does not have
to take care of installing any packages with the correct version. Further, the
workflow can be executed in spite of the specific version of the libraries on which
the script depends not being available anymore.

50

4.3 Computational Environment for Reproducibility

4.3.3 Continuous Integration supporting quality control

Figure 4.6: Flow Chart of Jenkins Continuous Integration pipeline.

As mentioned above, a Jenkins server was installed and deployed on the virtual
machine. The Jenkins server is used to automate the process of checking out
the toolbox from the Git repository and deploying the analytical pipeline in the
local (virtual) machine. It allows to deploy the toolbox in a repeatable and reli-
able way involving automated testing. The CI workflow has been implemented
in such a way that it continuously checks the Git repository for new changes
and executes the whole pipeline every time the data and/or scripts have been
updated. The workflow also installs all the necessary Python libraries using
the pip package manager. The whole pipeline is depicted in Figure 4.6. After
starting the Jenkins Server and starting the workflow, the data and scripts are
checked out from the Git repository. Then, the necessary Python libraries are
installed on the virtual machine and the project is build. A number of unit
tests are performed on the software. Then, a number of data validation tests
are executed and the test results are stored in a log. When all tests are passed,
the toolbox is run on the data and the results of the analysis are stored.

Data validation tests were written for the three types of files:

• XML file: The XML file describes parameters of the camera used when

51

4 Reproducing Trajectory Analysis of Bumblebee Exploration Flights

Figure 4.7: Camera calibration data in XML format

Figure 4.8: The tra format. The rows are in the following format: frame number,
x, y, orientation, roundness, size

recording the bees’ flight movements (see 4.7 for a sample). We imple-
mented a parser that checks the syntactic well-formedness of the XML
file. In addition, we implemented a set of basic tests checking that the
x- and y-position of the center of the camera is within acceptable ranges.
The test succeeds if the center of both cameras is less than half of the
size of the camera. Finally, we wrote a test to check that the focal length
parameter of the camera is within acceptable ranges.

• tra files: The tra files contain 2D trajectory values of the bees’ flights as
recorded by the two cameras. A set of unit tests was implemented to check
that there are no empty values for any row/column as well as that each
value is of numeric type. In addition, we implemented checks to verify
that the values are within acceptable ranges as specified for each column.

52

4.3 Computational Environment for Reproducibility

Figure 4.9: Flight speed for a bee which is well within the range as defined by
the researcher (below 10m/s).

A sample of the data is shown in Figure 4.8.

• MATLAB files: The MATLAB files contain the 3D trajectories as cal-
culated from the 2D files using a triangulation mechanism described by
Lobecke et al. [1]. We implemented a test that computes the distance
between any subsequent 3D data points and computes the bumblebee’s
speed from the distance and frames per second as recorded by the cameras.
The test is passed if the speed is below the maximum of 10m/s.

These tests were intended to validate the data by discovering potential errors.
The XML file with the camera parameters passed all the tests. Our validation
scripts highlighted that some rows in the tra files had missing values and that
some rows had 11 (instead of 6) values. In the case of the MATLAB files, some
tests were not passed as for a number of data points the bumblebee’s flight speed
was observed to be out of the possible range (Fig. 4.9 and Fig. 4.10). Overall,
this validation helped the researchers to discover small errors in the data and
correct them.

53

4 Reproducing Trajectory Analysis of Bumblebee Exploration Flights

Figure 4.10: Flight speed for a bee in which an error in the data was found.
The erroneous speed was above 150 m/s, which is far outside the
acceptable range.

4.4 Conclusion
We have described a case study in applying a combination of continuous in-
tegration principles, virtualization and Git to support reproducibility of one
computational step within an experiment in neurobiology studying the first
flights of bumblebees. Git supports the versioned storage of data and scripts
so that we can refer back to any version of the data if needed. Virtualization
technology allows to preserve the computational environment in order to avoid
a situation in which the software can not run any more due to broken dependen-
cies, non-availability of the particular version of a required software, etc. Third
party researchers can re-run the computational procedure by merely installing
the image of the virtual machine, without having to install any further software
or having to built it. A continuous integration server has been deployed on the
virtual machine to automatically pull the most recent version of the data on
the repository, build the computational pipeline and run a number of tests that
check the well-formedness of the data.

In the specific use case considered, the use of virtualization and continuous
integration might be considered an overkill as the processing scripts in Python
that calculate the 3D trajectories have a limited complexity. The quality tests
implemented are also rather simple. Yet, our goal has been to understand the
potential of using virtualization and continuous integration, also with respect
to more complex cases and experimental environments in which more complex
software artifacts and analytical pipelines are involved. In the specific case
study considered, we could successfully re-run one computational step from the
experimental settings described in the paper “Taking a goal-centered dynamic
snapshot as a possibility for local homing in initially naive bumblebees” [1]. In

54

References

particular, we could rerun the step that calculates and visualizes the trajectories
of bumblebees. In this sense we could reproduce a key step in the analysis of
the recorded flights.

A drawback of our proposed architecture and combination of virtualization,
continuous integration and Git is that the data resides on a Git repository and
is pulled every time the computational pipeline is deployed and tested by the
continuous integration server. While this allows to pull the most recent version
of data and scripts, in our experience once the data and scripts are final, they
are typically not modified so that a static inclusion of the data and scripts in
the virtual machine would be sufficient. The dependency on a Git repository
introduces a dependency that can potentially break if the Git server is not hosted
anymore. In future work, the potential and benefits of using virtualization in
combination with a continuous integration server should be further investigated
on additional use cases. Especially, using the CI pipeline for continuous quality
control on newly recorded data in follow-up projects would be highly beneficial
for neuroethological research.

References
[1] Anne Lobecke, Roland Kern, and Martin Egelhaaf. Taking a goal-centred

dynamic snapshot as a possibility for local homing in initially naïve
bumblebees. The Journal of experimental biology, 221(Pt 2):jeb.168674,
jan 2018.

[2] Norbert Boeddeker, Roland Kern, and Martin Egelhaaf. Chasing a
dummy target: smooth pursuit and velocity control in male blowflies.
Proceedings. Biological sciences, 270(1513):393–9, feb 2003.

[3] Théo Robert, Elisa Frasnelli, Natalie Hempel De Ibarra, and Thomas S
Collett. Variations on a theme: Bumblebee learning flights from the nest
and from flowers. Journal of Experimental Biology, 2018.

[4] J. D. Crall, S. Ravi, A. M. Mountcastle, and S. A. Combes. Bumblebee
flight performance in cluttered environments: effects of obstacle
orientation, body size and acceleration. Journal of Experimental Biology,
218(17):2728–2737, sep 2015.

[5] Roland Kern, Norbert Boeddeker, Laura Dittmar, and Martin Egelhaaf.
Blowfly flight characteristics are shaped by environmental features and
controlled by optic flow information. The Journal of experimental biology,
215(Pt 14):2501–2514, jul 2012.

[6] Joseph L Woodgate, James C Makinson, Ka S Lim, Andrew M Reynolds,
and Lars Chittka. Life-Long Radar Tracking of Bumblebees. PloS one,
11(8):e0160333, 2016.

55

References

[7] Mathieu Lihoreau, Lars Chittka, and Nigel E Raine. Travel optimization
by foraging bumblebees through readjustments of traplines after discovery
of new feeding locations. The American naturalist, 176(6):744–57, dec
2010.

[8] J.Y. Bouguet. Matlab camera calibration toolbox. 2000.

[9] Jens Peter Lindemann. Visual navigation of a virtual blowfly. PhD thesis,
Bielefeld University, Bielefeld, Germany, 2005.

56

5 Reproducing experiments of
ice nucleation in
atmospheric chemistry

Fabian Herrmann1, Evelyn Jantsch2, Philipp Cimiano1, Thomas Koop2

1 – Semantic Computing Group, Faculty of Technology & Cognitive Interaction
Technology Excellence Center (CITEC), Bielefeld University

2 – Faculty of Chemistry, Bielefeld University

Abstract

This chapter describes a case study in reproducing results in the area of atmo-
spheric chemistry. The specific result reproduced is described in the paper ‘BI-
NARY: an optical freezing array for assessing temperature and time dependence
of heterogeneous ice nucleation’ by Budke and Koop [1]. The study investigated
the conditions under which ice nucleation occurs using Snomax®, a commercial
ice inducer containing freeze-dried nonviable bacterial cells from Pseudomonas
syringae, as a test substance for the investigation of heterogeneous ice nucle-
ation processes. The ice inducing bacterial cell agents are known to be active
at high temperature and are used in snow cannons. The study considered a
temperature range between 0◦C and -12◦C. The main result was the finding
that two classes of nucleations occur at a number ratio of about 1 to 1000 in the
chemical samples, based on the difference of 3 orders of magnitude of the tem-
perature plateau values. As a result of the Conquaire project, we reimplemented
the original workflow relying on OriginPro in Python and could reproduce the
central figure of the above mentioned paper by Budke and Koop using free and
open software. This thus counts as a case of full analytical reproducibility. The
data and scripts for the paper by Budke and Koop are available at https:
//gitlab.ub.uni-bielefeld.de/conquaire/atmospheric_chemistry.

Keywords

Atmospheric Chemistry, Ice Nucleation, Pseudomonas syringae, Snomax

57

https://gitlab.ub.uni-bielefeld.de/conquaire/atmospheric_chemistry
https://gitlab.ub.uni-bielefeld.de/conquaire/atmospheric_chemistry

5 Reproducing experiments of ice nucleation in atmospheric chemistry

5.1 Introduction
The study of ice formation is an active research area in the atmospheric sci-
ences [2]. For example, ice crystals occur in high altitude clouds and they are
responsible for initiating most precipitation above continents [2, 3, 4]. From a
thermodynamic point of view, crystalline ice is the stable phase of water below
the melting temperature Tm, which is 0◦C at ambient pressure, see Figure 5.1.
In many cases, the formation of ice crystals is kinetically inhibited and can occur
at lower temperature either via homogeneous or via heterogeneous nucleation,
see Figure 5.1.

Figure 5.1: Schematic depiction of different nucleation mechanisms for the freez-
ing of water. Tm is the melting temperature of the crystalline phase
ice; adapted with changes from Koop, 2004 [5].

For homogeneous freezing, a number of water molecules have to arrange them-
selves into an ice-like cluster, termed critical ice embryo, in order to trigger ice
formation. The size of this critical embryo is temperature dependent and de-
creases with decreasing temperature, thus making ice nucleation more likely at
lower temperature. For example, micrometer-sized pure water droplets freeze
homogeneously at approximately -38◦C (homogeneous nucleation temperature)
[5]. In contrast, heterogeneous ice nucleation can occur at higher temperatures
– even close to the melting temperature of ice – depending upon the presence
and activity of so-called ice nuclei (IN), see Figure 5.1 [5, 3, 6, 7]. Laboratory
experiments can be employed to help understanding the processes that lead to
ice nucleation in the atmosphere. By investigating ice nucleation temperatures
of different IN, we can quantify different IN activities, which can be used for
parametrizations of ice formation in atmospheric cloud models [8].

The activity of an IN material suspended in a water droplet can be obtained
from the measured number of active sites per dry mass nm(T) as a function of

58

5.1 Introduction

temperature. Equation 5.1 presents a definition for nm(T), where T is temper-
ature, K(T) is the experimentally observed cumulative number of active sites
per volume of water, and Cm is the mass concentration of IN in the water.

nm(T) = K(T)
Cm

(5.1)

K(T) can be obtained from equation 5.2.

fice(T) = nice(T)
ntot

= 1 − e−K(T)·Vdrop (5.2)

Here, fice(T) represents the experimentally observed cumulative ice fraction,
which is defined by the ratio of the number of droplets frozen at temperature T ,
nice(T), and the total number of investigated droplets, ntot. Vdrop is the droplet
volume.

Established methods for the determination of heterogeneous ice nucleation
temperatures have different advantages and disadvantages. For instance, larger
droplet volumes encounter a higher probability of impurities. In contrast, smaller
volumes are often realized through emulsions and, therefore, an oil phase is in
contact with the water droplet, which may influence results for those IN (e.g.
pollen and fungal spores) which have an affinity to hydrophobic phases, i.e.
the concentration of suspended IN would be overestimated in such cases [9].
Many experimental techniques are droplet arrays based on a method originally
developed by Vali and Stansbury, where small volume droplets are placed on a
cooling stage [10, 11]. However, since no oil phase is used to enclose the droplets,
frozen droplets grow by water vapor transport from the remaining supercooled
liquid droplets, according to the Wegener-Bergeron-Findeisen process. More-
over, sometimes frost halos form around frozen droplets. These ice rings tend to
grow on the surface below the droplets and can cause ice nucleation in adjacent
supercooled droplets. Budke and Koop [1] took these potential shortcomings
into account when they developed a new device to investigate ice nucleation
termed BINARY (short for Bielefeld Ice Nucleation ARraY), which was used
in the present study. The different droplets in BINARY are separated in indi-
vidual compartments thus preventing water vapor transfer between neighboring
droplets.

Snomax® is a well-studied IN material and, therefore, a good reference sub-
stance for testing new methods [12, 13, 14]. Snomax® is a commercial prod-
uct containing freeze-dried cells from Pseudomonas syringae, a rod-shaped bac-
terium living on a variety of plants. P. syringae bacteria are known to induce
heterogeneous ice nucleation at very high temperatures of approximately -2◦C
(class A) and also in a temperature range of about -7 to -10◦C (class C) [15].
The latter study was a multi-group intercomparison project and also included
data from the BINARY setup. Using this setup Budke and Koop determined
nm(T) in a temperature range between 0◦C and -12◦C [1].

59

5 Reproducing experiments of ice nucleation in atmospheric chemistry

5.2 Methods
In this section, we describe the experimental settings and methods as well as
the main results described in the paper by Budke and Koop [1].

5.2.1 Experiment settings and Data acquisition pipeline
In the study under investigation [1], the BINARY technique was used to de-
termine heterogeneous ice nucleation temperatures of Snomax®. Therefore a
certain dry mass of Snomax® (m) was suspended in freshly double-distilled wa-
ter of volume VH2O to obtain the desired mass concentration Cm = m/VH20
of Snomax® in water. 36 droplets (each Vdrop = 1 µL) of such a suspension
were pipetted into the compartments of a polydimethylsiloxane (PDMS) lattice
placed on a hydrophobic glass surface, resulting in a 6 x 6 droplet array as shown
in Figure 5.2a. The droplet compartments are sealed with another glass slide
on top of the PDMS lattice to prevent droplet evaporation (see Figure 5.2b).

2.0 mm polymer spacer

(a) sample array top view

5.0 mm

1.6 mm

40 mm

polymer
spacer

individual compartments with
single water droplets

(b) sample array side view

(c) cooling chamber

1.7 mm glass slide
0.14 mm glass slide

individual compartments with
single water droplets

LED

dry N2

purge gas
Peltier cooling stage

window

fixing screw

90 mm

29
 m

m(for 1 µL drop) sample array

Figure 5.2: Schematic picture of the Bielefeld Ice Nucleation ARraY (BINARY)
setup. (a) Top view of the 6 x 6 droplet array. The droplets are
separated from each other by a polymer lattice creating individual
compartments. (b) Side view showing the sealing of the compart-
ments by top and bottom glass slides. (c) Position of the sample
array on the Peltier cooling stage inside the cooling chamber. Figure
is taken from Budke and Koop, 2015 [1].

This sample array is positioned on a Peltier stage within a cooling chamber
(Linkam LTS120) as shown in Figure 5.2c. A metal frame presses the whole
array onto the Peltier cooling stage with the help of fixing screws to assure a
homogeneous and efficient heat transfer. The Peltier stage is connected to a
heat sink bath at 5◦C and its top side can be cooled to -40◦C at cooling rates
between 0.1 and 10◦C min−1. All experiments described below were measured
at a cooling rate of 1◦C min−1. Small cold-light white LED stripes are fixed
at the top edges inside the cooling chamber aiding the visualization of phase
changes through light scattering (liquid droplets appear darker whereas ice crys-
tals appear brighter due to the backscattered light). A CCD camera (QImaging
MicroPublisher 5.0 RTV) is mounted above the whole setup to observe the

60

5.2 Methods

droplets through a 40 x 40 mm window in the top ceiling of the cooling cham-
ber. Both the interior of the cooling chamber and the surface of the top window
are purged with dry nitrogen during the experiment to prevent water conden-
sation. A LabVIEW™ virtual instrument is used to detect ice nucleation and
melting events from the digital images obtained by the CCD camera. In detail,
for each compartment the average gray value of all pixels within a predefined
area is obtained. These gray values range between 0 for black pixels and 255
for white pixels.

Figure 5.3b and c show a representative behavior of the gray values and their
changes for the compartment marked by a yellow box in panel (a). Starting with
the red curve at 4◦C, the average gray value in Figure 5.3b is almost constant
until the droplet freezes at -3.9◦C, as indicated by a sharp jump. This steep
increase is also shown as the derivative in Figure 5.3c. After a temperature of
-10◦C is reached, heating is started (green curves) and ice melting begins at
0◦C, again indicated by a gray value change. The thresholds for defining the
occurrence of nucleation and melting events are gray value changes larger than
1 and -1, respectively (dotted red and green lines in Figure 5.3c).

5.2.2 Methods applied to analyze the experimental data
For each individual droplet, the uncalibrated heterogeneous ice nucleation tem-
peratures Tnuc are obtained and saved in a text file for offline calibration and
further analysis. The temperature calibration function and how it was developed
from experiments is discussed in detail in the paper [1]. Briefly, the calibrated
nucleation temperature Tcal can be obtained using equation 5.3, where r is the
cooling rate of 1◦C min−1.

Tcal = −((−6.03165) + 0.02113 · (273.15 + Tnuc) − (3.59774 + (−0.02956)
(273.15 + Tnuc) + 6.10156 · 10−5 · (273.15 + Tnuc)2) · (−r) + Tnuc (5.3)

Each Tcal value is then binned into temperature intervals of 0.1◦C width, i.e.
all Tcal values within the interval Xlow ≤ Tcal < Xup get sorted into the bin
Xlow. Thereafter, Tcal will only be used as the binned value T . Now the number
of individual Tcal data are counted to gain nice(T) and ntot for determining fice

using equation 5.2. This counting is done for all droplets with the same Snomax®

concentration, so each measured concentration has one cumulative ice fraction
ranging from 0 to 1. Using equation 5.4 (derived from equation 5.1 and 5.2)
nm(T) is obtained for each concentration and can be plotted for all investigated
temperatures.

nm(T) = − ln(1 − fice(T))
Cm · Vdrop

(5.4)

61

5 Reproducing experiments of ice nucleation in atmospheric chemistry

Cooling

Heating

freezing threshold

melting threshold

0.0 °C-3.9 °C

-4.1 °C

-4.2 °C

-2.0 °C 2.0 °C

-6.0 °C

2.0 °C

0.0 °C

Cooling

Heating

-4.0 °C

-8.0 °C

1.0 °C

-2.0 °C

(a) Cooling

(b)

(c)

-3.5 °C (269.6 K)-4.5 °C (268.6 K)-5.5 °C (267.6 K)

Figure 5.3: Typical experiment with Snomax®-containing droplets (0.1 µg µL−1)
showing the automatic detection of ice nucleation events by the
change in brightness during freezing. (a) Image series of the 6 x
6 droplet array during cooling. (b) Measured gray value of the
droplet compartment indicated by the yellow box in panel (a) dur-
ing cooling (red) and heating (green). Freezing and melting start at
-3.9◦C and 0.0◦C, respectively. (c) Plot of the change in gray value
between successive images showing peaks at the phase transition
temperatures. Threshold values of ±1 for the automatic attribution
of freezing and melting are indicated by the dashed lines. Figure is
taken from Budke and Koop, 2015 [1].

62

5.2 Methods

5.2.3 Main Results

Figure 5.4 presents the main result of the paper in form of a combined curve of
nm(T) values from several Snomax® suspensions with different concentrations
(see color code).

Class AClass BClass C

Figure 5.4: Experimentally determined active site density per unit mass of
Snomax® nm(T) versus temperature. Symbol colors indicate data
from droplets with different Snomax® concentrations; symbol size
indicates the number of nucleating droplets per temperature inter-
val (0.1◦C). The temperature range for different classes of IN is
also indicated by the colored bars. Figure is taken from Budke and
Koop, 2015 [1].

Two steep increases can be seen, which represent two different types of IN
activity at different temperature regimes. Plateaus in a nm(T) plot, e.g. between
-4.5◦C and -7.5◦C, can be interpreted as temperatures where no IN is active.
It should be noted that data points below -12◦C down to -35◦C were obtained,
but are not shown since they did not reveal any other IN (purple symbols).
Also indicated in Figure 5.4 are the temperature ranges for different IN classes
as defined in the literature [16]. Two different classes of IN in Snomax® were
identified, inducing ice nucleation at about -3.5◦C (class A) and at about -8.5◦C
(class C). For class A IN in Snomax® nm(T) ranges from about 10−2 µg−1 up
to almost 103 µg−1. However, the number of active sites is much larger for class
C IN as the increase starts at 103 µg−1 rising to almost 106 µg−1, indicating
that class C IN are about a factor of 103 more abundant than class A IN. The
number of active sites can also be expressed as a number of active sites per cell
(i.e., nn(T) on the right axis in Figure 5.4). Hence, there is about one class C
active site per P. syringae cell.

63

5 Reproducing experiments of ice nucleation in atmospheric chemistry

5.3 Analytical Reproducibility
As a main objective of this study, we defined the goal of being able to inde-
pendently reproduce the plot shown here in Figure 5.4 as main result of the
work described by Budke and Koop [1]. The validation was done by calculating
the calibrated temperatures from the temperature for a given cooling rate and
Snomax® concentration; for each concentration bin, the fice(T) was calculated.
The calculations had been done originally using OriginPro for the original paper,
while we reproduced these calculations using a custom Python program.

5.3.1 Research Data - Primary
The data was read off the BINARY experiment setup, then processed entirely by
OriginPro, a proprietary computer software from OriginLab Corporation, that is
mainly used for interactive scientific graphing and data analysis on the Microsoft
Windows platform only. It is a GUI software with a spreadsheet-like front end
which uses a column-oriented data processing approach for calculations. It has
its own file format, .OPJ, for project files which are directly processed by the
system for statistics, data analysis and visualization.

The group uses OriginPro along with a scripting language known as LabTalk
that allows finer control, by writing small macros that run over the data analy-
sis process for the experiment data. With LabTalk the group programs routine
operations, including batch operations, with customizable graph templates and
analysis dialog box themes. Various features exist to save a collection of opera-
tions within the workbook, viz., saving a suite of operations, auto recalculation
on changes to data or analysis parameters, and different analysis templates.

5.3.2 Research Data - Analyzed and Processed
The Snomax® data file contains data from the OPJ data file that is read into
the Origin software system. The data was exported into tab-separated files with
OriginPro as *.txt files with six TAB delimited columns. The calibration data
numbers start from line four with the headers confined to the first three lines; viz.
the first line has the column names, while line 2 contains the data description
or unit, and the third line contained information about the substance.

For the computational reproducibility experiment, we used Python to process
these text files for data analysis and visualization based on the validated raw
data. After calibrating the temperature, the python script binned the data, then
grouped the data for all columns by concentration (decreasing) into different
bins and then within each concentration bin the data is sorted by (decreasing)
calibrated temperature Tcal. Afterwards, fice(T) was determined for each tem-
perature value in each bin. In the last step the mass concentration of Snomax®

and the volume of the droplets are converted into the active site density per
unit mass, nm(T).

64

5.3 Analytical Reproducibility

After tabulating fice(T) and nm(T) for each concentration bin, the resulting
data is stored in a csv file that became the input data to reproduce the plot
from the original paper shown in Figure 5.4.

5.3.3 Data Workflow Lifecycle
In order to reproduce the mentioned plot, the functionality implemented orig-
inally in the OriginPro frameworks was reproduced using a Python program.
The resulting workflow implemented in Python reproduces the workflow imple-
mented in OriginPro and schematically represented in Figure 5.5.

Calculate calibrated temperature T
cal

.:

Read in raw data:

Group data after concentration:

Sort groups in descending order.

Calculate f
ice

 by dividing n(T) by n
tot

:

Store each column as list.

Bin T
cal

 values.

Calculate number of events of each T.

Calculate the cumulative number n(T) by
summing up the number of events until the actual value.

Sort within each group
after T in descending order.

Calculate the total number n
tot

 of T values

within each concentration.

Determination of active site density n
m
(T

cal
)

Calculate n
m
(T) from calculated f

ice
(T),

concentration and droplet volume.

Visualisation:

Create figure from plotting active site density n
m
(T)

versus temperature T for each concentration.

Figure 5.5: Schematic representation of analytical workflow as implemented in
Python program.

First, the given raw data is read in and each column is saved as a list. In the
second step, the calibrated temperature Tcal is calculated from the measured
temperature Tnuc and the cooling rate r with formula 5.3. In the third step,
the data is grouped by the concentration Cm into different bins and is sorted in

65

5 Reproducing experiments of ice nucleation in atmospheric chemistry

descending order. Within each bin the data is sorted by the temperature T in
descending order. In the fourth step, for each bin a new table is generated. The
bin is grouped by the temperature T and a second row is introduced showing
the number of occurrences of each different binned temperature. A third row
is used to summarize the occurrences including the current temperature. It
shows the number of droplets up to the current temperature. This value and
the total number of all droplets in this bin are used to calculate the frozen
fraction fice(T) with the given formula 5.2. Then it is appended to the table.
In the fifth step, the active site density per unit mass, nm(T) is calculated from
fice(T), the concentration Cm and the droplets volume Vdrop with the formula
5.4 and is appended as fifth column to the new table. Thereafter, this table is
saved as a .CSV file, a common data format used by researchers with many
tools for file input-output operations. As a second result, the generated table
is used to reproduce and plot the graph in Figure 5.6 which displays our graph
and the graph from the original paper for comparison. With the given raw data
the results from the original experiment could be successfully reproduced using
Python, an open source programming language.

5.3.4 Summary of Reproducibility Experiment
We reproduced the results from the analyses from the original paper as shown
in the visualization graph Figure 5.6 by plotting nm(T), the cumulative num-
ber of IN per dry mass of Snomax® as a function of calibrated temperature.
Origin software is a proprietary analysis toolbox with no equivalent libre soft-
ware alternative. Hence, the original OPJ data file format can only read data
into the Origin software system. The system allows data to be exported into
tab-separated files with delimited columns. Due to the complexity and time as-
sociated with learning to use a new system like Origin, we opted to use Python
to code the formulae and run the data files to be analyzed. In addition, Python
is open source and is supported by many platforms.

Two particularly strong increases in nm(T) are observed, one at about −3.5 °C
(269.6K) ± 0.5K and one at −8.5 °C(264.6K) ± 0.5K, indicating the presence
of two distinct classes of ice nucleators with different activation temperatures.

The two plateaus at temperatures just below each increase of nm(T) in Fig-
ure 5.6 arise when no INs are active at these temperatures in the investigated
suspensions. The nm(T) values of the plateaus differ by about 3 orders of
magnitude, from which it can be inferred that the two classes of Snomax® ice
nulceations occur at a number ratio of about 1 to 1000 in the samples. The
active site densities per cell nn(T), shown in Figure 5.6 on the right axis, were
calculated using the specific particle number of cells in Snomax®.

66

5.4 Conclusion

Figure 5.6: Experimentally determined active site density per unit mass of
Snomax® nm(T) versus temperature. A: Original version of dia-
gram as published by Budke and Koop [1]; B: diagram resulting from
reproducing the computational workflows of Budke and Koop as de-
scribed in this paper. Symbol colors indicate data from droplets with
different Snomax® concentrations; symbol size indicates the number
of nucleating droplets per temperature interval (0.1◦C). The tem-
perature range for different classes of IN is also indicated by the
colored bars.

5.4 Conclusion

In this work we could successfully reproduce the main results of the paper by
Budke and Koop [1], reproducing the original analytical workflow using Origin-
Pro by using free and open software, in this case a Python program implemented
as part of the Conquaire project. Here, we thus have a case of limited repro-
ducibility as the direct reproduction would have required obtaining a commercial
license for OriginPro and re-creating the GUI interactions used in the original
work. Instead, we have opted for a re-implementation of the original analysis
in Python. We have thus not directly reproduced the original workflow, but
developed a workflow that can be regarded as functionally equivalent. As we
did not reproduce the original workflow exactly, we have a case of limited ana-
lytical reproducibility as defined in chapter 1 of this book. The data has been
uploaded to the DFG FOR1525 project website (https://www.ice-nuclei.de/),
where it is available upon request. Moreover, the data has been verified by an
intercomparison paper by Wex et al. [15]. As a result of Conquaire, both the
data and the script are available in a Git repository for further re-use and ver-
ification. While there is not yet a DOI for the dataset, the dataset and script
are referenceable via a GIT repository, even down to a particular version.

67

References

Acknowledgments
We thank Carsten Budke for providing the data and technical discussions during
the computational reproducibility process.

References
[1] C. Budke and T. Koop. BINARY: an optical freezing array for assessing

temperature and time dependence of heterogeneous ice nucleation.
Atmospheric Measurement Techniques, 8(2):689–703, 2015.

[2] Hans R Pruppacher and James D Klett. Microphysics of Clouds and
Precipitation. Kluwer Academic Publishers, New York, 2 edition, 1997.

[3] Will Cantrell and Andrew Heymsfield. Production of ice in tropospheric
clouds: A review. Bulletin of the American Meteorological Society,
86(6):795–807, 2005.

[4] Dennis Lamb and Johannes Verlinde. Physics and Chemistry of Clouds.
Cambridge University Press, Cambridge, 2011.

[5] T Koop. Homogeneous Ice Nucleation in Water and Aqueous Solutions. Z.
Phys. Chem, 218:1231–1258, 2004.

[6] P J DeMott, A J Prenni, X Liu, S M Kreidenweis, M D Petters, C H
Twohy, M S Richardson, T Eidhammer, and D C Rogers. Predicting global
atmospheric ice nuclei distributions and their impacts on climate. Proc.
Natl. Acad. Sci. U. S. A., 107(25):11217–11222, 2010.

[7] B J Murray, D O’Sullivan, J D Atkinson, and M E Webb. Ice nucleation
by particles immersed in supercooled cloud droplets. Chem. Soc. Rev.,
41(19):6519–6554, 2012.

[8] C Hoose and O Möhler. Heterogeneous ice nucleation on atmospheric
aerosols: a review of results from laboratory experiments. Atmos. Chem.
Phys., 12(20):9817–9854, 2012.

[9] B G Pummer, H Bauer, J Bernardi, S Bleicher, and H Grothe.
Suspendable macromolecules are responsible for ice nucleation activity of
birch and conifer pollen. Atmos. Chem. Phys., 12(5):2541–2550, 2012.

[10] Gabor Vali and E J Stansbury. Time-dependent Characterstics of the
Heterogeneous Nucleation of Ice. Canadian Journal of Physics,
44(3):477–502, mar 1966.

[11] Gabor Vali. Supercooling of Water and Nucleation of Ice (Drop Freezer).
Am. J. Phys., 39(10):1125, 1971.

68

References

[12] L R Maki, E L Galyan, M M Chang-Chien, and D R Caldwell. Ice
nucleation induced by pseudomonas syringae. Appl. Microbiol.,
28(3):456–459, sep 1974.

[13] G Vali, M Christensen, R W Fresh, E L Galyan, L R Maki, and R C
Schnell. Biogenic Ice Nuclei. Part II: Bacterial Sources. J. Atmos. Sci.,
33(8):1565–1570, aug 1976.

[14] O Möhler, D G Georgakopoulos, C E Morris, S Benz, V Ebert,
S Hunsmann, H Saathoff, M Schnaiter, and R Wagner. Heterogeneous ice
nucleation activity of bacteria: new laboratory experiments at simulated
cloud conditions. Biogeosciences, 5(5):1425–1435, 2008.

[15] Heike Wex, S Augustin-Bauditz, Yvonne Boose, Carsten Budke, Joachim
Curtius, Karoline Diehl, Axel Dreyer, Fabian Frank, Susan Hartmann,
Naruki Hiranuma, Evelyn Jantsch, Zamin a. Kanji, Alexei Kiselev, Thomas
Koop, Ottmar Möhler, Dennis Niedermeier, Björn Nillius, Michael Rösch,
Diana Rose, C Schmidt, Isabelle Steinke, and Frank Stratmann.
Intercomparing different devices for the investigation of ice nucleating
particles using Snomax as test substance. Atmospheric Chemistry and
Physics, 15(3):1463–1485, feb 2015.

[16] M A Turner, F Arellano, and L M Kozloff. Three separate classes of
bacterial ice nucleation structures. J. Bacteriol., 172(5):2521–2526, 1990.

69

6 Visualization of economic
agent-based simulations:
introducing the FLAViz
toolbox

Sander van der Hoog1, Philipp Cimiano2

1 – Faculty of Business Administration and Economics, Bielefeld University
2 – Semantic Computing Group, Faculty of Technology & Cognitive Interaction

Technology Excellence Center (CITEC), Bielefeld University

Abstract
We describe the result of a collaboration between the Economic Theory and
Computational Economics (ETACE) group at Bielefeld University and the Con-
quaire project. The Economic Theory and Computational Economics (ETACE)
group, with a project led by Prof. van der Hoog, applies agent-based modeling
approaches to study dynamic equilibrium models resulting from the interaction
of heterogeneous rational agents. This allows insights into the application of
different industrial policy measures in different regions, the existence of varying
spatial frictions on goods and labour markets, the spatial dynamics of indus-
trial activity, technical change and growth, the micro- and macro-prudential
regulations and their effects on micro-fragility and macro-financial stability, as
well as financialisation of the real sector and the need for productive credit for
economic development. In this paper, we describe the implementation of the
FLAViz library that realizes a data analytic processing pipeline supporting the
computational analysis and visualization of simulation data generated in the
FLAME environment. This library is a key step towards ensuring computa-
tional reproducibility of the analyses of the available simulation data.

Keywords
Computational Economics, Python, Pandas, simulation data, High-Performance
Computing.

71

6 Visualization of economic agent-based simulations

6.1 Introduction
The research group on Economic Theory and Computational Economics (ETACE)
is concerned with the analysis of different aspects of economic dynamics and
strategic interaction. It employs and extends both analytical methods, in par-
ticular dynamic optimization and dynamic game theory, and computational
approaches, where the latter include numerical methods for the solution of (dy-
namic) equilibrium models as well as agent-based simulations.

Research at ETACE is based on the conviction that a thorough examina-
tion of (dynamic) economic phenomena should be based on a combination of
(i) dynamic equilibrium analysis, providing benchmark results under full ratio-
nality (and foresight) of decision makers, and (ii) the explicit consideration of
the economic dynamics unfolding under the interaction of rationally bounded
heterogeneous agents. The aim of the work undertaken by the ETACE group
is to extend the toolbox of economists and policy makers, and to apply these
tools to relevant research questions, mainly in the areas of Industrial Economics,
Labour Economics and Macroeconomic Dynamics.

Ongoing research at ETACE can be broadly categorized in the following re-
search topics:

• Agent-based Modelling for Economic Policy Analysis

• Economics of Innovation and Industrial Dynamics

• Network Formation and Spatial Dynamics

• Labour Economics and Search Theory

Within the Conquaire project, we have addressed work in the first topic
area, that is Agent-based Modelling for Economic Policy Analysis. In partic-
ular, we have identified the Eurace@Unibi Model, a specific agent-based sim-
ulation model, as a case study to test the notions of analytical reproducibility
and continuous integration of research data, which are two key aspects of data
management for the Conquaire project.

In recent years, it has been widely acknowledged by economic scholars that the
explanatory power of standard representative agent models is in many cases lim-
ited. This has led to a surging interest in the empirical exploration of bounded
rationality in economic decision making, mainly by means of laboratory exper-
iments and attempts to incorporate heterogeneity in endowments or behavior
into economic models. A particularly natural and promising approach to ac-
count for economic phenomena that result from the (bounded) rational inter-
action of heterogeneous economic agents is the use of agent-based computer
simulation models. Phenomena of such types are abundant (the avalanche-like
dynamics in the network of connected commercial banks inducing the current
economic crisis is just one prominent example in that respect), and a large

72

6.1 Introduction

amount of insightful agent-based research has addressed a wide range of rel-
evant economic issues (see e.g. the Handbook of Computational Economics
Volume II edited by Tesfatsion and Judd [1] for an overview, and the more re-
cent Handbook of Computational Economics Volume IV edited by Hommes and
LeBaron [2] for applications).

A main research topic at ETACE is the development of micro-founded macro-
economic heterogeneous agent-based models that can be used as an integrated
framework for policy analysis in different economic policy areas. Based on work
carried out in the EU-funded Eurace Project, the Eurace@Unibi model has
been developed and used as a tool for the analysis of various economic policy
questions related to issues of technological change and economic growth, labor
market policies, social cohesion and convergence, and to study banking and
credit market regulations. See [3] and [4] for a more detailed description of
the model. The Eurace@Unibi model is among the most sophisticated and
well-documented models in this domain of economic research. It has strong
empirical micro-foundations and reproduces a large set of empirical stylized
facts. Ongoing work focuses on the analysis of policy effects considering spatial
factors and knowledge and information flows. In particular, the goal of the
model is to allow to study the effects of:

• the application of different industrial policy measures in different regions,

• the existence of varying spatial frictions on goods and labour markets,

• the spatial dynamics of industrial activity, technical change and growth,

• microprudential and macroprudential regulations and their effects on micro-
fragility and macro-financial stability, and the

• financialization of the real sector and the need for productive credit for
economic development.

The Eurace@Unibi model is adapted and extended on a regular basis to ad-
dress concrete research questions in economic policy. Finally, members of the
ETACE group develop and apply statistical methods and concepts to system-
atically and rigorously analyse computational policy experiments using agent-
based simulation models. The data being generated by such simulation models
can be quite complex, not just in terms of data volumes but also in terms of its
dimensions, heterogeneity, and variety. This is especially true when large-scale
agent-based models with large agent populations are simulated. To analyse such
high-dimensional data, new data visualization techniques must be developed,
and this was one of the main tasks to be accomplished by the ETACE group
in the context of the Conquaire project. Since the Eurace@Unibi model, which
was selected as our use-case for the Conquaire project, has been implemented
in the simulation environment FLAME, we give a brief description of this sim-
ulation platform below. In the following subsection 6.2, we describe how the

73

6 Visualization of economic agent-based simulations

FLAME environment is used to generate the simulation executable and describe
a library called FLAViz that has been developed in cooperation with Conquaire
and supports the analysis of simulation data generated by a FLAME-generated
model.

6.2 Methods
In this section, we describe the FLAME environment.

6.2.1 The FLAME Environment
The Flexible Large-scale Agent Modelling Environment (FLAME) is a generic
agent-based modelling platform, which can be used to generate agent-based
models in a wide range of applications, such as biology, crowd simulations, and
economic analyses (see the FLAME website for examples and code).1 The soft-
ware components XParser and Libmboard can be downloaded from the GitHub
repository of FLAME-HPC.2

In principle, FLAME is not a simulator, but a simulator generator since it
creates a simulation executable that can be run on any hardware platform from
laptops or servers, to HPC clusters. Currently, there exist different versions
of FLAME for use with CPUs or GPUs, and efforts are underway to create
a single, uniform environment that addresses all hardware architectures. The
CPU version is called FLAME-HPC and is currently the most mature version
(see [5, 6, 7, 8, 9, 10] for a more detailed description of FLAME).

Several features make FLAME particularly appealing as a framework to de-
velop and analyse large-scale agent-based models since the framework has been
specifically designed for use on high-performance computing clusters. It pro-
vides a very transparent and clean way to model information flows between
agents using messages, both internal inside the conceptual model and outside of
it through the use of a Message Passing Interface (MPI), provided by the Libm-
board library. The only means to communicate private data between agents is
through the exchange of messages, where the data an agent can transmit con-
sists of a list of values of its own state variables (e.g. wealth, income, skills,
profits, expectations about certain variables). Messages are added to a cen-
tralized message board and the sender determines which agents can read the
message. Agents check the message boards in every iteration in order to collect
all the information they are supposed to receive. An agent can use the collected
information as input to its decision rules or as the basis for updating some of
its own state variables.

Since high-performance computing clusters are involved, and computational
resources on such clusters are still a scarce resource, the data generation and

1See the FLAME website <http://www.flame.ac.uk>.
2See the GitHub repository <https://github.com/FLAME-HPC>.

74

<http://www.flame.ac.uk>
<https://github.com/FLAME-HPC>

6.2 Methods

data analysis stages are a multi-stage process in which considerations of com-
putational time and data storage play an important role. These two steps are
separated in time, with the data first being generated and stored to disk, and
afterwards the data is again loaded for analysis.

At the simulation design stage (before simulations are actually run), the model
analyst can select to output either a complete snapshot of all variables of all
agents (this is very data intensive), or select a subset of agents for which all
variables will be stored. In addition, it is also possible to select a certain fre-
quency at which the data is output, say every n iterations, or to select only a
subset of variables (a much less data intensive mode of simulation).

6.2.2 Simulation Data
FLAME uses the XML format for data input and output files. In order to design
a simulation model in FLAME, three types of XML files are typically required:

• Model XML files: This file follows a DTD (see FLAME User Manual, [5,
pp.43-44]). It specifies the model’s data structures and variable types, with
XML tags for the environment, models, agents, messages, ADTs, and time
units. The environment-tag contains static constants (model parameters)
and file names for the C function files (user-created). The xagent-tag
contains memory variables and functions. Messages and ADTs contain
attributes, which are the variables contained in these data containers.

• Data input XML files: This file is an input argument to the simulator
executable (see FLAME User Manual, [5, pp.30-31]). It contains all initial
values for the model constants and agent variables. Usually the input file is
called 0.xml, and the default file size is now about 25 MB for our standard
economic model.

• Data output XML files: These are the output files generated by the
simulator executable (which itself is generated by FLAME by compiling
the user-created and template C code). This type of file only contains the
values for all the agents’ variables. The environment constants have no
output (except when the output file is a snapshot, see below), since the
constants are static and are already contained in the input file.

In order to understand the structure and data content of the output XML files,
a brief discussion about the notion of agents might be helpful. In research at the
ETACE group, we deal with different economic agent types, such as Eurostat,
Bank, Firm, Household, Central bank, etc. Each agent type has a different set of
variables, since this depends on what activities the agent performs in the model.
For example, the agent type Bank might contain variables such as cash, total
credit, deposits, mean interest rate, etc. Another agent of type Eurostat might

75

6 Visualization of economic agent-based simulations

contain variables like: unemployment rate, total debt, monthly output, average
wage, etc.

Also, each agent type is an archetype, and many instances of each agent type
may actually exist in the simulation. In this sense, the agent types are simi-
lar to an object class, and the individual agents are similar to object instances.
Depending on the particular type of economic analysis, we have different require-
ments for the simulation output. For example, a particular simulation might
contain only the agent type Eurostat, while for another analysis we might need
more than one agent type, for example all Eurostat, Firm and Bank agents.
Therefore, the agent types and their variable lists can be filtered before they are
output to disk, saving on simulation time and storage requirements. This is one
reason why the output XML files may vary in size. Some common file sizes (per
iteration) are: 105 bytes (store only Eurostat, 1 variable), 2 MB (store multi-
ple agent types, multiple instances of each type, and many variables per agent
instance), 25 MB (store a population snapshot, containing all agents, and all
variables per agent). If a certain analysis requires millions of runs for millions
of iterations (for molecular dynamics for instance), it makes sense to filter out
some of the data before it is output to disk.

The population snapshot file of 25 MB also contains the model constants/pa-
rameters in addition to the agent variables. These static constants are usually
not part of the output file, as this would be redundant since they are already
contained in the input XML file (0.xml). As the purpose of the snapshot file
is to be used again as an input file to the simulator, the model constants must
also be contained in this file.

The output XML files are named with the iteration numbers. Basically, a file
named 1.xml contains all the values at the end of the first iteration; similarly
the file 2.xml contains all the values at the end of the second iteration, and so
on.

Visualizing Simulation Data

In order to generate the simulation data we have adopted the following ontology:

• Sets: a set reflects a model parameter setting. Each set differs from
another set only in the parameter setting of the model.

• Runs: a run is a replication for a fixed parameter setting. Each run differs
from other runs only by the random seed. The other initial conditions are
kept exactly the same across runs.

Thus, parameter variations are captured in settings or sets. Each set reflects
a different parametrization of the simulation model. In case the model contains
random variables and stochasticity, the statistical properties of the model can be
explored using different random seeds and a Random Number Generator (RNG).
By default, we use the RNG from the open source GNU Statistical Library

76

6.3 Analytical Reproducibility

(GSL), which is based on a Mersenne Twister (mt19937). For each data set,
multiple runs are performed using different random seeds, producing different
simulation output for each run. These runs can be called Monte Carlo replication
runs since the random seeds are themselves varied in a random fashion. The
seed is set randomly based on the system time at simulation launch time, and
stored for later replication of the data, if required.

6.3 Analytical Reproducibility
In this section, we describe the implementation of the Flexible Large-scale Agent
Visualization Library (FLAViz), which is a software library specifically designed
for the analysis and visualization of data generated by Agent-Based Models
(ABMs). Agent-based simulation models typically generate data across mul-
tiple dimensions, e.g. parameter sets, Monte Carlo replication runs, different
agent types, multiple agent instances per type, many variables per agent, and
time periods (iterations). This implies the data is structured as time series
panel data sets. FLAViz has been developed in cooperation with the Conquaire
project and has been specifically designed for FLAME-generated data, but in
principle data from any ABM can be used, as long as the data adheres to the file
specifications. FLAViz builds on the Python pandas library to deal with such
high-dimensional time series panel data sets. The data is stored as structured
data using multiple hierarchical levels in the HDF5 file format. This allows for
proper data aggregation, filtering, selection, slicing, transformation, and visual-
ization. The toolbox is setup in a modular way as a flexible set of tools that can
be integrated into an automated work-flow for analysing the time series data
generated by any computational model. The software code for the visualiza-
tion library FLAViz is open-source and available for download from the GitHub
repository.3 The installation instructions and dependencies are documented in
the readme file of the repository, as well as tutorials and example data.

6.3.1 Data Analysis Pipeline
FLAViz is an addition to the FLAME set of tools used for the simulation and
analysis of large-scale agent-based models. FLAME natively outputs data in
XML format. In FLAViz this gets processed using Python scripts and trans-
formed into HDF5 files for final storage. Building on the pandas and matplotlib
libraries, various plots can be specified, e.g., time series, box plots, scatter plots,
histograms, and delay plots.

FLAViz version 0.1.0 (beta) is written in Python (ver- 3.6) and other package
dependencies include:

• Pandas (ver-0.21.0)
3<https://github.com/svdhoog/FLAViz>

77

mt19937
<https://github.com/svdhoog/FLAViz>

6 Visualization of economic agent-based simulations

• YAML files for easy configuration management

• Matplotlib for data visualization

• HDF5, and

• PyTables

FLAViz uses two important inbuilt features of the pandas library, viz.:

• Hierarchical indexing: this allows a high dimensional data frame (the
ndarray format)

• Bygroup: this allows to re-order the hierarchical index, to reshape the
data dimensions

At the outset, the original simulation data are stored in XML files and are
then converted to a more data-processing friendly format, viz. the HDF5 for-
mat. This is needed because the XML files that FLAME simulations generate
are a fully tagged data format and is therefore very verbose. For large scale
simulations this is prohibitive in terms of the sheer size of the data volumes
generated. The storage and parsing of large data volumes generate a com-
plex data structure. In order to reduce this storage footprint, yet retain the
structured data format, the HDF5 standard was chosen for its hierarchical data
storage structure. The Pandas library can easily read large *.h5 files and store
the data internally into one of its native data formats (either pandas.dataframe
or numpy.ndarray).

The data hierarchy is as follows:

1. Agent types: a = 1, ..., A - Classes, groups of agent sub-populations

2. Sets: s = 1, ..., S - Parameter settings (model calibrations)

3. Runs: r = 1, ..., R - Monte Carlo replication runs (random seeds)

4. Iterations: t = 1, .., T - Time periods

5. Agents: i = 1, ..., n a - Individual agents (per type)

6. Variables: j = 1, ..., m - Scalars, Arrays, Composites

Due to this large data heterogeneity, the file sizes may vary across simulations
with the same model, even when using exactly the same input file, due to
stochasticity. The data for each agent-type is stored in a single HDF5 file without
any file-size limitations. The data is heterogeneous across several dimensions:

• agent types: there can be many different agent types (e.g., household
agents, firm agents, bank agents, etc.)

78

6.3 Analytical Reproducibility

• agent instances: there can be a different number of agent instances per
agent type

• agent memory variables: there can be a different number of memory
variables per agent type (but all agents of the same type have the same
set of memory variables, specified a priori, in the model.xml file that fully
specifies the model’s structure)

HDF5 File Format

HDF5 has a simplified file structure that includes only two major types of ob-
jects:

1. Datasets: which are multidimensional arrays of a homogeneous type; and

2. Groups: which are container structures which can hold datasets and
other groups.

The main restrictions of the HDF5 file standard are:

1. the HDF5 file format requires that the atomic data set at the lowest
hierarchical level is a homogeneous data format (no ragged edges). This
means that the choice of the 6 dimensions (Sets, Runs, Iterations, Agent
types, Agent instances per type and Variables) requires us to choose those
dimensions that remain invariant across all model simulations as the ones
contained in this homogeneous data structure. These dimensions are:
Agent instances, Iterations and Variables. These dimensions are invariant
because we simulate the same model many times, and we do not change
the model structure across simulations. Therefore the number of variables
per agent remains the same, the number of agent instances per agent
type is constant, and the total number of iterations also remains constant
across simulation runs. Another reason for choosing those 3 dimensions
is that the sets and runs form a unit of analysis, so it makes sense to
choose those for the higher level in the hierarchy. Also, the simulation
output for the sets and runs can be generated on a cluster in a massively
distributed fashion, by distributing the compute load across many nodes.
Logically, this implies storing the output in separate files according to the
set/run combinations first, and only at the very end combining all these
files according to the agent types.

2. The 3D Panel format in Python pandas has 3 axes (item, major and
minor) and is specified as row-major. This means that the data structure
requires the largest dimension to be on the major axis. In our case, the
largest dimension is the number of iterations, typically 1000 or higher.
The other dimensions are the number of agent instances (on the order of
100), and the number of variables (also on the order of 100).

79

6 Visualization of economic agent-based simulations

Given the above constraints, we specify the 3D Panel data structure as follows:

1. item axis: agent instances

2. major axis (table rows): iterations

3. minor axis (table columns): variables

To deal with the remaining 3 dimensions (agent types, sets and runs), we
proceed as follows. We generate a separate HDF5 file per agent type, using
the naming convention AgentType.h5. To account for the two remaining data
dimensions of sets and runs, we specify the data groups inside the HDF5 file
using set/run combinations as follows: set_s_run_r (s = 1, ..., S and r =
1, ..., R).

Summarizing, the simulation data is stored in a HDF5 container file (*.h5,
*.hdf5) using a hierarchical data format. Currently, these HDF5 files are struc-
tured as follows:

• Each agent type is contained in a separate HDF5 file, with the same name
as the agent type (e.g., Firm.h5, Bank.h5, etc.).

• Inside each HDF5 file there is a Group (similar to a folder structure) for
each combination of set and run, using the naming convention set_s_
run_r.

• Inside each Group there is a Dataset which contains a pandas Panel,
which is a datastructure that consists of items, major and minor axes.

• the Python pandas Panel is written to the HDF5 file with the PyTables
module of Python, which uses a write-once policy (no appending).

The HDF5 file structure described above can be created from SQLite database
files that contain the results from set/run combinations by using the data pro-
cessing scripts that are included in the FLAViz package. Alternatively, the
HDF5 file could be created from the XML files directly, but a big disadvantage
of this method is that the entire collection of XML files has to be available on disk
in uncompressed form (very bulky), which could be prohibitive for large-scale
applications. It is also not very resource-friendly, due to its lack in parallelism.
Another option would be to stream the data into the final database file as it
becomes available from the simulations. Unfortunately, however, streaming the
data into an HDF5 file is not possible, due to the write-once feature of the
PyTables module that we have chosen to adopt in the library to write to the
HDF5 file. The reason for this choice is that appending data to an HDF5 file
would require a different write method using the h5py module, which is less
performant than doing it write-once.

80

AgentType.h5
set_s_run_r
set_s_run_r
set_s_run_r

6.3 Analytical Reproducibility

6.3.2 Plotting with FLAViz
To adhere to the general principle that all results of a published paper should be
computationally reproducible given the data from computational experiments,
we should be able to reproduce the plots using various permutations and com-
binations of the data. FLAViz uses three configuration files, through which the
necessary conditions can be set. The configuration files follow the hierarchi-
cal yaml format for clarity and functionality with specific indentation for the
input to be interpreted correctly. For the general plot settings, the yaml file
config.yaml contains settings for selecting the desired sets and runs, or to
specify ranges for the iterations and variables along the major and minor
axes, respectively. It is also possible to perform data transformations of agent
variables, and to select data based on data slicing. For example, select all data
at iteration t = x, or select all data for agent ID = i. Data filtering can also
be performed, in which case the data is filtered based on agent conditions or
variable conditions. For example, filter the selected data on the condition that
the agent variable X has value v. For selecting the plotting styles, the yaml
file plot_config.yaml contains settings to select what kind of features the plot
should contain. Everything related to axes, legends, colours, etc, can be set in
this file, which follows the basic features of matplotlib, which is the standard
plotting library used by Python pandas. Currently, if the user specifies multiple
plots, these are processed one by one. To speed up this process and parallelize
the plotting routine, each plot could be run as a separate sub-process that re-
trieves data from the main data set once it has been read into main memory.
This is left for future development of the FLAViz library.

Example config files As an example, the plot in Fig. 6.1 shows a visual-
ization of data for the agent type "Firm", the variable "price", and is based on
data for 4 sets (selected sets: 10, 13, 16, 17). Each set consists of 20 runs. The
plotting style is specified as using a time series multiple-batch plot, showing
the 20th and 80th percentiles. The construction and generation of this plot is
specified in the following settings in the configuration files.

config.yaml:

plot1:
timeseries:

agent: Firm
analysis: multiple_batch
variables:

var1: [price]
set: [10,13,16,17]
run: [range,[1,20]]
major: [range,[6020,12500,20]]
minor: [range,[1,80]]

81

yaml
config.yaml
plot_config.yaml
matplotlib

6 Visualization of economic agent-based simulations

summary: custom_quantile
quantile_values:

lower_percentile : 0.20
upper_percentile : 0.80

plot_config.yaml:

plot1:
number_plots: one
plot_legend: yes
legend_location: best
xaxis_label: Time
yaxis_label: price
linestyle: solid
marker: None
fill_between: yes
fillcolor: darkgreen

Figure 6.1: Plotting the price time series for data covering 4 sets, each consisting
of 20 runs of 6.500 iterations, and for 80 Firm agents.

82

6.4 Summary and limitations

6.4 Summary and limitations
FLAME simulations with large-scale economic simulation models require high-
performance super-computing (HPC) facilities and generate large datasets that
typically represent a bottleneck from the perspective of both computational
resources and storage requirements.

BigData storage using the HDF5 format (a hierarchical filesystem-like data
format) works well for economic data that consists predominately of time series
data (i.e., numerical, not text data). If needed, more complex storage APIs
representing images and tables can be built using datasets, groups, attributes,
types, dataspaces and property lists. Because the bulk of the data is transformed
into straightforward arrays (the table objects) for processing, the data can be
accessed in a much faster way than with more traditional row-based processing
in an SQL database.

The time performance of the FLAViz Library could probably be reconfig-
ured/refactored to work in a more distributed fashion by optimizing the order
in which the data is post-processed. We can probably speed-up several oper-
ations that now are taking place sequentially. This is a matter of figuring out
what the main loops on the various dimensions of the data (agents, variables,
iterations, etc.) are, and then determine the optimal order in which these loops
should be executed. The items in the loops can then be executed in differ-
ent threads, and it should be investigated whether there are any information
dependencies that need to be resolved between those threads.

Also the storage performance could be optimized. Not all data need to re-
main in memory at all times. Currently, we first read-in all the data into main
memory, then filter it based on conditions, and then process it further.

In simulation science, we deal with very complex data objects with a wide
variety of metadata that require a portable file format without any limits on the
number or size of data objects in the collection. The HDF5 format is a versatile
data model that makes it easier to manage extremely large and complex data
collections with time and storage space optimizations. It also runs on a range
of computational platforms. Some advantages of using the HDF5 format are:

• HDF5 is a Self Describing Format: Each file, group and dataset can
have associated metadata that describes exactly what the data is, viz.,
data types, description, documentation of data ontologies, information
about how the data in the dataset were collected, etc.

• Compressed & Efficient subsetting: The HDF5 format is a com-
pressed format and data size optimization makes the overall file size smaller.
The data slicing feature allows subsets of a dataset to be extracted for pro-
cessing in order to avoid storing the whole dataset in main memory.

• Heterogeneous Data Storage: HDF5 files can store multiple types of
data within the same file as sets of datasets containing heterogeneous data

83

References

types (e.g., both text and numeric data in one dataset)

• Open Format: HDF5 has technical support in many programming lan-
guages and tools, like ’R’, ’Python’ and ’Julia’ due to its open format.

6.5 Conclusion
This paper has described a case study in the area of computational economics
on the computational reproducibility of simulation results. In contrast to other
chapters, we have not aimed at reproducing a particular result published by
the ETACE group. Instead, Conquaire has cooperated with the ETACE group
to implement a generic visualization library called FLAViz, to support the ex-
ploration and visualization of simulation data. The pipeline implemented in
FLAViz makes use of the HDF5 format, which has turned out to be a very
flexible and versatile data format.

FLAViz supports the analytical reproducibility of research data in two ways,
both ex-ante and ex-post publication. Firstly, if researchers store their simu-
lation data on an ongoing basis during a research project, and FLAViz config-
uration files are also available, then an automatic plot generation tool can be
used in the sense of Continuous Integration of research data. This helps a lot
in increasing the trustworthiness and credibility in the results, as well as giving
us the ability to track how the results are changing over time as the research
project progresses. Secondly, if pre-generated simulation data is available from
a published paper from the original authors, then the FLAViz toolbox could be
directly applied to this dataset to reproduce the plots of the published paper.
These can then be used to check the validity of the claims made by the original
authors in their paper. In these two important ways, toolboxes such as FLAViz
can be regarded as helping us to ensure the analytical reproducibility of research
data.

Acknowledgements
We would like to thank Krishna Devkota for implementing the FLAViz library
and Fabian Hermann for documentation and bug fixing.

References
[1] Leigh Tesfatsion and Kenneth Judd, editors. Handbook on Agent-Based

Computational Economics, volume 2. North-Holland: Elsevier,
Amsterdam, 2006.

84

References

[2] Cars H. Hommes and Blake LeBaron, editors. Handbook on Agent-Based
Computational Economics, volume 4. North-Holland: Elsevier,
Amsterdam, 2018.

[3] Herbert Dawid, Simon Gemkow, Philipp Harting, Sander van der Hoog,
and Michael Neugart. Agent-Based Macroeconomic Modeling and Policy
Analysis: The Eurace@Unibi Model. In S-H Chen, Kaboudan M., and
Y.-R. Du, editors, The Oxford Handbook of Computational Economics and
Finance, chapter 17, pages 490–519. Oxford University Press, 2018.

[4] Herbert Dawid, Philipp Harting, Sander van der Hoog, and Michael
Neugart. A Heterogeneous Agent Macroeconomic Model for Policy
Evaluation: Improving Transparency and Reproducibility. Journal of
Evolutionary Economics, 29:467–538, 2019.

[5] Mariam Kiran. FLAME Flexible Large-sale Agent-based Modelling
Environment User Manual. University of Sheffield, 2010.

[6] Simon Coakley and Mariam Kiran. FLAME User Manual. University of
Sheffield and Rutherford Appleton Laboratories, STFC, 2012.

[7] Simon Coakley, Marian Gheorghe, Mike Holcombe, Shawn-Lee Chin,
David Worth, and Christopher Greenough. Exploitation of high
performance computing in the FLAME agent-based simulation
framework. In Proceedings of the 14th International Conference on High
Performance Computing and Communications, pages 538–545, 2012.

[8] Paul Richmond. FLAME GPU Technical Report and User Guide.
Technical Report CS-11-03, 2011.

[9] Simon Coakley, Paul Richmond, Marian Gheorghe, Shawn-Lee Chin,
David Worth, Mike Holcombe, and Christopher Greenough. Large-Scale
Simulations with FLAME. In Joanna Kołodziej, Luís Correia, and José
Manuel Molina, editors, Intelligent Agents in Data-intensive Computing,
Studies in Big Data Series, pages 123–142, 2016.

[10] Mariam Kiran. X-Machines for Agent-Based Modeling: FLAME
Perspectives. Computer and Information Science Series. Chapman &
Hall/CRC Press, Boca Raton, Fla., 2017.

85

7 Reproducing experiments on
early verb understanding in
infants

Vidya Ayer1, Christian Witte1, Philipp Cimiano1, Katharina J. Rohlfing2, Iris Nomikou3

1 – Semantic Computing Group Faculty of Technology & Cognitive Interaction
Technology Excellence Center (CITEC), Bielefeld University

2 – Psycholinguistics, Faculty of Arts and Technology, Paderborn University
3 – Department of Psychology, University of Portsmouth

Abstract
In this chapter, we describe an effort to reproduce the main result of the paper
“Evidence for early comprehension of action verbs” by Nomikou et al. [1]. The
study aimed at investigating the ability of 9-and-10-month old infants in under-
standing verbs. The study in question followed a so called preferential looking
paradigm consisting in investigating the ability to understand the meaning of
words by testing whether infants look longer at a related stimulus compared
to an unrelated stimulus. As a method to track looking time proportions to
the target stimulus, an eye tracker was used. Data were collected from 9- to
10-month old infants who were presented with paired-picture trials while lis-
tening to corresponding verbs. The infants saw two images on the screen side
by side, each one from a different context category (CARE or PLAY). One of
the pictures was related to the verb in question, while the other image was a
confounder. The percentage of time that infants looked at the matching pic-
ture, before and after having heard the verb, was recorded across participants,
computing a difference score. In case the difference was positive, this was taken
as evidence of understanding the meaning of the verbs. The study could only
find a positive difference for 10-month olds but not for 9-month olds, showing
that the ability to understand the verb in question emerges between 9 and 10
months. In close interaction with the authors of the original paper we rewrote
the analysis scripts which were used by the authors to refine the results during
a second iteration of reviewing in response to requests by reviewers. Overall,
we could reproduce the central results of the study. This case represents a case
of full analytical reproducibility.

87

7 Reproducing experiments on early verb understanding in infants

The data and scripts for the paper described above can be found at https:
//gitlab.ub.uni-bielefeld.de/conquaire/psycholinguistics.

Keywords
Psycholinguistics, Language learning, Verb Understanding, Infants, Eye Track-
ing

7.1 Introduction
The Psycholinguistics research group at Paderborn University is concerned with
investigating language development in young children. Its main research interest
is how children acquire the meaning of words to reveal links between language
and cognitive development and to analyze early meanings as building blocks for
conceptual and linguistic thinking.

There is a debate on the question whether nouns are acquired before verbs.
In contrast to nouns, which can be easily singled out by holding an object or
pointing to it, verbs are relational since they combine agents and their actions
with some objects. In consequence, verbs have a more complex semantic struc-
ture. However, it is also possible that early use of nouns is cumulative as it also
binds together situational elements. For example, an infant might say ball but
relate this noun to the action of rolling [2].

In the study reproduced as part of this work titled ‘Evidence for early com-
prehension of action verbs’ [1], the research group studied 9- and 10-month-old
infants’ understanding of verbs using a technique similar to the one used by
Bergelson et al. [3], except that verbs were used in place of nouns. Following
the conceptual development approach proposed by Mandler [4], the hypothesis
was that infants must conceptualize situated actions early in their development
to get concepts about objects off the ground. Early concepts, thus, will entail
the role of objects, i.e., what the objects do and what is done to them [4], which
provides a solid basis for the acquisition of verbs. Thus, the hypothesis was
that children at a younger age, as found so far, will understand verbs that are
drawn from their everyday life contexts. Instead of using dynamic pictures that
refer to verbs, static object pairs were used and parents were asked to utter the
relevant verbs.

In this work, we aim at reproducing the main result of the paper mentioned
above, i.e. that demonstrated early verb understanding by showing that infants
tend to look longer at the correct target picture once their parent uttered the
corresponding verb. The study found a developmental difference between 9- and
10-month olds though: 9-month-olds were not able to reliably demonstrate verb
understanding. With respect to early semantic development, as visualized by
the target looking times, the data suggests that on hearing a verb, the infants
can associate it to object stimuli related to the verb. This is in line with the

88

https://gitlab.ub.uni-bielefeld.de/conquaire/psycholinguistics
https://gitlab.ub.uni-bielefeld.de/conquaire/psycholinguistics

7.2 Methods

researchers argument claiming that action concepts can be evoked in object per-
ception. Furthermore, the results complement research proposing that children
learn language by building relations and drawing from rich visual concepts [5].

7.2 Methods

Here, we describe the methods used for the experimental settings in the original
experiment.

7.2.1 Experimental settings and data acquisition pipeline

The study in question followed a so called preferential looking paradigm consist-
ing in investigating the ability to understand the meaning of words by testing
whether infants look longer at a related stimulus compared to an unrelated
stimulus. As method to measure target looking times, an eye tracker was used.
Data were collected from 9- to 10-month old infants who were presented with
paired-picture trials. The infants saw two images on the screen side by side, each
one from a different context category (CARE or PLAY). One of the pictures
was related to the verb in question, while the other image was a confounder.
These images were shown for a total of 9.5 seconds. Within the first 3s of each
trial, parents heard a beep before they heard a sentence that they were asked
to reproduce. Then, a second beep prompting them to begin repeating the sen-
tence. While the parent was saying the target verb, the experimenter pressed a
key on a wireless keyboard to mark the precise moment at which the verb was
perceivable to the infant. This mark was logged into the data. An attention
getter, i.e. a 3s clip featuring colorful animated shapes accompanied by different
sounds, appeared after each trial. The experiment lasted 5 minutes. The entire
visit of the infants to the lab lasted 45 minutes.

Because of individual differences in the production of the target phrase by
the parent, the post-target analysis window extended from 367 to 4.500 ms
after the onset of the spoken target word. To calculate the onset of the target
word, the recorded time-stamp of the keyboard key press was used. A Python
script was used to split the looking times into two periods: before and after the
uttered verb. The dependent variable, namely, word comprehension, was thus
operationalized by a difference between the proportion of target looking upon
hearing the target word (367 to 4.500 ms post keyboard keypress) minus the
proportion of target looking before hearing the word (from when pictures were
displayed until just before the keyboard keypress). This way, a difference value
was obtained that could be positive or negative. If the value was positive, it
indicated increased looking at the target object by the infants after hearing the
verb, thus demonstrating their understanding of the target word.

89

7 Reproducing experiments on early verb understanding in infants

7.2.2 Methods applied to analyze the data
The raw eye-tracking data were filtered using python scripts according to pre-
defined areas of interest (AOIs). Then total gaze durations at the AOIs were
calculated and subsequently the script took into account a specific timestamp
generated by a key press of the keyboard and calculated the gaze durations
before and after the keypress as well as the proportions of gaze at the target
or distractor AOIs before and/or after the keypress. These calculations were
formatted in a table and used for further calculations. These included before-
after difference scores for each of the two presented instances of each pair of
stimuli, with the two difference scores being subsequently averaged. These dif-
ference scores were then used in a series of statistical tests: t-tests, ANOVAs
and binomial tests. For details, the reader is referred to the original publication
[1].

In a subsequent review round of the submitted manuscript, various versions of
the initial script were produced in collaboration with the Conquaire project to
repeat the analysis using a fixed time window for the inclusion/exclusion of data
points. This was requested by the paper reviewers. To address this comment,
three new versions of the scripts were created with varying window durations,
the changes incurred were assessed by comparing the results of a sample of data
files and the usage of the script with a 4500ms time-window was selected to
re-run the analysis and all the statistical tests.

During the creation and implementation of the scripts, both initially and in
the second round of analysis, there was intensive collaboration between members
from the psycholinguistics group and the Conquaire team. This was necessary
to check for errors in the scripts. For this, random manual calculations were
performed on the raw data and then compared with the results produced by the
scripts to test for accuracy. In some cases, multiple iterations were needed until
the systematicity in the discrepancy between script and manually calculated
results was discovered and corrected.

7.2.3 Main Results
Using the process detailed above, the scripts produced tables of variables ready
for statistical analysis. A mixed, between, and within-subjects ANOVA was used
with AGE (9 months vs. 10 months old) as the between-subjects variable, and
TIME (before vs. after the word was spoken) as the within-subjects variable.
There was a significant AGE x TIME interaction effect F (1, 46) = 5.687, p <
.021, η = .107. Since an independent-samples t-test indicated significant dif-
ferences between the 9 and 10 months olds, the data were treated in separate
groups. Additionally, a linear regression was calculated with the increase in look-
ing times at the target as the dependent variable and infants’ age in days as an
independent variable. The regression model did not attain significance, suggest-
ing that the change in performance was not linear, F (1, 46) = 2.23, p = 0.142.

90

7.3 Analytical Reproducibility

7.3 Analytical Reproducibility
Computational reproducibility experiments were conducted with the Psycholin-
guistics research group at Paderborn University at the paper publishing stage
to modify the data analysis scripts and produce results, then implement visu-
alizations with Pandas and matplotlib that was later stored in GitLab under
continuous integration. To facilitate team-collaboration on porting and refac-
toring the code, the python scripts and extracted (TSV format) files for data
analysis are available at the following Git repository: https://gitlab.ub.
uni-bielefeld.de/conquaire/psycholinguistics.

Primary Data

The data in the git repository include the images seen by the infants on the
screen, the recordings heard by the parents, the eye-tracking data and the 3s at-
tention getter clip featuring colorful animated shapes moving to different sounds
that appeared after each trial. Excel sheets with information identifying par-
ticipants were not uploaded to the GIT repository due to privacy protection
issues.

Analysis Data

The python scripts and extracted data (TSV) files for analysis are stored in the
data_output folder on gitlab. The research data structure (in the TSV and
Excel) files are described below: The TSV files are stored in the "data_output"
folder within the subdirectory folders, viz. "tables_3500", "tables_4000" and
"tables_4500" for the three time windows. For example, to protect the iden-
tity and ensure the infant participants’ privacy, filenames are anonymized and
named as "VP20_output.tsv" etc.. In each file, the various columns such as
"Left_before", "Left_After", "Right_Before", "Right_After", "Fixation_Direction",
etc.., contain the measurements for each participant (VP). Within the same TSV
document, starting from approximately line 26, another header line contains a
new set of measurements titled: Before, After, Bef_Aft_Tar, Target, Dis (be-
fore), Dis (after), Bef_Aft_Dis, T-D, T-D(B-A).

7.3.1 Data Workflow Lifecycle
The research data workflow lifecycle diagram in Figure 7.1 explains the sequence
of the research data processing and tasks for this project. The research project
used Free & Open Source Software (FOSS), which increased the prospect of
cross-platform availability of processing tools as Python programming language
and visualization packages (like Pandas, Matplotlib) are freely available for
multiple platforms.

The old data analysis scripts, written in Python version 2.x, were ported
to version 3.6 for program maintenance due to end-of-life for Python version

91

https://gitlab.ub.uni-bielefeld.de/conquaire/psycholinguistics
https://gitlab.ub.uni-bielefeld.de/conquaire/psycholinguistics

7 Reproducing experiments on early verb understanding in infants

Conduct Verb Experiment

Raw Verb data, *.avi files

Collect and store gaze data

for AOI in *.tsv files

Analyse cleaned raw data files

Calculate looking

direction over time for Verbs

Store results in Excel Work Book Sheets

Plot Graphs

Gitlab CI

End Psychology researchFigure 7.1: Data Workflow

2.x. Refactoring the old scripts from a complex mass of conditional loops,
into a simplified modular callable program, was undertaken to ease program
maintenance.

The main restructuring changes that were introduced are:

• Most conditional loops were refactored into modular methods. Breaking
the code apart into more logical components creates semantic units that
are clear and reusable.

• A dict to store the vertical area of interest for each avi file.

• Introduced a class that acts as a wrapper for the dict (which stores the
result of one avi file (AOI)) and other methods that can handle the logical
componentization.

• A sliding time window to compensate for missing data points - this short
time window allows searching for the next fixation data. Three time win-
dows: 3.5ms, 4.0ms and 4.5ms (experimentLength = 3500/4000/4500)
were used.

Two Excel sheets stored the analysis results results_simple_difference_score.xlsx
and results_simple_target_distractor.xlsx while the analysis data is stored
in tab-separated value (TSV) files.

92

7.3 Analytical Reproducibility

7.3.2 Reproducibility Results
Once the analysis script was ported to Python-3.6, it was possible to analyze
the data and reproduce the results described in the paper as described in section
7.2.3 above. Figure 7.2 shows the percentage of looking times to the matching
image for the different verbs, averaged across all subjects including all ages
(both 9-month and 10-month olds). The verbs in question were: ‘bauen’ (engl.
build), ‘fahren’ (engl. ride), ‘lesen’ (engl. read), ‘sitzen’ (engl. sit), ‘anziehen’
(engl. dress), ‘baden’ (engl. bathe), essen (engl. eat), ‘schlafen’ (engl. sleep).
Figure 7.3 shows the percentage of looking times to the matching image for
the different verbs, averaged across all subjects for 9-month old infants only;
Figure 7.4 shows the corresponding average looking times for 10-month old
infants. Finally, Figure 7.5 shows the percentage of looking times averaged over
all verbs and subjects, comparing the average for 9-month old infants vs. 10-
month old infants. Within the 9-month-old infant group, on average, the infants
spent 51.1% (SD = .056, MIN = 36.7%, MAX = 63%) of their looking time on
the target object before the target word was spoken and 49.6% (SD = .063,
MIN = 35.4%, MAX = 62%) of their looking time on the target object after
the word had been spoken. Within the 10-month-old infant group, on average,
these infants spent 43.4% (SD = .095, MIN = 25.9%, MAX = 60.1%) of their
looking time on the target object before the target word was spoken and 49.6%
(SD = .081, MIN = 31%, MAX = 64.1%) of their looking time on the target
object after the word had been spoken. We could thus reproduce the main
results of the original paper, showing a positive difference between percentage
of looking time to target image after the corresponding verb was spoken minus
the proportional looking time to the target before the verb was spoken for 10-
month olds. For 9-month olds, this difference was on average negative, showing
a lack of verb understanding.

Figure 7.2: Looking times in percentage at matching image before and after
utterance for all eight verbs averaged over all subjects (both 9-month
and 10-month olds); Right: Difference in looking times for both 9
and 10-month olds

93

7 Reproducing experiments on early verb understanding in infants

Figure 7.3: Left: Looking times in percentage at matching image before and
after utterance for all eight verbs averaged over all subjects (9-month
olds); Right: Difference in looking times (After-Before) for 9-month
olds

Figure 7.4: Left: Looking times in percentage at matching image before and
after utterance for all eight verbs averaged over all subjects (10-
month olds); Right: Difference in looking times (After-Before) for
10-month olds

94

7.4 Summary of computational reproduction experiment

Figure 7.5: Average of percentages of looking times to target averaged over all
verbs and subjects comparing 9-month and 10-month infants

7.4 Summary of computational reproduction
experiment

In this reproducibility experiment, we were able to reproduce the main result
of the study published by Nomikou et al. [1]. This was possible as the data
and Pyhton scrips used to analyze the data were available. We engaged in this
reproducibility experiment while the paper was in a second round of reviewing
and considered the comments of the reviewers to adapt the Python program to
allow for different time windows in the analysis. Overall, the results could be
reproduced independently. The data and the Python script are available in a
git repository for re-use and validation by third parties. This represents a case
of full analytical reproducibility. Both the derived data capturing the looking
times of each subject as well as the script for analysing the data are available
in the Git repository, therefore supporting reproduction.

7.5 Conclusion
In this paper, we describe the successful reproduction of the computational anal-
ysis phase of a study investigating the early understanding of verbs by 9-month
and 10-month-old infants. The reproduced study adopted a preferential looking
time paradigm and conducted a so called paired-picture trial in which a verb
under investigation was semantically associated to one of two pictures shown,
the target picture, and another picture acting as a so called confounder. Using
an eye tracker, the difference between proportion of looking times at the match-
ing image before the verb was spoken compared to looking times after the verb
was spoken was measured. As a result, the study showed positive differences for
10-month olds, which was operationalized as a measure of early understanding
of the verbs. For 9-month olds, in contrast, the study was not able to reliably

95

References

demonstrate verb understanding. The analytical pipeline that was used to gen-
erate results for publication was developed jointly between researchers of the
Psycholinguistics group in Paderborn and researchers working in the Conquaire
project. The derived data from the experiments (looking times) as well as the
Python script are available for further re-use and correspond exactly to the ver-
sion that was used to generate the published results. In this case, we thus have
an example of full analytical reproducibility, with the analyses being repeatable
by others as a result of the Conquaire project.

Acknowledgments
We would like to acknowledge the support of Lukas Biermann and Fabian Her-
rmann for helping with implementation of the scripts and data analysis.

References
[1] Iris Nomikou, Katharina J. Rohlfing, Philipp Cimiano, and Jean M.

Mandler. Evidence for early comprehension of action verbs. Language
Learning and Development, pages 64–74, 9 2018.

[2] Katherine Nelson. Concept, word, and sentence: Interrelations in
acquisition and development. Psychological review, 81(4):267–285, 1974.

[3] Elika Bergelson and Daniel Swingley. At 6–9 months, human infants
know the meanings of many common nouns. Proceedings of the National
Academy of Sciences, 109(9):3253–3258, 2012.

[4] Jean M Mandler. On the spatial foundations of the conceptual system
and its enrichment. Cognitive science, 36(3):421–451, 2012.

[5] Iris Nomikou, Malte Schilling, Vivien Heller, and Katharina J. Rohlfing.
Language-at all times. Interaction Studies, 17(1):120–145, 2016.

96

8 Reproducing an experiment
in automatic disfluency
detection

Frank Grimm1, David Schlangen2, Julian Hough2, Philipp Cimiano1

1 – Semantic Computing Group, Faculty of Technology & Cognitive Interaction
Technology Excellence Center (CITEC), Bielefeld University

2 – Dialogue Systems Group, Faculty of Linguistics & Cognitive Interaction Tech-
nology Excellence Center (CITEC), Bielefeld University

Abstract
In this chapter, we describe an effort to reproduce the main results of the pub-
lished paper “Joint, Incremental Disfluency Detection and Utterance Segmen-
tation from Speech” [1], published as part of the proceedings of the “European
Chapter of the Association for Computational Linguistics” (EACL) in 2017. The
paper focuses on the task of disfluency detection and utterance segmentation
and proposes a simple deep learning system that processes dialogue transcrip-
tions and Automatic Speech Recognition (ASR) output. For this purpose, the
Dialogue Systems Group (DSG) at Bielefeld University developed a library that
relies on a data model for live ASR data that combines timing and textual
information. It utilizes a refined text corpus of open data to demonstrate the
feasibility of the system for simultaneously detecting disfluencies and segmenting
the individual utterances for use in conversational systems and similar speech re-
lated tasks. The code and data for this reproducibility experiment are available
at https://gitlab.ub.uni-bielefeld.de/conquaire/deep_disfluency.

Keywords
Linguistics, Speech Recognition, Python, Machine learning, LSTM, HMM, RNN,
NLTK, Theano, Keras

8.1 Introduction
The Dialogue Systems Group at Bielefeld University, located at the Faculty of
Linguistics and Literary Studies and the Cluster of Excellence Cognitive In-

97

https://gitlab.ub.uni-bielefeld.de/conquaire/deep_disfluency

8 Reproducing an experiment in automatic disfluency detection

teraction Technology (CITEC), studies artificial conversational systems. The
deep learning based disfluency detection system presented in their paper at the
International Conference of the European Chapter of the Association for Com-
putational Linguistics (EACL) aims to improve existing solutions in the field
of psychiatric health care delivery by introducing the capability to work on live
data. This can facilitate the detection of word repairs for human conversational
partners and improve turn taking during dialogues. While currently established
systems might make use of disfluency markers in text and segment dialogues into
individual utterances already, this is often restricted to processing data offline.
As such, a new artificial dialogue system could for example be employed during
interview sessions in order to ensure that protocols are followed. They can also
augment and assist the human interviewer, since artificial conversational agents
have been shown to exhibit many different markers that can be interpreted as
psychological distress, such as filled pause or speech rates, as well as other tem-
poral, utterance, and turn-related interactional features [2]. In offline processes,
analysing transcripts of such sessions today is often costly and frequently relies
on a disconnected utterance segmentation process. In the paper ‘Joint, Incre-
mental Disfluency Detection and Utterance Segmentation from Speech’ [1], a
more cost-effective process is developed, commencing with directly processing
speech data and working with online data as it incrementally becomes available
during a conversation. The authors evaluate the full process through multi-
ple metrics to capture how each subtask performs as joint or separate models,
in online or offline settings. The specific research objective was to investigate
how well a joint deep learning model for incremental disfluency detection and
utterance segmentation performs on transcripts and ASR output. The for-
mer extends existing work on the pre-segmented utterances of the Switchboard
(SwDA) corpus 1. The latter uses an external ASR system (IBM Watson) to
incrementally process acoustic data and, thus far, could not achieve comparable
performance. While recent advances, particularly regarding lowered Word Error
Rates (WER), make hypotheses generation through ASR much more reliable,
they traditionally lacked similarly fine-grained annotations on different disflu-
ency types as they were applied to transcripts. The paper in question defines
the tasks of (incremental) disfluency detection and utterance segmentation, as
well as the joint model. The authors discuss reasonable constraints and develop
two tagsets a) simple and b) complex for different complexities of disfluency
types. Three explicit research questions are subsequently developed:

• Q1: Given the interaction between the two tasks, can a system which per-
forms both jointly help to improve equivalent systems doing the individual
tasks?

• Q2: Given the incremental availability of word timings from state-of-the-
art ASR, to what extent can word timing data increase performance of

1https://github.com/julianhough/swda

98

https://github.com/julianhough/swda

8.2 Methods

either task?

• Q3: To what extent is it possible to achieve a good online accuracy vs.
final accuracy trade-off in a live, incremental, system?

In order to address these questions, the authors of the paper present two deep
learning architectures for the technical task of incremental decoding for live
predictions, namely Elman Recurrent Neural Network (RNN) and Long Short-
Term Memory (LSTM) based networks. Their experimental protocol evaluates
both models in separate and joint task settings to assess whether they can exploit
common constraints. The system demonstrates competitive results on different
subtasks, verifying its suitability and potential to be used within conversational
agents in the domain of psychiatric health.

The research experiment utilizes several machine and deep learning techniques
to implement an incremental disfluency detection and utterance segmentation
pipeline. Since the live audio recordings used for parts of the original experiment
were not available to the Conquaire reproducibility experiment due to licensing,
we focused on their tagging system in general and worked with the data that
were readily available to reevaluate the published models. All considerations
within this chapter refer to the Deep Disfluency framework as presented in the
git commit identified by the hashcode 4c57a19 2.

8.2 Methods
Speech recognition (SR), also known as automatic speech recognition (ASR),
computer speech recognition or speech to text (STT), is a sub-field within com-
putational linguistics that develops methods and technologies to automate the
recognition and translation of spoken language into text by machines.

Human speech patterns vary between individuals and contain complex signals
such as nuances and diversity in vocal patterns, aspects which adult humans
take into account almost automatically. A machine on the other hand has to
explicitly mitigate these aspects in order to gain a more thorough understanding
of speech signals, even more so in a conversational context.

In order to suitably train a modern, reliable, speech recognition system, many
machine learning algorithms and techniques work in tandem. Since fully training
a STT system end-to-end would require large amounts of raw and annotated
audio data in various environments, the authors rely on a suitable external
system to incrementally generate textual input sequences from audio recordings
and focus on the specific aspects of disfluent terms as discussed above. Here, we
describe the methods used for these experiments in the Deep Disfluency library
and subsequently discuss the reproduction of their results.

2available at https://github.com/d<sg-bielefeld/deep_disfluency/ (4c57a19)

99

https://github.com/d<sg-bielefeld/deep_disfluency/
https://github.com/dsg-bielefeld/deep_disfluency/commit/4c57a194433af9601ebef0e4c9a451cce4c06252

8 Reproducing an experiment in automatic disfluency detection

Model Training

The speech models are trained on millions of pre-translated words and phrases
from corpora against a live ASR system. For incremental ASR, a free trial
version of IBM’s Watson3 Speech-To-Text (STT) service was used, which ac-
cording to the authors works well on noisy input data and also retains some
useful artifacts such as disfluency markers (e.g. filler terms like ‘uh‘).

The Deep Disfluency system uses the following input features:

• Words in a backwards window from the most recent word (for transcribed
and ASR data, the lack of lookahead capabilities simulates the live influx
of speech information).

• Durations of words in the current window, either from manually tran-
scribed data or automatically generated by the ASR system.

• Part-Of-Speech (POS) tags for words in current window. These are either
extracted from the transcribed corpus or generated through a Conditional
Random Field (CRF) based tagger that was optimized on a domain spe-
cific training corpus.

The models of the Deep Disfluency system extract these features in two main
experimental settings: a) on data generated for Switchboard audio recordings
through an external ASR system and b) on manually transcribed data from the
commonly used and well-annotated Switchboard corpus (SWdA).

For regular usage, the models trained on these corpora can be loaded and
are subsequently used to apply the full tagging pipeline to arbitrary input se-
quences. The pipeline, described in more detail below, consists of the extraction
of features as listed above, sequence to sequence tagging through one of the deep
neural network architectures and consolidating their output with timing infor-
mation through a Hidden Markov Model (HMM) to produce a final set of tags
for each token in the sequence.

Taggers

The Deep Disfluency tagger accepts input sequences (and optionally, external
POS tags and word timings) word-by-word and outputs XML-style tags for each
word, symbolising disfluencies in terms of complex repairs or edit terms. The
full tagset consists of:

‘<e/>‘ an edit term word, not necessarily inside a repair struc-
ture

‘<rms id=N/>‘ reparandum start word for repair with ID number N

3https://www.ibm.com/watson/developercloud/speech-to-text.htmlWatson

100

https://www.ibm.com/watson/developercloud/speech-to-text.html
https://www.ibm.com/watson/developercloud/speech-to-text.html

8.2 Methods

‘<rm id=N/>‘ mid-reparandum word for repair N
‘<i id=N/>‘ interregnum word for repair N
‘<rps id=N/>‘ repair onset word for repair N (where N is normally the

0-indexed position in the sequence)
‘<rp id=N/>‘ mid-repair word for repair N
‘<rpn id=N/>‘ repair end word for substitution or repetition repair N
‘<rpndel id=N/>‘ repair end word for a delete repair N

Every detected repair (and gold standard entry) will exhibit at least the rms,
rpS and rpn/rpndel tags, others might be omitted.

Two example outputs on Switchboard utterances are shown below, where
<f/> is the default tag for a fluent word:

4617:A:15:h 1 uh UH <e/>
2 i PRP <f/>
3 dont VBPRB <f/>
4 know VB <f/>

4617:A:16:sd 1 the DT <rms id="1"/>
2 the DT <rps id="1"/><rpn id="1"/>
3 things NNS <f/>
4 they PRP <f/>
5 asked VBD <f/>
6 to TO <f/>
7 talk VB <f/>
8 about IN <f/>
9 were VBD <f/>
10 whether IN <rms id="12"/>
11 the DT <rm id="12"/>
12 uh UH <i id="12"/><e/>
13 whether IN <rps id="12"/>
14 the DT <rpn id="12"/>
15 judge NN <f/>
16 should MD <f/>
17 be VB <f/>
18 the DT <f/>
19 one NN <f/>
20 that WDT <f/>
21 does VBZ <f/>
22 the DT <f/>
23 uh UH <e/>
24 sentencing NN <f/>

101

8 Reproducing an experiment in automatic disfluency detection

The authors compare Elman Recurrent Neural Networks (RNN) and Long
Short-Term Memory (LSTM) network architectures to train the essential disflu-
ency detection and prediction component of the system. The machine learning
library Theano is used to implement both networks.

While both architectures are recurrent in nature, LSTMs present a special
case of the RNN architecture. Both often exhibit distinct behaviour on dif-
ferent tasks and it is apriori unclear which model would outperform the other.
Albeit their similar foundation, the main difference lies in the scope of previously
seen information each architecture can take into consideration when predicting
the next output. RNNs perform best when the information they require for a
prediction is available relatively close to the current input, whereas LSTMs can
learn to take information into account that is potentially further away.

All neural network models in the disfluency experiments are trained on iden-
tical training sets (within the given experiment), either up to a maximum of 50
epochs or until their parameters converge.

For POS tagging, the system uses the NLTK CRF tagger, which in turn
utilizes the crfsuite package4, trained with Limited-memory BFGS (L-BFGS)
gradient descent optimization on the training set of the SWdA corpus and eval-
uated in terms of accuracy against its test split.

8.3 Analytical Reproducibility
In this section, we describe the implementation of the Deep Disfluency library,
a software library that is designed for the analysis of voice and textual data.
The DSG group were aware of our efforts and interested in the computational
reproducibility of their research publications. They made efforts to open up
their research by using open toolkits and publishing code and data to a public
git repository. The authors publish the library under the permissive free MIT
license through an organisational account on GitHub. The project repository
contains both the source code for their, Python-based libre, software stack as
well as a great deal of raw and intermittent data to reproduce various experi-
ments.

Deep Disfluency

The Deep Disfluency code is packaged and available on a GitHub repository
with documentation outlining data availability and the installation process. End
users can install the system as a regular Python package via pip, the Python
installer. The package can be obtained from the public Python Package In-
dex (PyPI, using pip install deep_disfluency) or locally installed from source using
setuptools (pip install setuptools). At the time of writing, the project depends
on Python 2.7 and conveniently documents all packages that were used for

4https://pypi.python.org/pypi/python-crfsuite

102

https://pypi.python.org/pypi/python-crfsuite

8.3 Analytical Reproducibility

development in a virtualenv and pip compatible ‘requirements.txt‘ file. This
mechanism is used to manage dependencies and retains the exact version of
all external library dependencies (pip install −r requirements.txt). Some of the
Theano related requirements, especially for GPU enabled computation, are eas-
ier installed through the alternative repositories offered by conda, which is part
of the anaconda platform for data science with Python5. Corpus data are either
bundled with the package or can automatically be downloaded via an instal-
lation script that pulls the data and stores it locally. Internally, the structure
of the disfluency system is straightforward and clearly separated into different
sections:

• ASR, for interacting with the ASR system,

• Corpus, for handling different corpora,

• data, containing raw data (if allowed by the respective license), as well as
intermittent results,

• experiments, for reproducing individual experiments and analysis,

• tagger, containing the main deep learning model implementation in
‘tagger/deep_tagger.py‘, and

• decoder, where a Hidden Markov Model (HMM) is implemented that com-
bines timing information and outputs from the network model in addition
to enforcing some model constraints on the output sequence.

Other auxiliary parts of the system are analogouslyresponsible for one specific
subtask only. After the package and its requirements have been installed, the
documentation within the repository leads users to either try out a demonstra-
tion code or follow the instructions to reproduce individual experiments the
system was previously used for. The latter can be used to reevaluate the ex-
periments using RNN and LSTM models, either utilizing the pretrained models
provided by the authors or training the full system from scratch. As outlined
in figure 3 of the original paper, the system uses Viterbi decoding on a HMM
to enforce some constraints on the final output sequence and include timing
information from the transcribed corpus and ASR systems. As a crucial input
feature, a part-of-speech (POS) tagger for the system was trained on in-domain
Switchboard data. The implementation is based on NLTK and the resulting
Conditional Random Field (CRF) model is packaged alongside the library.

Many parts of the system are modular and provide sensible defaults, e.g. if no
POS tagger is specified, the library will load the default CRF tagger trained on
Switchboard data. This allows end users to easily apply the disfluency detection
on their own input sequences. The general pipeline that is exposed through the
library of the Deep Disfluency system follows figure 3 of the original paper and

5https://www.anaconda.com/

103

https://www.anaconda.com/

8 Reproducing an experiment in automatic disfluency detection

consists of a) input of word embeddings and timing information, b) feature
extraction (e.g. through POS tagging), c) decoding the input through a deep
neural network and, optionally, d) combining timing information with the output
of the neural network in a Hidden Markov model (HMM).

The demonstration code, located in the Jupyter 6 notebook ‘demo/demo.ipynb’,
contains a set of concise examples and offers instructions on how to initialize
the tagger with different configurations and pretrained models. The code also
demonstrates how to tag arbitrary text sequences with the library. Figures 8.1
and 8.2 show the notebook output when the tagger and utterance segmentation
system creates repair tags using RNN and LSTM configurations.

Figure 8.1: Tagger output in the Deep Disfluency demo.ipynb file

Software Toolkit and File Formats

The authors make use of a Free and Open Source Software (FOSS) based Python
stack for development consisting of different NLP libraries, like NLTK; with
machine learning libraries like Theano (now defunct) for deep learning. The
library is currently implemented as a Python package targeting Python 2.7
environments, although a Python 3 port seems to be available. Proper packaging
provides some metadata for the code itself and allows end users to install the
full library, along with all dependencies, through convenient and well accepted
mechanisms.

6https://jupyter.org/

104

https://jupyter.org/

8.3 Analytical Reproducibility

Figure 8.2: Tagger output from the local demo.ipynb file

The Deep Disfluency package collectively specifies 85 direct dependencies,
most of which are standard libraries commonly used in the NLP space. These
dependencies should be readily accessible to all end users. Some relevant exam-
ples are listed below, we address the defunct Theano dependency in more detail
as part of the following section.

• NLTK: natural language processing for the SwDA corpus readers and
CRF implementations

• gensim: vector space modeling and topic modeling toolkit

• Jupyter: Jupyter notebook used to house parts of the analysis and visu-
alisations

• Keras: a neural network library that seems to be used as an initial alter-
native for the Theano LSTM implementation

• matplotlib: a visualisation library

• numpy: common data structures and optimized algorithms for mathe-
matical computing

• pandas: Library for working with complex data representations such as
time series; also includes facilities for data manipulation and analysis

• scikit-learn: a machine learning library

105

8 Reproducing an experiment in automatic disfluency detection

• scipy: scientific and technical computing algorithms such as optimization,
linear algebra, FFT

• Theano: (Defunct) Optimization and evaluation of mathematical expres-
sions (including GPU computation); used for the main neural network
implementations of the paper

The system makes use of a number of file formats, all of them well docu-
mented and accessible through open source frameworks. POS tagged corpora,
ASR outputs and Switchboard transcriptions are stored as structured text files,
comma-separated values (CSV) in the latter case. Most data artifacts created
during experiments, e.g. model weights for the neural network, are serialized
using the underlying libraries to create reusable numpy matrices. The decoder
component forms a notable exception in using the Python package pickle for se-
rialization. This format is specific to Python and guaranteed to offer backwards
compatibility, enabling portable models between different versions. When used
as a library, a convenient Python interface makes all internal file formats trans-
parent and allows users to submit their own pre-segmented tokens for predictions
through code instead.

Technical Challenges and Issues

When reproducing the main results of the paper with the Deep Disfluency li-
brary, we faced the following problems and challenges:

Dependencies: While most of the dependencies of the project are still under
active development and maintenance, two minor issues were noteworthy for
future reproductions:

Theano: The neural network component of the Deep Disfluency library is
based on Theano which has been declared defunct as of 2017, when support
ceased following the 1.0 release. The machine learning library originated from
the Montreal Institute for Learning Algorithms (MILA), University of Mon-
treal, who ended development and ceased implementing new features. The
library shifted to low-maintenance mode, i.e. one should not rely on security
bug fixes or patches being implemented at this point. At the time of this writ-
ing, a few maintainers seem to still actively commit and merge pull requests
(PR) on the GitHub repository. While the deprecation of Theano does not, at
present, hinder executing the code, it presents a potential danger which affects
sustainability and makes it costlier to maintain a dependency to the library.
Subsequent work should possibly make an effort to replace the affected parts
of the system. Another downside that became apparent when installing the
library in an environment where the precompiled dependencies of the anaconda
repositories were unavailable is that some Theano dependencies require rather

106

8.4 Summary of reproducibility experiment

complicated manual setup routines and compilation on the target architecture.

Python 2.7: The Deep Disfluency library is written for Python 2.7 which
has a planned end of life in the year 2020. The library will have to migrate
to Python 3.x and potentially be restructured to accommodate a replacement
for the machine learning library Theano. While such migrations are no trivial
task in terms of time and effort, an open pull request on the GitHub repository
indicates that a port to Python 3 is either under active development or already
completed.

Original Data: The primary raw data used in the disfluency research project
for ASR of live voice recordings was unavailable for the Conquaire reproducibil-
ity experiment. Interested parties could acquire the raw audio dataset through
a subscription to the LDC Catalog7. Since the project retained their output of
the ASR component (in ‘data/asr_results/‘), this does not pose a problem to
reproducibility. The process on retraining the system with the original dataset
is also preserved and well documented. Furthermore, the authors bundled the
corpus of manually transcribed Switchboard data. We focus on this transcrip-
tion based corpus since it is more readily available and can reproduce the main
claims of the original paper.

8.4 Summary of reproducibility experiment
The library was installed from source in an environment equipped with hard-
ware for computation on graphical processing units (GPUs), since the neural
networking components within the Deep Disfluency system are capable of tak-
ing advantage of such hardware. The setup process through the Python pack-
aging mechanisms did not present any major difficulties and, aside from the
environment specific Theano dependency problems described earlier, could be
performed just as detailed in the project documentation.

Since it is an isolated compontent that has large effect on data quality within
the system, we initially verified the reported performance of the CRF used
for POS tagging. The claimed accuracies of 0.915 (overall) and 0.959 (for the
UH label) on the Switchboard test set could be easily and exactly reproduced.
Invoking the feature extraction code8, with the TEST flag set to True, loads
the pretrained model that was used in the original experiments and evaluates it
automatically.

Other parts of the original experiments were then repeated. The authors
fortunately aggregate most of the code for the described experiment in a) a

7https://catalog.ldc.upenn.edu/
8located at ‘deep_disfluency/feature_extraction/POS_Tagging.py ‘

107

https://catalog.ldc.upenn.edu/

8 Reproducing an experiment in automatic disfluency detection

Python program for training and generating evaluation data on the test sets
and b) a Jupyter notebook for evaluation of the data generated by the different
experiments.

All experiments come with a configuration entry of hyper parameters in
the ‘experiment_configs.csv‘ file. This file not only controls the neural net-
work architecture used in an experiment, it also documents important details
such as hidden layer sizes and learning rates. This level of documentation and
parametrization is vastly conducive to replaying experiments the way they were
originally performed.

Since the authors included the best performing epochs of their original train-
ing, we opted to rerun the evaluation on the test set of the SWdA transcription
corpus. Both programs involved in this worked out-of-the-box since the whole
codebase makes an effort to use relative paths when referring to data files or
cached models. This made switching the Jupyter Notebook used for analysis a
matter of pointing a single directory from the original repository data to that
of our new run. We then investigated parts of this output in regards to the
original outcome.

System Frps(per word) Fe(per word) FuttSeg(per word) NIST SU

LSTM +timing 0.693 0.864 0.654 58.401
LSTM 0.665 0.862 0.666 59.714
LSTM (complex)
+timing

0.655 0.909 0.680 56.544

LSTM (complex) 0.655 0.907 0.683 58.231
RNN +timing 0.660 0.839 0.602 68.064
RNN 0.639 0.835 0.607 70.160
RNN (complex)
+timing

0.633 0.904 0.653 59.254

RNN (complex) 0.627 0.903 0.662 60.072

Table 8.4: Reproduction of results in table 2 from the original paper.

While our run of the evaluation did not produce the exact results from the
original paper, they seem to be close and lead to mostly the same conclusions.
The LSTM generally outperforms the RNN architecture as evident in table 8.4,
which reproduces parts of table 2 in the original paper. The reported best
values on the transcript corpus were Fe = 0.918 (LSTM) for repair onsets and
Frps = 0.720 (LSTM+timing) for editing terms, the reproduced ones reach
marginally lower results (∆Fe = −0.09, ∆Frps = −0.027). Notable differences
are that a) the reproduction yields the best Frps score on the LSTM+timing
model with complex tags, whereas the original analysis seems to prefer the
simple tagset with timings, and b) the reproduction seems to exhibit consistently
raised utterance segmentation error rates (NIST SU) when compared to the

108

8.4 Summary of reproducibility experiment

original.
The reproduced results on joint vs. separate tasks are similarly close to the

original, see table 8.5 (consistently higher NIST SU error rates remain visible
here). These data do not necessarily match the conclusions of the original paper,
since the joint task formulation seems to only outperform others in terms of
repair onset detection accuracy (Frps) but fails to do so in terms of NIST SU rate,
accuracy of edit term words (Fe), and utterance boundary detection (FuttSeg).
This might indicate a difference in computing environments rather than wrong
results since the variance of results in our reevaluation seems generally higher.
This could stem from differences in dependencies that we had to setup manually,
or even differences in hardware, especially since GPU acceleration was involved
in the reproduction. We executed the evaluation on a node equipped with nVidia
GeForce GTX 1080 Ti graphic cards, invoked in a cluster environment.

System Frps

(per word)
Fe

(per word)
FuttSeg

(per word)
NIST-SU

LSTM (uttSeg only) - - 0.720 50.222
LSTM (disf only) 0.658 0.912 - -
LSTM (joint task) 0.693 0.864 0.654 58.401

Table 8.5: Reproduction of results in table 3 from the original paper.

Similar small deviations can be observed regarding the re-evaluated data in
table 8.6, this corresponds to table 4 of the original paper and presents the
performance of incremental results over the transcript corpus. Repair onset de-
tection in terms of words follows the findings of the original publication, with
the simple LSTM model outperforming the complex ones. TTDrps measured
over time shows more variance than the original data, after corresponding with
the authors we suspect this is likely to be an error in how the evaluation scripts
aggregate the results. Even with slightly different values, the clear winner in this
metric remains the simple LSTM model. In terms of edit overhead (EO) mea-
sure, the new evaluation follows the same trends between systems as originally
reported. Here, the complex LSTM model that incorporates timing information
clearly outperforms the simpler approaches.

The library and data for this project were generally very accessible. The
researchers managed to provide an intuitive abstraction layer around their com-
plex system of underlying data models. By bundling not only their final models
but also the data used to produce them, they enable other researchers to repro-
duce results and adapt the system for their own corpora. Free and Open Source
Software (FOSS) plays a significant role in reproducing the above results since
it enables others to closely match the original environment in which an exper-
iment was performed. We discuss how these aspects affected the reproduction
and facilitates data-sharing initiatives in the following section.

109

8 Reproducing an experiment in automatic disfluency detection

System TTDrps

(word)
TTDrps

(time in s)
Edit Overhead
(word)

LSTM + timing 0.001 1.151 10.282
LSTM 0.001 0.763 10.735
LSTM (complex)
+timing

0.104 1.093 8.577

LSTM (complex) 0.123 0.855 9.972

Table 8.6: Partial reproduction of the results in table 4 (incremental results for
transcript level systems) from the original paper.

Discussion of the reproducibility experiment

Through the public GitHub repository and requirements documentation within
the Python ecosystem we were able to reproduce most of the software environ-
ment that was used in the original experiments. Some details, such as GPU
acceleration and other hardware dependent factors are subject to continuous
improvement and cannot be reliably reproduced. By using compatible versions,
a best effort was made to get as close as possible to the original setup within the
reproduction setting. All major parts of the analytical pipeline were well doc-
umented and the authors made visible efforts to comply with many principles
of good scientific data management: Findability, Accessibility, Interoperability,
and Reusability (FAIR) 9 [3]. The system can be found in a public GitHub
repository that presents an aggregation of all the necessary source code, docu-
mentation and most of the underlying research data that allows others to use
and analyse the system. By packaging their resulting models and exposing a
concise Application Programming Interface (API) to their library, the project
facilitates re-use of the system as a whole in follow-up and related tasks. The
project bundles sufficient instructions and programs to download all external
data researchers might need in the context of the original experiments. Much of
the raw data that forms the basis of the experiments is widely available. While
licensing prevents the project from including the raw voice recordings used to
create the ASR models, the dataset is obtainable through reliable sources and
the extensive research that has already been performed on it indicates that it
will likely remain accessible in the foreseeable future. The authors also provided
trained models and the intermittent results they used at the time of publishing,
which - in terms of reproducibility - might even be preferable over the raw data
due to possible changes in the external ASR system that was used at the time.
Additional research is encouraged by maintaining a copy of the Switchboard
SWdA corpus itself in a separate repository10, without having to incorporate the
full disfluency system as a dependency. The system allowed us to setup a devel-

9https://www.go-fair.org/fair-principles/
10https://github.com/julianhough/swda

110

https://www.go-fair.org/fair-principles/
 https://github.com/julianhough/swda

8.5 Conclusion

opment environment in short time and enabled us to independently reevaluate
the models that were generated in the original experiments. The documenta-
tion, along with the scientific paper itself, provide sufficient information to gain
familiarity with the codebase. While the project does not currently include an
explicit description of semantic metadata, the library provides enough of an
abstraction to be interoperable with any external data source. This enabled
us to exactly verify parts of the original results, namely the performance of
the CRF used for domain-optimized POS tagging. The full and more complex
experimental settings could so far be partially reproduced through the Deep
Disfluency system and original evaluation scripts, which the authors helpfully
retained and separated by publication. We have been able to recreate similar
results on some of the models, whereas differences in other parts of the results
remain open for further investigation. Since the software used for reproduction
was almost identical to the original, the reproduction did not have any ma-
jor problems to re-use even the intermittent data packaged in the repository.
Possible explanations for these deviations might include differences in hardware
and subsequently different behaviour in terms of numerical processing or similar
incompatibilities.

8.5 Conclusion

This chapter showcased a case study from the field of speech recognition and
computational linguistics. The particular task was to detect disfluency markers
and edit terms in spoken language (or transcriptions). This is used to detect
repairs for vocal input or facilitate better detection of turn taking opportuni-
ties for subsequent tasks, e.g. in a conversational setting between human and
computational agents. We were able to partially reproduce the major claims
of the original paper by invoking the system’s evaluation scripts on existing
data and models in a completely new and independent environment. While
comparisons between performance on incremental ASR output and transcrip-
tion corpora had to be deferred due to licensing constraints, the reproduction
could show some of the originally reported behaviour on the transcription cor-
pus itself. The demonstration code for the Deep Disfluency library worked out
of the box, enabling future users to adapt the system as a whole for their own
corpora. Since the system itself is a complex project with multiple interacting
components from data integration to machine learning, we are confident that
given enough time and resources the rest of the results could be reproduced in
a similar fashion. The research project is already very much aligned with FAIR
data principles as it adopts open software practices and makes large parts of
the original experiments easily accessible. Overall, this case corresponds to a
case of limited reproducibility as the results could be partially reproduced for
the offline settings, albeit not exactly.

111

References

References
[1] Schlangen D Hough J. Joint, incremental disfluency detection and

utterance segmentation from speech. In Proceedings of the International
Conference of the European Chapter of the Association for Computational
Linguistics (EACL).

[2] David DeVault, Kallirroi Georgila, Ron Artstein, Fabrizio Morbini, David
Traum, Stefan Scherer, Albert Skip Rizzo, and Louis-Philippe Morency.
Verbal indicators of psychological distress in interactive dialogue with a
virtual human. In Proceedings of the SIGDIAL 2013 Conference, pages
193–202. Association for Computational Linguistics, 2013.

[3] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg,
Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne, et al.
The fair guiding principles for scientific data management and stewardship.
Scientific data, 3, 2016.

112

9 Reproducing the analysis of
an experiment in sequential
visual processing

Rebecca Foerster2, Philipp Cimiano1, Werner X. Schneider2

1 – Faculty of Technology & Cognitive Interaction Technology Excellence Center
(CITEC), Bielefeld University

2 – Faculty of Psychology and Sports Science, Department of Psychology & Cog-
nitive Interaction Technology Excellence Center (CITEC), Bielefeld University

Abstract
This chapter describes a case study in reproducing work conducted by the
neuro-cognitive psychology research group at Bielefeld University in the area
of sequential visual processing. In particular, we describe our effort to indepen-
dently reproduce the results obtained via the experiment conducted in the paper
‘Expectation violations in sensorimotor sequences: shifting from LTM-based at-
tentional selection to visual search’ [1]. The research of the group focuses on
the area of visual attention, eye movements, working memory, transsaccadic
learning, and sensorimotor learning. The group works on understanding visual
processing in humans via controlled behavioral experiments in laboratory envi-
ronments alongside real-world studies. The main result of the article mentioned
above was the finding that expectation violations in a well-learned sensorimotor
sequence in humans caused a regression from LTM-based attentional selection
to visual search. We describe in this paper our efforts to independently repro-
duce these results. We conclude that this case is a case of limited analytical
reproducibility in that results are reproducible by relying on SPSS as in the
original data analysis or by adapting analysis codes to open-source software
packages such as R. The data and scripts for this project are available at https:
//gitlab.ub.uni-bielefeld.de/conquaire/neurocognitive_psychology.

Keywords
attention, eye movements, long-term memory (LTM), visual search, sensorimo-
tor action, expectation discrepancy

113

https://gitlab.ub.uni-bielefeld.de/conquaire/neurocognitive_psychology
https://gitlab.ub.uni-bielefeld.de/conquaire/neurocognitive_psychology

9 Reproducing the analysis of sequential visual processing

9.1 Introduction

The neuro-cognitive psychology group at Bielefeld University is mainly con-
cerned with research on visual attention, visual working memory, eye move-
ments, transsaccadic learning, and sensorimotor control and learning. A first
key issue is to understand how humans employ their visual attention to con-
trol movements. A second issue refers to elementary neuro-cognitive mecha-
nisms as well as to group differences between healthy individuals and patients
in visual attention and working memory. In order to achieve these goals, the
neuro-cognitive psychology group conducts controlled behavioral experiments
in the laboratory as well as real-world studies. The experiments often afford
highly precise presentation durations of visual material, which are achieved by
employing CRT screens, G-sync LCD monitors [2], high-speed projectors or
head-mounted virtual reality devices [3]. Behavioral responses (e.g., letter re-
ports, key presses), eye movements (static and mobile eye tracking), and hand
movements (motion tracking, mouse cursor tracking) as well as video data and
EEG data are recorded.

Within the Conquaire project, the publication by Foerster and Schneider enti-
tled ‘Expectation violations in sensorimotor sequences: Shifting from LTM-based
attentional selection to visual search’ [1] was chosen to be reproduced. In that
article, the consequences of violating long-term memory (LTM) based expecta-
tions about a learned sensorimotor sequence were investigated. Especially for
well-practiced sequential sensorimotor actions, such as driving, making a sand-
wich or performing sports, LTM expectations have an important role because
they guide the necessary task-adapted sequence of covert shifts of attention, eye
movements, and hand and body movements [4, 5, 6, 7, 8]. In the study reported
in the manuscript, it was investigated which consequences arise for eye and hand
movement control when a learned visuospatial configuration (fixed sequence of
spatially distributed mouse clicks) was unexpectedly changed.

Results revealed that the changes of action-irrelevant visual features of the
configuration had no effect, neither on hand nor eye movements. In contrast,
changes of the visuospatial configuration that forced participants to update their
learned sensorimotor sequence partly affected both hand and eye movements.
Such changes slowed down the demanded action, they elicited visual search-
like scanning that replaced the previously LTM-controlled eye movements, and
they reduced the eyehand synchrony. These effects were neither limited to the
changed stimuli nor to actions on them.

We describe the specific experimental settings of the original work in Section
9.2. After this description, we provide details on how we attempted to reproduce
the main results of the above mentioned paper.

114

9.2 Methods

9.2 Methods
Here, we describe the experimental setting and the methods used in the experi-
ments conduced in the paper ‘Expectation violations in sensorimotor sequences:
shifting from LTM-based attentional selection to visual search’ [1].

9.2.1 Experiment settings and Data acquisition pipeline
In order to investigate the effects of action-relevant and action-irrelevant expec-
tation violations on eye and hand movements in [1], the following experimental
design was adopted. Forty right-handed participants (mean age of 25 years, 14
male, 26 female) were recruited at Bielefeld University, with normal or corrected-
to-normal vision, to participate in the computer experiment.

All participants were first trained for 60 trials to click as fast as possible with
a computer mouse in ascending order on eight numbered unique shapes on a
computer screen (1-8). Importantly, the spatial configuration of the numbered
shapes was constant over the course of the 60 trials (Figure 9.1), so that partici-
pants could learn and automatize the visuospatial configuration of the numbered
shapes as well as the clicking sequence.

Typically, an eye movement to a location preceded each clicking action on
a location. Thus, participants adopted LTM expectations about the visuo-
spatial characteristics and an LTM-based control of visual attention and eye
movements. After the 60th trial, we violated these visuospatial expectations
unannounced, so that the 20 consecutive trials had a different configuration.

The 40 participants were divided into four experimental groups of 10 partici-
pants each, depending on the changed features during the 20 change trials.

• In the shape-change group, the shapes (circle and a plus sign) sur-
rounding the numbers 3 and 6 switched position.

• In the number-change group, the numbers 3 and 6 changed position
without changes in the surrounding shapes.

• In the object-change group, the numbers 3 and 6 switched position
together with their surrounding shapes, so that the objects remained con-
stant, e.g., a plus 3 and a circle 6.

• In the no change control group, no switch was introduced.

As the shape change does not require a change of the learned clicking ac-
tion, we call this an action-irrelevant change. As the number and object
changes do affect the learned clicking sequence, we call these changes action-
relevant.

In order to investigate how previously learned expectations and sensorimotor
sequences can be re-initiated, 20 reversion trials followed the 20 change trials,

115

9 Reproducing the analysis of sequential visual processing

in which the configuration was the same as during the 60 pre-change trials for
each participant.

Figure 9.1: Computer display in the clicking task experiment

Figure 9.1 shows the display during the clicking task in the prechange (left),
change (right), and reversion (left) phase of the experiment for the even partic-
ipants of the four change groups (shape, number, object, no). Odd participants
started with the plus three in the upper right position and the circle six in the
lower left position.

Throughout the whole experiment, cursor movements on the CRT computer
screen (ViewSonic Graphics Series G90fB, 19 inch color monitor @ 1024 x 768
pixels) were recorded with 100 Hz and participants’ right gaze positions were
recorded with an Eyelink 1000 desktop-mounted eye-tracker (SR Research, On-
tario, Canada) with 1000 Hz. A standard computer mouse and an extra-large
mouse-pad (32 x 88 cm) were used. A forehead and chin rest was used to fix
participants’ viewing distance at 71 cm. All stimuli were presented in black on
a grey background. The cursor was a black dot subtending approximately 0.45◦

v.a. (degrees of visual angle) in central vision. A black plus sign with a height
and width of 0.45◦ v.a. was presented in the screen center. The numbers were
presented in bold Arial font with a font size of 35. Each number was surrounded
by one unique shape with a diameter of about 2.18◦ v.a. in central viewing. The
pre-change arrangement of the numbered shapes was generated randomly with
the prerequisite that each outer field of an imagined 3 x 3 grid contained one
shape and that the distance between shapes as well as the distance to the screen
border was at least 2.18◦ v.a (border to border). For the generated configura-
tion, the actual minimal distance happened to be 7.20◦ v.a. between the shapes
containing numbers 1 and 4.

All participants saw numbers 1, 2, 4, 5, 7, and 8 in the same individual

116

9.2 Methods

shapes and at the same location (Figure 1). Even participants saw a plus 3 in
the lower-left corner and a circle 6 in the upper-right corner during the pre-
change phase, while odd participants began with the switched position of plus 3
and circle 6. Each experimental group consisted of an equal number of odd and
even participants, so that possible variations in the difficulties of the trajectories
were cross-balanced.

The experiment was controlled by SR Research’s Experiment Builder soft-
ware. A nine-point eye-tracking calibration and validation procedure with an
averaged accuracy criterion of 1.0◦ v.a. preceded the experiment. Calibration
accuracy was checked before each trial on the basis of a central fixation on a
black ring (0.48◦ v.a. outer size, 0.12◦ v.a inner size). Calibration was repeated
if necessary.

After reading an initial written instruction on the computer screen, partic-
ipants completed an example pre-change trial before the experiment started.
This practice trial was not included in the analysis. Clicks were counted as
correct within a diameter of 3.27◦ v.a. around a target’s center. An incorrect
click was followed by a low-pitched tone. After all eight objects were clicked
sequentially in the correct order, participants were informed about their trial-
completion time via a feedback display. After every block of 10 trials, a display
informed participants about the number of blocks completed out of the total
number of blocks. Participants started a block and a trial by pressing the space
bar. All participants completed the experiment within 40 minutes.

Fixation detection

Fixations were detected by SR Research’s default velocity algorithm (not a
blink, velocity <30◦ v.a./s and acceleration < 8000◦ v.a./s2). The following
dependent variables were analyzed:

• trial-completion time,

• number and size of errors,

• number and duration of fixations,

• scan-path length,

• cursor-path length, and

• eyecursor distance.

Error size was measured as the Euclidean distance (◦ v.a.) from the center of
the actual target to the incorrectly clicked location. Scan-path and cursor-path
lengths were calculated as 100-Hz cumulative inter-sample distances. Eyecur-
sor distances were calculated as 100-Hz intra-sample distances. For pre-change

117

9 Reproducing the analysis of sequential visual processing

analyses, repeated measures analyses of variances (ANOVAs) with the within-
subject factor block (6) were calculated for each dependent variable over all
groups.

9.2.2 Methods applied to analyze the experiment data
For the change analyses, mixed design ANOVAs were calculated with change
group (shape, number, object, no) as between-subject factor and phase (pre-
change, change, reversion) as within-subject factor. For more fine-grained anal-
yses, further ANOVAs were calculated including sub-action (8), location (8), and
fixation type (searching, guiding, checking) as within-subject factors. Guiding
fixations are fixations on current action goals, also known as sequence or direct-
ing fixations [9, 10, 11, 1, 8]. In the study, guiding fixations were operationalized
as fixations to the numbered shape that was the current clicking target. Check-
ing fixations are fixations to objects and locations that have already been acted
on in the nearer past [10, 11, 1, 8]. In the study, checking fixations were op-
erationalized as fixations to numbered shapes that had already been clicked
correctly. Searching fixations are fixations to objects and locations that are cur-
rently not action-relevant, were not relevant shortly before, but might become
relevant in the later future [9, 11, 1]. In the study, searching fixations were
operationalized as fixations to numbered shapes that had not yet been clicking
targets. Fixations were counted as falling on a numbered shape within an area
of 3.27◦ v.a. around its center.

A LTM mode of visual attention is characterized by about one guiding fix-
ation per sub-action of the task and nearly no checking or searching fixations,
while searching fixations are indicative for visual search. Paired t-tests were
conducted in case of significant two-way ANOVA interactions to reveal whether
the values of two phases were significantly different across groups, sub-actions
or locations. Violations of sphericity were corrected using Greenhouse-Geisser
ϵ, but uncorrected degrees of freedom were reported to facilitate reading. A
chance level of 0.05 was applied. Data preprocessing was conducted with MAT-
LAB 2012a, data aggregation and diagrams were compiled in Microsoft Excel
2010, and statistical analyses were conducted with IBM SPSS Statistics 22.

The shape change did not affect any dependent variable significantly, neither
when comparing the shape-change to the control group nor when comparing the
shape-change phase values to the pre-change values. However, all dependent
variables were strongly affected in the number and object change group with
their values during the change phase differing from the pre-change values as
well as from the control group. Specifically, participants of the number and
object change group were slower, made more fixations, had longer scan-paths
and cursor-paths and a larger eye-cursor distance during the first change trial
than during the last pre-change block (pre-change baseline) as well as compared
to the participants in the control group. Note that other pre-change baselines
did not change the result pattern. Statistics can be viewed in the original paper.

118

9.2 Methods

Moreover, the type and size of the effects did not differ significantly between
the number change group and the object change group. Therefore, these two
groups were aggregated to one action-relevant change group for further analyses.
The main results of these analyses were concerned with the number of fixations
and fixation types performed by the action-relevant change group during the
change compared to the pre-change phase.

To reveal which mode of attentional selection was predominantly applied be-
fore and after the action-relevant change, a repeated measures ANOVA was
computed for the number of fixations with phase (pre-change, change) and fixa-
tion type (checking, guiding, searching) as within-subject factors. The analysis
revealed significant main effects and a significant interaction on the number of
fixations (phase: F (1,19) = 23.97, p < 0.001, η2

p = 0.56; type: F (2,38) = 89.23,
p < 0.001, η2

p = 0.82; interaction: F (2,38) = 21.49, ϵ = 0.77, p < 0.001, η2
p =

0.53; Figure 9.2, top). Paired t-tests revealed that the interaction was due to the
fact that the change increased the number of searching fixations (t(19) = 7.31,
p < 0.001), while there was no significant effect on the number of checking
(t(19) = 1.81, p = 0.09) or guiding (t(19) = 0.29, p = 0.80) fixations. With
nearly no checking (0.26) or searching (0.91) fixations per pre-change trial, LTM-
based attention seemed to be the dominant mode of attentional selection after
having learned the clicking sequence on the constant visuospatial configuration.
The increase to about 5 searching fixations in the trial with the action-relevant
number switch indicates a re-initiation of visual search.

Given that number 3 was no longer in the expected location, searching for the
3 when having to act on it is inevitable. Therefore, the question arises, whether
searching is restricted to this action 3 or whether visual search is also initiated for
other actions. To reveal whether searching fixations were differently prominent
for different sub-actions, a repeated measures ANOVA was conducted for the
number of searching fixations with the within-subject factors phase (pre-change,
change) and action (1-7). The analysis for the number of searching fixations
(Figure 2, middle) revealed significant main effects of phase (F (1,19) = 53.43,
p < 0.001, η2

p = 0.74) and action (F (6,114) = 20.85, ϵ = 0.42, p < 0.001, η2
p

= 0.52) as well as a significant interaction (F (6,114) = 19.74, ϵ = 0.48, p <
0.001, η2

p = 0.51). Paired t-tests revealed that the number of searching fixations
was significantly increased during actions 3 (p < 0.001) and 4 (p < 0.01). Thus,
searching fixations increased as soon as the first location-shifted number became
the action target, but their increase was not limited to this action.

Do participants really search or is the increase in searching fixations com-
pletely explained by the fixations to the old position of number 3, i.e. the new
number 6, which is by definition a not yet completed target? A repeated mea-
sures ANOVA for searching fixations with the within-subject factors location
(2-8) and phase (pre-change, change) revealed two main effects and a significant
interaction (location: F (6,114) = 7.32, ϵ = 0.28, p < 0.001, ηp2 = 0.28; phase:
F (1,19) = 44.80, p < 0.001, η2

p = 0.70; interaction: F (6,114) = 5.80, ϵ = 0.45, p
< 0.01, η2

p = 0.23; Figure 2, bottom). Paired t-tests revealed that significantly

119

9 Reproducing the analysis of sequential visual processing

Figure 9.2: Top panel: Number of fixations per trial of the three fixation types
searching, guiding, and checking. This is Fig.4 (top) from the origi-
nal paper. Middle panel: Number of searching fixations per action
(1-7). No searching fixations can be made during action 8 as there
are no future targets. This panel is Fig. 5c from the original paper.
Bottom panel: Number of searching fixations per location (2-8).
No searching fixations can be made on location 1, as this location is
never a future target. This figure is not in the original paper!

more searching fixations went to the locations 4-6 and 8 (all ps < .0.5), but not
to the locations 2 (p = 0.48), 3 (p = 0.24), and 7 (p = 0.06). Thus, the increase
in searching fixations is not limited to the new location of the 6, indicating that
participants really search through the display.

To reveal how long it takes to incorporate the new clicking sequence, the num-
ber of searching fixations during the subsequent change trials was compared via
paired t-tests to the pre-change baseline. Results revealed significantly more
searching fixations compared to the pre-change baseline in the first 15 repeti-
tions of the changed number display (all ps < 0.05; Figure 9.3). This result

120

9.3 Analytical Reproducibility

indicates that far more than a single trial is necessary to update parts of a
learned sensorimotor sequence. Thus, sensorimotor updating of unexpected
target locations can clearly be differentiated from surprise effects to unexpected
visual items as surprise effects are typically very short-lived [12, 13, 14].

Figure 9.3: Searching fixations per change trial

Figure 9.3, which is not a part of the original published paper, shows the
number of searching fixations per change trial (trials 61-80) in red solid lines
along with the pre-change baseline (average of trials 51-60). The error bars rep-
resent the two-sided 95%-confidence intervals of the paired t-tests comparing the
respective trial to the pre-change baseline. Asterisks indicate the two-tailored
significance level (*<0.05, **<0.01, and ***<0.001).

In summary, only the action-relevant expectation violations affected partici-
pants’ manual performance and eye movements. In this case, participants are
forced to update a learned sensorimotor sequence. Thus, they regressed from
LTM-based attention and gaze control to visual search. They maintained this
search mode after having acted on the first changed number in the sequence as
well as for up to 15 repetitions of the new configuration.

9.3 Analytical Reproducibility
The goal of the reproducibility experiment was to independently verify the re-
port about performance improvements during the prechange/acquisition phase
ensuring that participants adopted LTM-based attentional selection for the sen-
sorimotor sequence. Secondly, we verified the effects of different expectation-
violation manipulations on performance, eye movements and the three fixation
types, allowing conclusions about the modes of attention selection, i.e. LTM
versus visual search. Lastly, we verified the analysis of the repeated expectation
violations updating the sensorimotor sequence based on the previously learned
visuospatial task configurations which affected the mode of attentional control.

9.3.1 Research Data
The data for the entire research group are analyzed by proprietary as well as
open and self-made analysis tools including SR Research’s Data Viewer, SMI

121

9 Reproducing the analysis of sequential visual processing

BeGaze, Matlab, Python, R, SPSS, Excel, Annotation Tools [4, 15], and Func-
Sim [16, 17]. Experiments are programmed with SR Research’s Experimental
Builder, Matlab and PsychToolbox, Python and PsychoPy, E-Prime, or SMIs
Experiment Suite. The data and scripts for the original work are available at
https://gitlab.ub.uni-bielefeld.de/conquaire/neurocognitive_psychology.
The folder structure is as follows:

• /loadevents

• /MatlabSkripteNFunctions

• /saveevents

• /SPSStabs

• SPSS command script

• Other project files (XLS sheets with results, etc.)

Primary Data

The data resulting from the experiment were available in a text format in the
above mentioned /loadevents folder.

Analytical Workflow

The researchers carried out their data analysis and processing in the MS Win-
dows environment and for programming and computational analysis, they used
Matlab and SPSS scripts that processed their data stored in text files. The
first folder loadevents holds the data collected for each participant in six files
(blinks, fixations, messages, results, saccades, and samples). Thus, the data
recorded for 40 participants is held in 240 ".txt" files which became the source
of input for further processing. The second folder MatlabSkripteNFunctions has
24 Matlab function scripts to perform the intermediate processing of combining
and segregating data into separate event files and further input for Statistical
Analysis through SPSS commands. The output of Matlab functions were stored
in the third and fourth folders namely saveevents. The processing workflow is
summarized in Figure 9.4

9.3.2 Analytical Reproducibility status
In order to reproduce the results described in the paper ‘Expectation violations in
sensorimotor sequences: shifting from LTM-based attentional selection to visual
search’ [1], we reproduced the pipeline that was originally used to generate the
results of the ANOVA and t-tests as described above. We could reproduce all
the results as published in the original paper. For this, we acquired a 14-day

122

https://gitlab.ub.uni-bielefeld.de/conquaire/neurocognitive_psychology

9.3 Analytical Reproducibility

Conduct Visual Experiment

Collect and store gaze in proprietory *.edf files

Convert and filter gaze data into *.txt format

Post-process gaze data with Matlab routines

Aggregate data, create pivot tables
and plot data with Excel

Read pivot tables
and perform statistical analyses with SPSS

Figure 9.4: Schematic representation of the analytical workflow used in the pa-
per by Foerster and Schneider[1]

123

9 Reproducing the analysis of sequential visual processing

trial version of SPSS package for the MS Windows environment from the IBM
website. The SPSS script for analysis was processed to get the results published
in the paper by the researchers, who confirmed that the output results were the
same as the statistical results already published in the paper.

As we relied in this pipeline on proprietary and commercial software that is
not freely available (Microsoft Excel, Matlab and SPSS), this is a case of limited
reproducibility according to the taxonomy introduced as described in chapter 1.
Thus, we also attempted to investigate whether the results could be reproduced
using free and open software, in particular Gnu-PSPP1 and R2. We briefly
document the results of this experiment below:

SPSS vs. PSPP

PSPP was quite similar to SPSS and accepted the same code commands and in
the same format as SPSS does. After making a few changes in the SPSS com-
mand file ExpectDiscrep.sps, the statistical tests for NPAR TEST and T-
TEST ran successfully. However, other statistical functions, like GLM TEST,
UNIANOVA failed as these functions are not yet implemented in PSPP. In
SPSS, the GLM implements ’marginal means’ but in PSPP, the GLM imple-
mentation is an experimental model of one-way and multiple regression linear
model. So we could not reproduce the main results of the paper using PSPP.

SPSS vs. R

After investigating the use of the R-package ezANOVA, we found out that the
results of the ANOVA tests could be reproduced. For the case of trend analysis,
one needs to retrieve the used trends from SPSS by adding the print command
’TEST(MMATRIX)’ and then insert the used contrast for the linear trend into
the ezANOVA trend analysis in R. Our conclusion is thus that the results are
also in principle reproducible with free and open software.

9.3.3 Discussion of reproducibility experiment
The results of the ANOVA and t-tests as reported in the original paper by
Foerster and Schneider [1] could be independently reproduced by recreating
the original analytical pipeline using the very same software stack and tools as
used in the original work. This was possible because the primary data, scripts
(Matlab, SPSS) and spreadsheets (Excel) were made available to the Conquaire
project. Inspite of all data being available and the results being in principle
reproducible, we classify this case study as an example of limited reproducibility
as defined in the introduction to this book (see chapter 1) due to the following
reasons:

1https://www.gnu.org/software/pspp/
2https://www.r-project.org/

124

https://www.gnu.org/software/pspp/
https://www.r-project.org/

9.4 Conclusion

• The analytical workflow could be reconstructed in close interaction with
the authors of the original paper. The analytical workflow is not docu-
mented, so that the reproduction without guidance of the original authors
is cumbersome.

• The analytical workflow relies on having installed proprietary and com-
mercial software such as Matlab and SPSS, requiring a Windows envi-
ronment for the latter. Our experiments show that substituting parts of
the workflow with FOSS components, R in particular, is feasible, but this
requires reprogramming the tests in R. While this is feasible, one runs
the risk of creating a pipeline that is not functionally equivalent to the
original one as the implementations of the tests might differ.

9.4 Conclusion
This chapter has described a case study in analytical reproducibility in the area
of neuro-cognitive psychology. In particular, we have described our effort to
reproduce the main results of the article by Foerster and Schneider: ‘Expecta-
tion violations in sensorimotor sequences: Shifting from LTM-based attentional
selection to visual search’ [1]. The main result of the article mentioned above
was the finding that expectation violations in a well-learned sensorimotor se-
quence in humans caused a regression from LTM-based attentional selection to
visual search. The authors of the original publication (also co-authors of this
article) provided the Conquaire project with all primary data and all scripts
and spreadsheets used to reproduce the results. While we were successful in
reproducing the results, we classify this use case as one of limited analytical
reproducibility. The reason for this is that some parts of the analytical pipeline
rely on proprietary and commercial tools such as Matlab or SPSS that can not
easily be replaced by open and free tools. Further, the lack of documentation
of the pipeline requires interaction with the original authors to reproduce the
pipeline faithfully. Both limitations could be easily overcome if further efforts
are invested.

Acknowledgements
We thank Lukas Biermann and Cord Wiljes for assistance with the reproduction
of the analyses.

References
[1] R.M. Foerster and W.X. Schneider. Expectation violations in sensorimotor

sequences: Shifting from ltm-based attentional selection to visual search.

125

References

Annals of the New York Academy of Sciences, 1339(1):45–59, 2015.

[2] C. H. Poth, R. M. Foerster, C. Behler, U. Schwanecke, W. X. Schneider,
and M. Botsch. Ultrahigh temporal resolution of visual presentation using
gaming monitors and g-sync. Behavior Research Methods, 50(1):26–38,
2018.

[3] R. M. Foerster, C. H. Poth, C. Behler, M. Botsch, and W. X. Schneider.
Using the virtual reality device oculus rift for neuropsychological
assessment of visual processing capabilities. Scientific Reports, 6(1), 1995.

[4] R. M. Foerster, E. Carbone, H. Koesling, and W. X. Schneider. Saccadic
eye movements in a high-speed bimanual stacking task: Changes of
attentional control during learning and automatization. Journal of Vision,
11(7):1–16, 2011.

[5] M. M. Hayhoe, A. Shrivastava, R. Mruczek, and J. B. Pelz. Visual memory
and motor planning in a natural task. Journal of Vision, 3:49–63, 2003.

[6] M. F. Land, Mennie N., and J. Rusted. The roles of vision and eye
movements in the control of activities of daily living. Perception,
28(11):1311–1328, 1999.

[7] B. W. Land, M. F.and Tatler. Steering with the head: The visual strategy
of a racing driver. Current Biology, 11(14):1215–1220, 2001. Retrieved
from http://www.ncbi.nlm.nih.gov/pubmed/11516955.

[8] M.F. Land and B.W. Tatler. Looking and acting. New York: Oxford
University Press., 2009.

[9] J. L. Epelboim, R. M. Steinman, E. Kowler, M. Edwards, Z. Pizlo, C. J.
Erkelens, and H. Collewijn. The function of visual search and memory in
sequential looking tasks. Vision Research, 35(23-24):3401–3422, 1995.
Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8560808.

[10] R. M. Foerster. looking-at-nothing during sequential sensorimotor
actions: Long-term memory-based eye scanning of remembered target
locations. Vision Research, 144:29–37, 1995.

[11] R. M. Foerster and W. X. Schneider. Anticipatory eye movements in
sensorimotor actions: On the role of guiding fixations during learning.
Cognitive Processing, 16:227–231, 2015.

[12] R. M. Foerster. Task-irrelevant expectation violations in sequential
manual actions: Evidence for a check-after-surprise mode of visual
attention and eye-hand decoupling. Frontiers in Psychology, 7:1–12, 2016.

126

References

[13] G. Horstmann. Latency and duration of the action interruption in
surprise. Cognition & Emotion, 20(2):242–273, 2006.

[14] A. Schützwohl. Surprise and schema strength. Learning, Memory and
Cognition, 24(5):1182–1199, 1998. Retrieved from
http://www.ncbi.nlm.nih.gov/pubmed/9747529.

[15] R. M. Foerster, Carbone E., H. Koesling, and W. X. Schneider. Saccadic
eye movements in the dark while performing an automatized sequential
high-speed sensorimotor task. Journal of Vision, 12(2):1–15, 2012.

[16] R. M. Foerster and W. X. Schneider. Tfuncsim toolbox for matlab:
Computation of eyetracking scanpath similarity, 2013.

[17] R. M. Foerster and W. X Schneider. Functionally sequenced scanpath
similarity method (funcsim): Comparing and evaluating scanpath
similarity based on a tasks inherent sequence of functional (action) units.
Journal of Eye Movement Research, 6(5):1–22, 2013.

127

10 Reproducibility in
Human-Robot Interaction
Research: A Case Study

Florian Lier1, Sebastian Meyer zu Borgsen1, Sven Wachsmuth1, Jasmin Bernotat2,
Friederike Eyssel2, Robert Goldstone3, Selma Šabanović3

1 – Faculty of Technology & Cognitive Interaction Technology Excellence Center
(CITEC), Bielefeld University

2 – Faculty of Psychology and Sports Science, Department of Psychology, Biele-
feld University

3 – Indiana University Bloomington

Abstract

Studies in human-robot interaction (HRI) typically involve computational ar-
tifacts, i.e. the robotic system, as the subject of investigation. Thus, the re-
producibility of any result in HRI studies directly relates to the reproducibility
of this computational artifact in the first place. This has certain consequences
for appropriate workflows that will be discussed in this chapter. We argue for
a higher awareness, improved standards, and further automation of tool chains
used to conduct robotic experiments. We identify this as a research topic in its
own right, especially in cases where robotic systems are used in interdisciplinary
research. This inherently includes that technically complex robotic experiments
should also be reproducible by scientists with a non-technical background. We
analyze and discuss a dedicated study by the CITEC Central Lab Facilities and
an international team demonstrating that it is possible to replicate a relatively
complex HRI experiment in two different laboratories across the globe by a
research assistant with no experience in robotics at all.

Keywords

Human-Robot Interaction, Reproducibility, Robotic experiments

129

10 Reproducibility in Human-Robot Interaction Research: A Case Study

10.1 Introduction
The Central Lab Facilities (CLF) group of the Excellence Cluster Cognitive
Interaction Technology (CITEC) at Bielefeld University aims to develop and
improve technology, workflows, and tool chains for building as well as experi-
menting with interactive intelligent systems [1, 2, 3, 4, 5]. An important ap-
plication and research field is human-robot interaction (HRI), which requires
sophisticated robotic research platforms that include many software and hard-
ware challenges besides the core areas of perception, behavior generation, and
interaction design. Thus, research in HRI is a highly interdisciplinary endeavor.
It aims to model the physical as well as mental dynamics between a human
and a robot in a communicative or cooperative situation. It builds upon con-
cepts and ideas from the area of human-human interaction in order to make
the human-robot interface as smooth and intuitive as possible. Dealing with
physically embodied agents, this includes many engineering issues towards flex-
ible and save movements, many issues from machine perception, e.g. recogniz-
ing the interaction partner, many issues from artificial intelligence towards an
interpretable and goal-oriented behavior of the robot, as well as many issues
explored by the social sciences (psychology, linguistics, cognitive science, etc.)
in order to understand associations, attributions, and expectations that humans
have when interacting with a robot. Last but not least, any experiment with
an autonomous robot includes many system engineering challenges including
significant complexity issues on the software side which are frequently under-
estimated. Although there has been considerable progress in robot technology
including available robotic standard platforms (e.g. iCub, Softbank’s Nao and
Pepper, Toyota’s HSR), software frameworks [6, 7, 8, 9], and benchmarking
activities [10, 11, 12, 13], the theoretical and practical foundations for experi-
mental replicability of experiments in robotics is still in its infancy [14]. In this
regard, Bonsignorio et al., e.g., states that ‘even determining the information
required to enable replication of results has been subject of extensive discussion’
[14].

In this chapter, we argue for a higher awareness, improved standards, and
further automation of tool chains used to conduct robotic experiments. We
identify this as a research topic in its own right, especially in cases where robotic
systems are used in interdisciplinary research. This inherently includes the fact
that technically complex robotic experiments should also be reproducible by
scientists with a non-technical background. While this goes beyond the goals
of Conquaire to reproduce the analytical part of an experiment only, in human-
robotic interaction studies the replication of the technical settings is essential
to understand the experimental results. The other Conquaire studies mostly
deal with computational workflows and tools that are applied to datasets after
these have been recorded in an experiment. Because most studies in, e.g., the
natural sciences deal with ’natural’ phenomena – i.e. they are not produced
by an artificial artifact – the dataset can be interpreted with regard to this

130

10.1 Introduction

phenomenon at any place in the world. This is not the case for experiments
including robots. The dataset can only be interpreted with regard to the specific
artifacts used in the experiment. As a consequence, the reproducibility of an
experiment and the validity of the data must include the possibility to reproduce
also the robotic system and its behavior in the study.

In the following, we report our experiences and lessons learned in analysing
a replication study conducted by the Central Lab Facilities involving a human-
robot interaction (HRI) experiment in Bielefeld and at a partner site of the DFG
Excellence Cluster CITEC within the DAAD Thematic Network Interactive
Intelligent Systems. The study investigates an extended version of Stenzel et
al.’s ‘Joint Simon effects for non-human co-actors’ [15], in two labs in different
institutions and continents. In psychology, the Joint Simon effect is used to
investigate to what extent people mentally represent their own and other agent’s
actions in a joint task. This leads to delayed decision effects when a human is
prompted with stimuli that are spatially incompatible with the roles in a team.
The effect disappears when people think that they interact with a non-biological,
technical artifact. Thus, it is an open question to which degree humanoid robots
are perceived as social agents or team mates and if this can be shown using the
Joint Simon effect (see Sec. 10.2.1 for more details).

To this end, the CLF researchers applied a novel software tool chain and
methodology that implements state-of-the-art techniques with the objective of
facilitating reproducibility in robotics research. The experiment was designed in
cooperation between Bielefeld University and Indiana University Bloomington
by a team of interdisciplinary scientists originating from psychology & brain
sciences, informatics and robotics. The team initially conducted the study in
Bielefeld before a replication attempt in Indiana was conducted. In this context,
they specifically chose the following constraints in order to impose the same
restrictions and obstacles encountered in ‘regular’ replication attempts:

1. The experiment must be replicated by a staff member who is not part of
the research project.

2. The only starting point for replication is an online manual explaining our
approach and the literature references therein.

3. Assistance from Bielefeld is only provided in otherwise irresolvable situa-
tions.

A replication of this experiment at different sites is an interesting case study
from two different points of view. On the one hand, it is interesting to inves-
tigate whether there are cultural factors that affect the results. On the other
hand, the setup includes a behavioral study with a robotic platform (the NAO
robot), which is programmed to physically press a button where timing matters.
Thus, from the perspective of reproducibility and the lessons learned from the
Conquaire project, there are the following research questions: (H1) Is the tool

131

10 Reproducibility in Human-Robot Interaction Research: A Case Study

chain and methodology been suitable to represent all aspects required for suc-
cessful replication? (H2) What can we learn about reproducibility in general
with respect to unexpected technical obstacles or situations one did not antic-
ipate? (H3) Can the second study cross-validate the results obtained in the
original Bielefeld study?

10.2 Experimental Settings and Methods
The following part of this contribution will cover the replication approach and
the lessons learned. Important parts of the study and tool chain have been
published previously [16, 17]. A final evaluation of the second study is still on-
going work. First, we will shortly introduce the theoretical background of the
experiment. Then, we present the procedure and methods, and finally discuss
our findings.

10.2.1 The JSE Experiment
The study was designed out to reproduce a variant [18] of a well-documented
psychological effect, the Joint Simon Effect (JSE) [15]. The JSE describes a
difference in reaction time depending on identity (compatibility) or disparity
(incompatibility) of a stimulus’ and the co-actors’ spatial position in relation to
the participant during a shared go/no-go task. The team aimed at reproduc-
ing this effect with a robot as co-actor as described in [18] and adopted the
stimuli and procedure attributes. The original experiment was extended with
a robot position condition to additionally test the influence of the robot’s spa-
tial relation to the human subject. While more detailed information about the
JSE experiment can be found in the paper by Dolk et al. [18], we will briefly
describe the experiment setup variant used in the particular study described in
this chapter. Due to its wide distribution and availability, the team used the
humanoid robot NAO as the participant’s co-actor (Figure 10.1). The robot
kneels next to the test subject on a table or chair. The barycenter of the robot
is approximately at elbow height of a sitting subject.

The participant and the robot each have their own keyboard of identical
type. The keyboards are directly adjacent and on the same level. During the
experiment, stimuli, e.g. a square and a diamond, are displayed on a screen at
randomized positions and in randomized order. Based on the initial assignment,
either the robot or the human have to press the space-bar key as soon as the
assigned stimulus appears. The corresponding reaction times (RT) of the human
co-actor are measured.

In Bielefeld, the team tested 47 subjects from the nearby campus (M age =
24.61 years, SD age = 4.01 years). Each run consisted of 512 trials with short
breaks per 128 trials and took approximately 30 minutes. The findings were
similar to those found by Stenzel et al., the experiment showed a significant

132

10.2 Experimental Settings and Methods

main effect of compatibility when analyzing the response times (RT), F(1,48)
= 11.639, p < 0.001, partial η2 = .43, indicating shorter RTs in compatible (423
ms) compared to incompatible trials (434 ms), which confirms the presence of an
overall JSE. The team did not find a significant interaction between compatibility
and robot position.

The data of the experiment were logged within the software tool jsPsych
[19] that controlled the prompting, triggered the execution of robot movements,
and recorded the reactions of the human participants (execution protocol of the
experiment including timing events for prompting and robot, spatial configura-
tion of prompts, etc.). The data is stored as comma-separated-value files which
are preprocessed with documented shell commands and python scripts. Data
analysis was conducted with SPSS1 or R2 tools.

10.2.2 Replication in Indiana
In order to reproduce the experiment in Indiana, under consideration of the
demands and requirements in the current literature and the issues presented in
section 10.1, there are two core issues to be solved:

1. A systemic solution for deployment, configuration, and integration of all
necessary software artifacts.

2. A structured methodological ‘how-to’ for setup and execution considering
user groups and tools from other disciplines, here, psychology.

This should not come as overhead for the replication of an experiment. It
is essential that the replication tool chain is already in place and used when
the first experiment is developed and conducted. Thus, the replicability of an
experiment including software-intensive systems as core components has to be
planned already when setting up the original experiment.

The replication tool chain

In order to address the above issues, the research team developed a software
tool chain that has been explicitly designed to foster reproducibility of software
intensive experiments in robotics — the Cognitive Interaction Toolkit (CITK) 3.
More detailed technical information is provided by Lier et al. [1, 2]. The re-
quirement to support disciplinary tools to design and run experiments will be
additionally covered by jsPsych [19].

At its core, the CITK provides a template-based “artifact-description” repos-
itory in order to pool and aggregate all required artifacts of a robotics experi-
ment (cf. 10.2). There are basically two types of descriptions. The first is called

1https://www.ibm.com/de-de/products/spss-statistics
2https://www.r-project.org/
3https://toolkit.cit-ec.uni-bielefeld.de

133

https://www.ibm.com/de-de/products/spss-statistics
https://www.r-project.org/
https://toolkit.cit-ec.uni-bielefeld.de

10 Reproducibility in Human-Robot Interaction Research: A Case Study

recipe: it defines required system artifacts, e.g, software components, download-
able data sets, or system configuration files. Templates for new types of artifacts
can be added on-the-fly by developers. With regard to pure software aspects,
the existing set of templates contains macros for the most common build tools
like autotools, maven, CMake, and ROS/catkin4, enabling native builds of var-
ious kinds of software. These macros also help to remove redundancy and keep
the recipes clean and well-structured. The second type is called distribution. A
distribution is a composition of a number of arbitrary recipes and hence deter-
mines an entire system. Distributions, as well as recipes, mandatorily reference
versions, e.g., tags, branches, or commit hashes of an artifact, such that a dis-
tribution reflects a fixed description of a system. Recipe and distribution files
are publicly available in our Git-repository5. Another core-component is a pre-
packaged, i.e, download and run it, no configuration required, CI server. It is
utilized to compile, deploy, and run entire software systems defined in distribu-
tion files. The server provides a web front-end that can be accessed via a browser
for ease of use. In order to deploy and run a system, the CITK implements a
generator-based approach. A so-called build-job-configurator tool automatically
creates all required build-jobs (for every recipe in a distribution) on the server.
A user merely selects the desired distribution file. Moreover, it is also possible to
connect a physical robot to the machine that runs the CI server in order to con-
trol/actuate it. Lastly, our approach also provides a framework to automatically
bring up (statefull execution), stop, and introspect a robotics software system.
Executing a system merely requires to select and activate a designated build-job
in the web front-end. Data that is acquired/logged during each system run is
also stored on the server and accessible via web browser. By utilizing this part
of our structured CITK approach, the team could ensure technical reproducibil-
ity of all required artifacts and also repeatable experiment execution regarding
the software side of an experiment. An exemplary CITK tool chain demonstra-
tion video can be watched here: https://vimeo.com/205541757 With respect
to experiment design and orchestration, the study additionally made use of a
framework called jsPsych. jsPsych is a JavaScript library for creating behav-
ioral experiments in a web browser. It provides a description of the experiment
structure in the form of a time line. It handles which trial to run next and stor-
ing the obtained data. jsPsych uses plugins to define what to execute at each
point on the time line. The functionality of jsPsych was extended in order to i)
trigger an experiment run on the CI server and ii) execute experiment-specific
behaviors of the NAO/Pepper robots, e.g, based on the current state of the time
line in jsPsych. Detailed information about jsPsych can be found in [19].

4http://wiki.ros.org/catkin/conceptual_overview
5https://opensource.cit-ec.de/projects/citk

134

https://vimeo.com/205541757
http://wiki.ros.org/catkin/conceptual_overview
https://opensource.cit-ec.de/projects/citk

10.2 Experimental Settings and Methods

The replication experiment

Due to the fact that the entire software system was already modeled using the
CITK for the Bielefeld study 6, no additional work, besides the translation from
German to English, e.g, in the jsPsych time-line slides was required. Hence,
the software part including robot movement control interfaces, calibration pro-
cedures, and jsPsych experiment orchestration was already at hand. Since there
was no prior knowledge about the (scientific) background of the staff mem-
ber who would eventually replicate the experiment in Indiana, the team im-
plemented a generic GUI-based application for all crucial technical steps with
respect to the robot hardware, e.g, the calibration procedures. Finally, a de-
tailed instruction was compiled on a public GitHub page (final version 7). This
online manual included the following steps:

1. Introduction

2. Hardware Requirements and Prerequisites

3. Software Requirements and Prerequisites

4. Physical Experiment Setup

5. Subjects

6. Executing the Experiment

7. Results

8. Literature

In summary, the manual included the following content:

• a brief introduction to the research topic and study goals, plus references
to related literature,

• a specification of the required hardware, e.g, a NAO robot acquired within
2-3 years,

• a PC or laptop including CPU and RAM specifications including the size,
resolution and refresh rate of the utilized screens,

• a specification of the operating system requirements, i.e., Ubuntu Xenial
(16.04, 64 bit),

• an explanation of how to setup the physical experiment, such as height
and position of the robot, position of the keyboards, monitors, etc., and

6http://www.webcitation.org/6xlwomECk
7https://Git.io/vAxml

135

http://www.webcitation.org/6xlwomECk
https://Git.io/vAxml

10 Reproducibility in Human-Robot Interaction Research: A Case Study

• a brief explanation of the network setup.

Moreover, the document included detailed instructions about the installation
and usage of the CITK in order to deploy the software system, calibrate the
robot, and run the experiment. The instructions also provided information
about the subjects, the welcome and actual experiment procedure. Lastly, it
was explained how to obtain and inspect the gathered data. So far, the doc-
umentation included detailed information with respect to technical (soft- and
hardware), as well as methodological/procedural aspects, to reproduce the study
as it was conducted in Bielefeld. The team also established a communication
channel via instant messaging using Slack. The channel was intended to pro-
vide ‘emergency support’, but only in case of an otherwise irresolvable situation.
Hence, the chat history could also be exploited for post-experiment analysis, if
required.

136

10.2 Experimental Settings and Methods

Figure 10.1: Top left: The NAO JSE setup used in one of our Bielefeld setups;
Top right: NAO keypress pose; Bottom: Screenshot of the robot
calibration GUI

137

10 Reproducibility in Human-Robot Interaction Research: A Case Study

Figure 10.2: Toolchain for the replication of robotics experiments: An exper-
iment for which the associated computational artifacts are docu-
mented in a browsable online catalog which is linked to the cor-
responding repositories. From here a researcher is instructed to
automatically roll out the system distribution using a continuous
integration server which is linked to the robot platform as well as
the computer controlling the behavioral experiment using JsPsych.
Left: Overview of the toolchain, Right: Screenshot of the CI server
web front-end. Each row corresponds to a recipe that has been
translated into a build job. Build jobs can be activated by select-
ing the most right icon (stopwatch). Execution of an experiment
can also be triggered using this front-end.

138

10.3 Analytical Reproducibility: Results & Lessons Learned

10.3 Analytical Reproducibility: Results &
Lessons Learned

We report on the lessons learned in a time line based manner. Depending on the
reader’s background, either in computer science or the humanities for instance,
some of the reported obstacles may appear ’trivial’. However, we claim that it
is crucial to raise awareness for false assumptions made by domain experts, e.g.,
with regard to common knowledge about specific technological or methodologi-
cal aspects of an experiment, which are by far not so obvious/common for others
outside their domain. Furthermore, we would like to point out that the reported
observations are based on a practical interdisciplinary replication attempt, which
is especially valuable in order to learn about all the different characteristics and
challenges concerning replicability of robotics systems.

The replication attempt of this JSE experiment was conducted by a research
assistant (RA) with a background in psychology. With respect to interdisci-
plinary research this was, on the one hand, an almost ideal scenario, on the
other hand however, a technically-challenging one as well.

10.3.1 Technical Obstacles & Procedural Issues
The following issues were reported during the replication study in Indiana. The
research assistant started with a plain laptop. Thus, the first issue was reported
shortly after the study officially started. Even though the deployment of the
required software components (using the CITK) was successful on first attempt,
the RA faced a couple of issues with the installation routine of Ubuntu. The
team in Bielefeld could resolve these issues by pointing the RA to the correct
Ubuntu documentation. The second technical issue was reported a few days
later. The operating system as well as the robot software environment were al-
ready installed successfully. Nonetheless, during the required robot calibration
procedure, a connection to the robot could not be established via local network.
The team in Bielefeld resolved this issue by instantly updating the online man-
ual for the network setup which is also hosted in the linked repositories. The
third issue was reported after a first test run of the experiment. So far, the
entire software system was deployed, the robot calibrated, and also the physical
experiment setup was in place. However, during the run, the RA noticed that
the translation of two single lines of text on a slide in the jsPsych time line was
missing. The team in Bielefeld could resolve this issue by correcting the error in
the code base and subsequently updating the Git repository. In Indiana, the RA
just had to re-trigger the corresponding build job, thus automatically installing
the updated version of the experiment. The fourth and last reported obstacle
occurred in an early stage of the actual experiment. Since the tool chain allows
to download and inspect already gathered data via web browser, the colleagues
in Indiana soon took a first look at intermediate results. They noticed that the

139

10 Reproducibility in Human-Robot Interaction Research: A Case Study

distribution of the participants’ position with respect to the robot indicated a
strong preference towards only one side. The team in Bielefeld discovered that
the instructions provided for the experimenter in jsPsych, addressing the proce-
dure of subject positioning, were not as precise as they should have been. This
could be corrected by updating the description in the repository.

10.3.2 Results of the Pilot Study on Reproducibility in
HRI

At time of writing, the JSE experiment in Indiana has been finished; first results
show a weaker but observable Joint Simon effect. However, besides the obstacles
already discussed, there were several positive lessons learned. It is very difficult,
if not impossible, to foresee all pitfalls faced by the researcher replicating the
experiment. As a local solution or patch does not solve the issue in a consistent
manner, a flexible tool chain is required that allows for almost instant patching
and deployment of experiment artifacts. In this regard, the technical complexity
of the deployed robotic system (hard- and software) was completely hidden to
the research assistant (RA) in Indiana. The time required to setup the entire
software system was limited to a few hours, including the installation of an
operating system. Moreover, the acceptance threshold and usability of the CITK
tool chain appeared to be positive, given the fact that it was easily usable by
the RA. Also, the transition from design, implementation and execution of the
experiment in Bielefeld to the deployment in Indiana merely required sending
a link to an online manual. In a short post-experiment interview we asked the
RA for a self-assessment regarding the experience with Linux-based systems,
robotic hardware, robotic software, the Linux network stack, conducting HRI
experiments, and conducting psychology experiments. In summary, the RA was
reasonably experienced in conducting experiments in psychology and, having
used Linux before, knew a few basic Linux commands. Regarding the remaining
topics, the RA was an inexperienced user, i.e, had never operated a single robot
before.

10.4 Analysis of reproducibility experiment
In this section, we discuss lessons learned from our cross-site replication study
of a robotic study.

Reproducibility is decided at development time: We would like to stress
that without having the tool chain in place at the development and preparation
time of the study in Bielefeld, a replication study at Indiana would have been
extremely time consuming if not impossible. Thus, any tool chain used for
the replication of results should be established in the daily workflow of the
researchers understanding it as a development tool instead of a replication tool.

140

10.4 Analysis of reproducibility experiment

Experimental protocols: Besides the technical requirements and issues in-
volved in replicating studies and their scientific results, it is also important to
neatly document the experimental protocol. Typically, this is solved by work-
flows, policies, and tools within the specific discipline without being integrated
in the technical framework of a robotic experiment. In the study reported, a
tool from psychology was integrated for experimental control. This is also a
prerequisite for a systematic logging of all experimental data. However, we can
observe in the study that the non-technical aspects of the experimental protocol
were not sufficiently described, which raised several questions when intermedi-
ate results were analysed and discussed. Thus, there is still an open issue to
more formally describe the experimental protocols.

Scientists with a non-technical background: An interdisciplinary field
like HRI involves experts from different backgrounds. Reproducibility should
not depend on having a robotic expert on-site. Even though the current ap-
proach demonstrated that it is possible, even by an inexperienced user, these
first obstacles were not even close to what a robotics engineer would consider
‘an obstacle’. On this account, we deem this lesson learned even more valu-
able. Furthermore, these kind of ‘low-level’ obstacles can be easily mitigated by
providing detailed beginner-level instructions.

Automated documentation roll-out: It appears extremely useful to be
able to quickly and dynamically alter instructions provided for replication at-
tempts if errors are reported/discovered. SCM-based repositories, not only for
source code, but also for this kind of manuals seem to be a well-applicable solu-
tion. Further, adding replication instructions to the corresponding source code
of a publication is not labor intensive at all.

Report intermediate results: The issues and obstacles discussed before
imply that it is important to automate the collection and evaluation of (also)
intermediate results to prevent subsequent failures, especially if data acquisition
is time-consuming. Thus, the requirement for an analytic reproducibility also
applies to intermediate results. In the case of the experiment considered here,
all preprocessing steps and scripts were precisely documented. Further, the ’R’-
toolbox can be used as an open source alternative to SPSS for the statistical
analysis of the data.

Open issues: Regarding the limitations of the approach presented, the tool-
box currently does not incorporate any standardized benchmark procedures for
more general HRI experiments. It does not provide any tool or template sup-
port for metrics (if existent/agreed-upon) with respect to comparability of HRI
systems. We are open for discussion and welcome contributions concerning this
topic.

141

References

Final remarks: In this contribution we discussed and analyzed a dedicated
study on the replication of a reasonably complex HRI experiment in two different
laboratories across the globe without a) flying experts in and b) making a single
video/phone call — by a research assistant with a non-technical background and
no experience in robotics at all. We reported on the lessons learned during this
practical replication process.

10.5 Conclusion
This chapter has shown that it is possible to reproduce a robotic experiment
at different sites, reproducing the same effect. The chapter has presented a
workflow that provides end-to-end support for researchers wanting to repro-
duce a certain experiment. In this particular case, the workflow was based on
the CITK toolkit developed at CITEC. In the particular case, the experiment
involved a reproduction of the well-known Joint Simon effect known from psy-
chology research. Using the end-to-end experimental workflow described in this
chapter it was possible for a psychologist from Indiana University not expert in
robotics to reproduce an experiment originally carried out at Bielefeld Univer-
sity. We regard this as a clear success story of experimental reproducibility and
see this as a best practice of reproducibility.

References
[1] Florian Lier, Marc Hanheide, Lorenzo Natale, Simon Schulz, Jonathan

Weisz, Sven Wachsmuth, and Sebastian Wrede. Towards Automated
System and Experiment Reproduction in Robotics. In Wolfram Burgard,
editor, 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2016.

[2] Florian Lier, Johannes Wienke, Arne Nordmann, Sven Wachsmuth, and
Sebastian Wrede. The cognitive interaction toolkit–improving
reproducibility of robotic systems experiments. In International
Conference on Simulation, Modeling, and Programming for Autonomous
Robots, pages 400–411. Springer, 2014.

[3] Florian Lier, Ingo Lütkebohle, and Sven Wachsmuth. Towards automated
execution and evaluation of simulated prototype HRI experiments. Proc.
2014 ACM/IEEE Int. Conf. on Human-robot interaction, pages 230–231.
ACM, 2014.

[4] Severin Lemaignan, Marc Hanheide, Michael Karg, Harmish Khambhaita,
Lars Kunze, Florian Lier, Ingo Luetkebohle, and Gregoire Milliez.
Simulation and hri recent perspectives with the morse simulator. LNAI
Lecture Notes in Artificial Intelligence. Springer, 2014.

142

References

[5] S. Meyer zu Borgsen, P. Renner, F. Lier, T. Pfeiffer, and S. Wachsmuth.
Improving human-robot handover research by mixed reality techniques. In
Proceedings of VAM-HRI 2018. The Inaugural International Workshop on
Virtual, Augmented and Mixed Reality for Human-Robot Interaction, 2018.

[6] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. Ros: an open-source
robot operating system. In ICRA workshop on open source software,
volume 3, page 5, 2009.

[7] Herman Bruyninckx. Open robot control software: the orocos project. In
Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE
International Conference on, volume 3, pages 2523–2528. IEEE, 2001.

[8] Giorgio Metta, Paul Fitzpatrick, and Lorenzo Natale. Yarp: yet another
robot platform. International Journal on Advanced Robotics Systems,
3(1):43–48, 2006.

[9] Emmanuel Pot, Jérôme Monceaux, Rodolphe Gelin, and Bruno
Maisonnier. Choregraphe: a graphical tool for humanoid robot
programming. In Robot and Human Interactive Communication, 2009.
RO-MAN 2009. The 18th IEEE International Symposium on, pages
46–51. IEEE, 2009.

[10] Sven Wachsmuth, Dirk Holz, Maja Rudinac, and Javier Ruiz del Solar.
Robocup@home - benchmarking domestic service robots. In AAAI, 2015.

[11] Pedro U. Lima, Daniele Nardi, Gerhard K. Kraetzschmar, Rainer
Bischoff, and Matteo Matteucci. Rockin and the european robotics
league: Building on robocup best practices to promote robot competitions
in europe. In Sven Behnke, Raymond Sheh, Sanem Sarıel, and Daniel D.
Lee, editors, RoboCup 2016: Robot World Cup XX, pages 181–192, Cham,
2017. Springer International Publishing.

[12] F Amigoni, A Bonarini, G Fontana, M Matteucci, and V Schiaffonati.
Benchmarking through competitions. In European Robotics
Forum–Workshop on Robot Competitions: Benchmarking, Technology
Transfer, and Education, 2013.

[13] Ana Huaman Quispe, Heni Ben Amor, and Henrik Christensen. A
taxonomy of benchmark tasks for robot manipulation. In Robotics
Research, pages 405–421. 01 2018.

[14] Fabio Bonsignorio. Reproducible research in robotics: Current status and
road ahead. http://www.heronrobots.com/EuronGEMSig/
gem-sig-events/icra2017workshoprrr, May 2017. (Accessed on
06/03/2018).

143

http://www.heronrobots.com/EuronGEMSig/gem-sig-events/icra2017workshoprrr
http://www.heronrobots.com/EuronGEMSig/gem-sig-events/icra2017workshoprrr

References

[15] Anna Stenzel, Eris Chinellato, Maria A Tirado Bou, Ángel P del Pobil,
Markus Lappe, and Roman Liepelt. When humanoid robots become
human-like interaction partners: corepresentation of robotic actions.
Journal of Experimental Psychology: Human Perception and
Performance, 38(5):1073, 2012.

[16] Florian Lier, Phillip Lücking, Joshua R. de Leeuw, Sven Wachsmuth,
Selma Sabanovic, and Robert Goldstone. Can we reproduce it ? toward
the implementation of good experimental methodology in
interdisciplinary robotics research. In ICRA 2017 Workshop on
Reproducible Research in Robotics: Current Status and Road Ahead, 2017.

[17] P. Lücking, F. Lier, J. Bernotat, S. Wachsmuth, S. Sabanovic, and F. A.
Eyssel. Geographically distributed deployment of reproducible hri
experiments in an interdisciplinary research context. pages 181–182,
Chicago, IL,USA, 2018. ACM.

[18] Thomas Dolk, Bernhard Hommel, Lorenza S Colzato, Simone
Schütz-Bosbach, Wolfgang Prinz, and Roman Liepelt. The joint simon
effect: a review and theoretical integration. Frontiers in Psychology, 5,
2014.

[19] Joshua R De Leeuw. jspsych: A javascript library for creating behavioral
experiments in a web browser. Behavior research methods, 47(1):1–12,
2015.

144

11 Conclusion

The DFG-funded Conquaire project has been concerned with investigating the
feasibility of reproducing the analytical phase of research in experimental sci-
ences. We have conducted eight case studies in various areas such as biology,
linguistics, psychology, robotics, economics and chemistry as a basis to under-
stand obstacles and best practices towards ensuring reproducibility of scientific
results.

The reproduction of analyses still involves substantial effort. Originally, we
had set ourselves the goal to invest a full working week (40 hours) into the
reproduction of each of these case studies. In many cases, the time needed to
reproduce a result has exceeded this amount by a factor of three. The reason is
that, in many cases, while data and scripts were available, the documentation
was not sufficient to reproduce the analyses without step-by-step guidance of
the authors of the original publication that we set out to reproduce.

In addition to the effort devoted to the reproduction itself, the Conquaire
project has performed a number of workshops with all the researches from the
eight use cases to introduce them to the goals of the project, to introduce Git,
etc.

As a conclusion, we can say that the success rate for reproduction was very
high. We were able to reproduce the results within all case studies. Yet, the
level of reproducibility was not the same for all project. According to the tax-
onomy of levels of reproducibility introduction in chapter 1, we have one clear
case of full analytical reproducibility and three further cases that reached the
category of full analytical reproducibility by the end of the project after recod-
ing analytical workflows using open and free programming languages. Four case
studies have the status of at least limited reproducibility as the reproduction of
their work (still) involves obtaining third-party commercial licenses for tool. It
requires a minimal further investment to bring these cases into the level of full
analytical reproducibility. This is a clear success in our view, clearly showing
that analytical reproducibility is feasible.

The main obstacles for analytical reproducibility found were i) the lack of
documentation and thus reliance on guidance by the original authors, ii) the
reliance on some manual steps in the analytical workflow (e.g. clicking on a
GUI) , iii) the reliance on non-open and commercial software, and iv) lack of
information about which particular version of software and/or data was used to
generate a specific result.

An institutional policy and infrastructure can alleviate most of the problems

145

11 Conclusion

mentioned above. Our experience shows that using a distributed version control
system is a best practice to be followed and a basic step towards reproducibility.
Our experience shows that scientists in any field can quickly learn to work with
Git, in particular if GUIs such as GitLab are provided. Most of the scientists
involved in case studies in Conquaire had no issues in uploading their data to a
Git repository.

Our experience also shows that scientists are deeply motivated to make their
results reproducible, even if this leads to a level of exposure that might lead
to errors being discovered. In some cases we discovered minor errors in plots,
scripts etc., and the involved scientists were more than happy to correct these
minor issues. The exposure and independent validation brings benefits that are
generally appreciated. This is indeed an important conclusion from Conquaire.
At the beginning of the project we were sceptic how openly scientists would be
willing to make their research artifacts available and support reproduction. At
the end of the project we can corroborate that there is a strong culture within
science of being as open as possible to ensure external scrutiny or validation
of scientific results. Our experience has been positive thus and we would like
to encourage research organizations world-wide in setting up policies encour-
aging their researchers to make their results analytically reproducible. On the
basis of the results of Conquaire, Bielefeld University is working towards the
establishment of policies in this respect.

We would like to end this book with a number of clear recommendations to
research institutions wanting to support their scientists in making their results
reproducible:

• Organization-wide version control system: Rolling out an organization-
wide version control system is the basis for reproducibility. It makes trans-
parent when and by whom data and scripts were collected or created and
allows to uniquely reference a particular version of the data and code. Such
a system can also support persistent storage of data and has a back-up
function for the researchers. We recommend using Git.

• Committing scripts before data collection: When using a Git repos-
itory, our recommendation is to develop policies that encourage scientists
to commit their analytical scripts before they collect data. After com-
mitting scripts, dummy data could be committed to check that the script
works and produces the results on an independent server that is not under
control of the scientist. After data collection, the data can be committed
and the results generated automatically on the server in a continuous in-
tegration like manner. This reduces possibilities for tampering with data
to produce a desired result or at least makes post-data-collection modifi-
cations transparent.

• Creating incentives for providing documentation: Organizations
should create incentives to foster documentation of datasets, analytical

146

workflows and adopt and enforce standards for describing author meta-
data, licensing information, etc.

• Independent code execution / result validation: Organizations should im-
plement services and infrastructure that supports the independent execu-
tion of software / code to reproduce a certain result. Continuous integra-
tion servers fulfill this purpose.

• Gamification: Principles of gamification might create incentives for en-
suring high quality of data. We have positive experience with introducing
a badge system. Yet, more investigation and experimentation is needed
here.

• Open software: We clearly recommend to set up policies that encourage
researchers to rely on open, free and non-commercial software to facilitate
reproduction of results on independent machines without the need to in-
stall commercial software and pay high license fees.

• Metadata: Organizations should train and support researchers in creat-
ing high-quality metadata for their data and also train them in selecting
and specifying under which licenses their data can be used. Consulting
on data exploitation and re-use while taking into account privacy aspects
is crucial. Bielefeld university has created a center for research data man-
agement with the mission of consulting and training researchers on such
dimensions.

However, the most important lesson learned is that analytical reproducibility
should not be considered as an afterthought and delayed to the end of a research
project. Analytical reproducibility is easy to achieve if one designs experiments
and software environments from the start with the goal to make analytical work-
flows executable on any server by a third party. This minimizes efforts needed
as workflows are not disrupted in the middle of a project and minimizes the
opportunity to post-modify data and results, thus creating transparency. Ap-
plying continuous integration principles from the start and taking into account
data quality and publishing data and scripts early in the research process as
well as specifying tests that monitor data quality and run analytical workflows
independently of the researchers carrying out the research as well as publishing
results continuously and transparently in some repository is an effective way of
fostering analytical reproducibility.

147

This book presents the results of the Conquaire (Continuous Quality Control for
 Research Data to Ensure Reproducibility) project. The goal of the project was to
investigate if principles of continuous quality control and test-driven development
can be applied to the management of research data to increase its quality and
potential for re-use.

We have been working closely together with researchers from different disci-
plines ranging from biology through chemistry, economics, linguistics, psycholo-
gy to computer science and robotics. Within eight case studies we have aimed at
reproducing one central part of a previously published research article, focusing
on what we call “analytical reproducibility”, that is, reproducing the computational
evaluation of an experiment.

The work conducted in the case studies has provided us with a detailed under-
standing of the analytical workflows used by all the case study partners as well as
with a deep understanding of barriers and challenges to reproduction. The book
concludes with recommendations and lessons learned from the practical attempt
to reproduce a number of published results.

ISBN 978-3-9433-6306-7

	Preface
	Introduction
	Motivation
	Overview of Conquaire Infrastructure and Workflow
	Case Studies in Computational Reproducibility
	Analysis
	Levels of Reproducibility
	Data formats used by case study partners
	Tools used by case study partners
	Reproducibility Analysis

	Summary
	Bibliography

	Conquaire Infrastructure for Continuous Quality Control
	Introduction
	Why we use Git and GitLab
	Git
	GitLab

	Conquaire Continuous Quality Control Infrastructure
	Overview
	Example of pre-configured YAML file
	Quality checks

	Summary

	Reproducibility of whole-body movement analyses of insects
	Introduction
	Methods
	Data workflow: acquisition and processing pipeline
	Data acquisition: Experimental procedure
	Manual editing and annotation
	Secondary processing: Whole-body kinematics

	Analytical Reproducibility
	Analysis pipeline, data formats and software tools
	Technical Challenges and Issues

	Conclusion
	Bibliography

	Reproducing Trajectory Analysis of Bumblebee Exploration Flights
	Introduction
	Experiment settings and data acquisition pipeline
	Computational Environment for Reproducibility
	Software Migration
	Virtualization
	Continuous Integration supporting quality control

	Conclusion
	Bibliography

	Reproducing experiments of ice nucleation in atmospheric chemistry
	Introduction
	Methods
	Experiment settings and Data acquisition pipeline
	Methods applied to analyze the experimental data
	Main Results

	Analytical Reproducibility
	Research Data - Primary
	Research Data - Analyzed and Processed
	Data Workflow Lifecycle
	Summary of Reproducibility Experiment

	Conclusion
	Bibliography

	Visualization of economic agent-based simulations
	Introduction
	Methods
	The FLAME Environment
	Simulation Data

	Analytical Reproducibility
	Data Analysis Pipeline
	Plotting with FLAViz

	Summary and limitations
	Conclusion
	Bibliography

	Reproducing experiments on early verb understanding in infants
	Introduction
	Methods
	Experimental settings and data acquisition pipeline
	Methods applied to analyze the data
	Main Results

	Analytical Reproducibility
	Data Workflow Lifecycle
	Reproducibility Results

	Summary of computational reproduction experiment
	Conclusion
	Bibliography

	Reproducing an experiment in automatic disfluency detection
	Introduction
	Methods
	Analytical Reproducibility
	Summary of reproducibility experiment
	Conclusion
	Bibliography

	Reproducing the analysis of sequential visual processing
	Introduction
	Methods
	Experiment settings and Data acquisition pipeline
	Methods applied to analyze the experiment data

	Analytical Reproducibility
	Research Data
	Analytical Reproducibility status
	Discussion of reproducibility experiment

	Conclusion
	Bibliography

	Reproducibility in Human-Robot Interaction Research: A Case Study
	Introduction
	Experimental Settings and Methods
	The JSE Experiment
	Replication in Indiana

	Analytical Reproducibility: Results & Lessons Learned
	Technical Obstacles & Procedural Issues
	Results of the Pilot Study on Reproducibility in HRI

	Analysis of reproducibility experiment
	Conclusion
	Bibliography

	Conclusion
	Leere Seite

