3 research outputs found

    Microarchitecture Choices and Tradeoffs for Maximizing Processing Efficiency.

    Full text link
    This thesis is concerned with hardware approaches for maximizing the number of independent instructions in the execution core and thereby maximizing the processing efficiency for a given amount of compute bandwidth. Compute bandwidth is the number of parallel execution units multiplied by the pipelining of those units in the processor. Keeping those computing elements busy is key to maximize processing efficiency and therefore power efficiency. While some applications have many independent instructions that can be issued in parallel without inefficiencies due to branch behavior, cache behavior, or instruction dependencies, most applications have limited parallelism and plenty of stalling conditions. This thesis presents two approaches to this problem, which in combination greatly increases the efficiency of the processor utilization of resources. The first approach addresses the problem of small basic blocks that arise when code has frequent branches. We introduce algorithms and mechanisms to predict multiple branches simultaneously and to fetch multiple non-continuous basic blocks every cycle along a predicted branch path. This makes what was previously an inherently serial process into a parallelized instruction fetch approach. For integer applications, the result is an increase in useful instruction fetch capacity of 40% when two basic blocks are fetched per cycle and 63% for three blocks per cycle. For floating point benchmarks, the associated improvement is 27% and 59%. The second approach addresses increasing the number of independent instructions to the execution core through simultaneous multi-threading (SMT). We compare to another multithreading approach, Switch-on-Event multithreading, and show that SMT is far superior. Intel Pentium 4 SMT microarchitecture algorithms are analyzed, and we look at the impact of SMT on power efficiency of the Pentium 4 Processor. A new metric, the SMT Energy Benefit is defined. Not only do we show that the SMT Energy Benefit for a given workload with SMT can be quite significant, we also generalize the results and build a model for what other future processors’ SMT Energy Benefit would be. We conclude that while SMT will continue to be an energy-efficient feature, as processors get more energy-efficient in general the relative SMT Energy Benefit may be reduced.Ph.D.Computer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/61740/1/dtmarr_1.pd

    Abstract Early Experience with Scientific Programs on the Cray MTA-2

    No full text
    National Science Foundation We describe our experiences porting and tuning three scientific programs to the Cray MTA-2, paying particular attention to the problems posed by I/O. We have measured the performance of each of the programs over many different machine configurations and we report on the scalability of each program. In addition, we compare the performance of the MTA with that of an SGI Origin running all three programs.

    Scalable system software for high performance large-scale applications

    Get PDF
    In the last decades, high-performance large-scale systems have been a fundamental tool for scientific discovery and engineering advances. The sustained growth of supercomputing performance and the concurrent reduction in cost have made this technology available for a large number of scientists and engineers working on many different problems. The design of next-generation supercomputers will include traditional HPC requirements as well as the new requirements to handle data-intensive computations. Data intensive applications will hence play an important role in a variety of fields, and are the current focus of several research trends in HPC. Due to the challenges of scalability and power efficiency, next-generation of supercomputers needs a redesign of the whole software stack. Being at the bottom of the software stack, system software is expected to change drastically to support the upcoming hardware and to meet new application requirements. This PhD thesis addresses the scalability of system software. The thesis start at the Operating System level: first studying general-purpose OS (ex. Linux) and then studying lightweight kernels (ex. CNK). Then, we focus on the runtime system: we implement a runtime system for distributed memory systems that includes many of the system services required by next-generation applications. Finally we focus on hardware features that can be exploited at user-level to improve applications performance, and potentially included into our advanced runtime system. The thesis contributions are the following: Operating System Scalability: We provide an accurate study of the scalability problems of modern Operating Systems for HPC. We design and implement a methodology whereby detailed quantitative information may be obtained for each OS noise event. We validate our approach by comparing it to other well-known standard techniques to analyze OS noise, such FTQ (Fixed Time Quantum). Evaluation of the address translation management for a lightweight kernel: we provide a performance evaluation of different TLB management approaches ¿ dynamic memory mapping, static memory mapping with replaceable TLB entries, and static memory mapping with fixed TLB entries (no TLB misses) on a IBM BlueGene/P system. Runtime System Scalability: We show that a runtime system can efficiently incorporate system services and improve scalability for a specific class of applications. We design and implement a full-featured runtime system and programming model to execute irregular appli- cations on a commodity cluster. The runtime library is called Global Memory and Threading library (GMT) and integrates a locality-aware Partitioned Global Address Space communication model with a fork/join program structure. It supports massive lightweight multi-threading, overlapping of communication and computation and small messages aggregation to tolerate network latencies. We compare GMT to other PGAS models, hand-optimized MPI code and custom architectures (Cray XMT) on a set of large scale irregular applications: breadth first search, random walk and concurrent hash map access. Our runtime system shows performance orders of magnitude higher than other solutions on commodity clusters and competitive with custom architectures. User-level Scalability Exploiting Hardware Features: We show the high complexity of low-level hardware optimizations for single applications, as a motivation to incorporate this logic into an adaptive runtime system. We evaluate the effects of controllable hardware-thread priority mechanism that controls the rate at which each hardware-thread decodes instruction on IBM POWER5 and POWER6 processors. Finally, we show how to effectively exploits cache locality and network-on-chip on the Tilera many-core architecture to improve intra-core scalability
    corecore