83 research outputs found

    EXPANDER – an integrative program suite for microarray data analysis

    Get PDF
    BACKGROUND: Gene expression microarrays are a prominent experimental tool in functional genomics which has opened the opportunity for gaining global, systems-level understanding of transcriptional networks. Experiments that apply this technology typically generate overwhelming volumes of data, unprecedented in biological research. Therefore the task of mining meaningful biological knowledge out of the raw data is a major challenge in bioinformatics. Of special need are integrative packages that provide biologist users with advanced but yet easy to use, set of algorithms, together covering the whole range of steps in microarray data analysis. RESULTS: Here we present the EXPANDER 2.0 (EXPression ANalyzer and DisplayER) software package. EXPANDER 2.0 is an integrative package for the analysis of gene expression data, designed as a 'one-stop shop' tool that implements various data analysis algorithms ranging from the initial steps of normalization and filtering, through clustering and biclustering, to high-level functional enrichment analysis that points to biological processes that are active in the examined conditions, and to promoter cis-regulatory elements analysis that elucidates transcription factors that control the observed transcriptional response. EXPANDER is available with pre-compiled functional Gene Ontology (GO) and promoter sequence-derived data files for yeast, worm, fly, rat, mouse and human, supporting high-level analysis applied to data obtained from these six organisms. CONCLUSION: EXPANDER integrated capabilities and its built-in support of multiple organisms make it a very powerful tool for analysis of microarray data. The package is freely available for academic users a

    GEPS: the Gene Expression Pattern Scanner

    Get PDF
    Gene Expression Pattern Scanner (GEPS) is a web-based server to provide interactive pattern analysis of user-submitted microarray data for facilitating their further interpretation. Putative gene expression patterns such as correlated expression, similar expression and specific expression are determined globally and systematically using geometric comparison and correlation analysis methods. These patterns can be visualized via linear plot with quantitative measures. User-defined threshold value is allowed to customize the format of the pattern search results. For better understanding of gene expression, patterns derived from 329 205 non-redundant gene expression records from the GNF SymAltas and the Gene Expression Omnibus are also provided. These profiles cover 24 277 human genes in 79 tissues, 32 905 mouse genes in 61 tissues and 4201 rat genes in 44 tissues. GEPS is available at

    Prenatal Arsenic Exposure Alters Gene Expression in the Adult Liver to a Proinflammatory State Contributing to Accelerated Atherosclerosis

    Get PDF
    The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE−/−) mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE−/− mice exposed to 49 ppm arsenic in utero from gestational day (GD) 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND) 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a). Gene ontology (GO) annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8) and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes containing SREBP1 binding sites also suggest pathways for diabetes mellitus and rheumatoid arthritis, both diseases that contribute to increased cardiovascular disease in humans

    An Unsupervised Approach to Predict Functional Relations between Genes Based on Expression Data

    Get PDF

    Gitools: Analysis and Visualisation of Genomic Data Using Interactive Heat-Maps

    Get PDF
    Intuitive visualization of data and results is very important in genomics, especially when many conditions are to be analyzed and compared. Heat-maps have proven very useful for the representation of biological data. Here we present Gitools (http://www.gitools.org), an open-source tool to perform analyses and visualize data and results as interactive heat-maps. Gitools contains data import systems from several sources (i.e. IntOGen, Biomart, KEGG, Gene Ontology), which facilitate the integration of novel data with previous knowledge

    Pathway redundancy and protein essentiality revealed in the Saccharomyces cerevisiae interaction networks

    Get PDF
    The biological interpretation of genetic interactions is a major challenge. Recently, Kelley and Ideker proposed a method to analyze together genetic and physical networks, which explains many of the known genetic interactions as linking different pathways in the physical network. Here, we extend this method and devise novel analytic tools for interpreting genetic interactions in a physical context. Applying these tools on a large-scale Saccharomyces cerevisiae data set, our analysis reveals 140 between-pathway models that explain 3765 genetic interactions, roughly doubling those that were previously explained. Model genes tend to have short mRNA half-lives and many phosphorylation sites, suggesting that their stringent regulation is linked to pathway redundancy. We also identify ‘pivot' proteins that have many physical interactions with both pathways in our models, and show that pivots tend to be essential and highly conserved. Our analysis of models and pivots sheds light on the organization of the cellular machinery as well as on the roles of individual proteins

    Edge-weighting of gene expression graphs

    Get PDF
    In recent years, considerable research efforts have been directed to micro-array technologies and their role in providing simultaneous information on expression profiles for thousands of genes. These data, when subjected to clustering and classification procedures, can assist in identifying patterns and providing insight on biological processes. To understand the properties of complex gene expression datasets, graphical representations can be used. Intuitively, the data can be represented in terms of a bipartite graph, with weighted edges corresponding to gene-sample node couples in the dataset. Biologically meaningful subgraphs can be sought, but performance can be influenced both by the search algorithm, and, by the graph-weighting scheme and both merit rigorous investigation. In this paper, we focus on edge-weighting schemes for bipartite graphical representation of gene expression. Two novel methods are presented: the first is based on empirical evidence; the second on a geometric distribution. The schemes are compared for several real datasets, assessing efficiency of performance based on four essential properties: robustness to noise and missing values, discrimination, parameter influence on scheme efficiency and reusability. Recommendations and limitations are briefly discussed

    BirdsEyeView (BEV): graphical overviews of experimental data

    Get PDF
    Background: Analyzing global experimental data can be tedious and time-consuming. Thus, helping biologists see results as quickly and easily as possible can facilitate biological research, and is the purpose of the software we describe. Results: We present BirdsEyeView, a software system for visualizing experimental transcriptomic data using different views that users can switch among and compare. BirdsEyeView graphically maps data to three views: Cellular Map (currently a plant cell), Pathway Tree with dynamic mapping, and Gene Ontology http://www. geneontology.org Biological Processes and Molecular Functions. By displaying color-coded values for transcript levels across different views, BirdsEyeView can assist users in developing hypotheses about their experiment results. Conclusions: BirdsEyeView is a software system available as a Java Webstart package for visualizing transcriptomic data in the context of different biological views to assist biologists in investigating experimental results. BirdsEyeView can be obtained from http://metnetdb.org/MetNet_BirdsEyeView.htm

    K-rank : an evolution of y-rank for multiple solutions problem

    Get PDF
    Y-rank can present faults when dealing with non-linear problems. A methodology is proposed to improve the selection of data in situations where y-rank is fragile. The proposed alternative, called k-rank, consists of splitting the data set into clusters using the k-means algorithm, and then apply y-rank to the generated clusters. Models were calibrated and tested with subsets split by y-rank and k-rank. For the Heating Tank case study, in 59% of the simulations, models calibrated with k-rank subsets achieved better results. For the Propylene / Propane Separation Unit case, when dealing with a small number of sample points, the y-rank models had errors almost three times higher than the k-rank models for the test subset, meaning that the fitted model could not deal properly with new unseen data. The proposed methodology was successful in splitting the data, especially in cases with a limited amount of samples

    DISCLOSE : DISsection of CLusters Obtained by SEries of transcriptome data using functional annotations and putative transcription factor binding sites

    Get PDF
    Background: A typical step in the analysis of gene expression data is the determination of clusters of genes that exhibit similar expression patterns. Researchers are confronted with the seemingly arbitrary choice between numerous algorithms to perform cluster analysis. Results: We developed an exploratory application that benchmarks the results of clustering methods using functional annotations. In addition, a de novo DNA motif discovery algorithm is integrated in our program which identifies overrepresented DNA binding sites in the upstream DNA sequences of genes from the clusters that are indicative of sites of transcriptional control. The performance of our program was evaluated by comparing the original results of a time course experiment with the findings of our application. Conclusion: DISCLOSE assists researchers in the prokaryotic research community in systematically evaluating results of the application of a range of clustering algorithms to transcriptome data. Different performance measures allow to quickly and comprehensively determine the best suited clustering approach for a given dataset.
    corecore