95 research outputs found

    Optimal Input Representation in Neural Systems at the Edge of Chaos

    Get PDF
    Shedding light on how biological systems represent, process and store information in noisy environments is a key and challenging goal. A stimulating, though controversial, hypothesis poses that operating in dynamical regimes near the edge of a phase transition, i.e., at criticality or the “edge of chaos”, can provide information-processing living systems with important operational advantages, creating, e.g., an optimal trade-off between robustness and flexibility. Here, we elaborate on a recent theoretical result, which establishes that the spectrum of covariance matrices of neural networks representing complex inputs in a robust way needs to decay as a power-law of the rank, with an exponent close to unity, a result that has been indeed experimentally verified in neurons of the mouse visual cortex. Aimed at understanding and mimicking these results, we construct an artificial neural network and train it to classify images. We find that the best performance in such a task is obtained when the network operates near the critical point, at which the eigenspectrum of the covariance matrix follows the very same statistics as actual neurons do. Thus, we conclude that operating near criticality can also have—besides the usually alleged virtues—the advantage of allowing for flexible, robust and efficient input representations.The Spanish Ministry and Agencia Estatal de investigación (AEI) through grant FIS2017-84256-P (European Regional Development Fund)“Consejería de Conocimiento, Investigación Universidad, Junta de Andalucía” and European Regional Development Fund, Project Ref. A-FQM-175-UGR18 and Project Ref. P20-0017

    Photonic reservoir computing with a network of coupled semiconductor optical amplifiers

    Get PDF

    Differential privacy for learning vector quantization

    Get PDF
    Brinkrolf J, Göpfert C, Hammer B. Differential privacy for learning vector quantization. Neurocomputing. 2019;342:125-136

    How Fast Can We Play Tetris Greedily With Rectangular Pieces?

    Get PDF
    Consider a variant of Tetris played on a board of width ww and infinite height, where the pieces are axis-aligned rectangles of arbitrary integer dimensions, the pieces can only be moved before letting them drop, and a row does not disappear once it is full. Suppose we want to follow a greedy strategy: let each rectangle fall where it will end up the lowest given the current state of the board. To do so, we want a data structure which can always suggest a greedy move. In other words, we want a data structure which maintains a set of O(n)O(n) rectangles, supports queries which return where to drop the rectangle, and updates which insert a rectangle dropped at a certain position and return the height of the highest point in the updated set of rectangles. We show via a reduction to the Multiphase problem [P\u{a}tra\c{s}cu, 2010] that on a board of width w=Θ(n)w=\Theta(n), if the OMv conjecture [Henzinger et al., 2015] is true, then both operations cannot be supported in time O(n1/2−ϔ)O(n^{1/2-\epsilon}) simultaneously. The reduction also implies polynomial bounds from the 3-SUM conjecture and the APSP conjecture. On the other hand, we show that there is a data structure supporting both operations in O(n1/2log⁥3/2n)O(n^{1/2}\log^{3/2}n) time on boards of width nO(1)n^{O(1)}, matching the lower bound up to a no(1)n^{o(1)} factor.Comment: Correction of typos and other minor correction

    Median topographic maps for biomedical data sets

    Full text link
    Median clustering extends popular neural data analysis methods such as the self-organizing map or neural gas to general data structures given by a dissimilarity matrix only. This offers flexible and robust global data inspection methods which are particularly suited for a variety of data as occurs in biomedical domains. In this chapter, we give an overview about median clustering and its properties and extensions, with a particular focus on efficient implementations adapted to large scale data analysis

    Classification Algorithms Applied to a Brain Computer Interface System Based On P300

    Get PDF
    A BCI or Brain Computer Interface is defined as a method of communication that converts neural activities generated by brain of living being (without the use of peripheral muscles and nerves) into computer commands or other device commands. BCI systems are useful for people with severe disability who have no reliable control over their muscles in order to interact with their surrounding environment. The BCI system used in this paper has used P300 evoked potential and three classifiers namely Logistic Regression (LR), Neural Network (NN), and Support Vector Machine (SVM). The system is tested with four people with severe disability and two able-bodied people. Classification accuracies obtained from LR, NN, SVM classifiers is then compared with Bayesian Linear Discriminant Analysis (BLDA) classifier and with each other. The relevant factors required for obtaining good classification accuracy in P300 evoked potential based BCI systems is also being explored and discussed

    Dashboard Framework. A Tool for Threat Monitoring on the Example of Covid-19

    Get PDF
    The aim of the study is to create a dashboard framework to monitor the spread of the Covid-19 pandemic based on quantitative and qualitative data processing. The theoretical part propounds the basic assumptions underlying the concept of the dashboard framework. The paper presents the most important functions of the dashboard framework and examples of its adoption. The limitations related to the dashboard framework development are also indicated. As part of empirical research, an original model of the Dash-Cov framework was designed, enabling the acquisition and processing of quantitative and qualitative data on the spread of the SARS-CoV-2 virus. The developed model was pre-validated. Over 25,000 records and around 100,000 tweets were analyzed. The adopted research methods included statistical analysis and text analysis methods, in particular the sentiment analysis and the topic modeling

    A Review of Deep Learning Methods and Applications for Unmanned Aerial Vehicles

    Get PDF
    Deep learning is recently showing outstanding results for solving a wide variety of robotic tasks in the areas of perception, planning, localization, and control. Its excellent capabilities for learning representations from the complex data acquired in real environments make it extremely suitable for many kinds of autonomous robotic applications. In parallel, Unmanned Aerial Vehicles (UAVs) are currently being extensively applied for several types of civilian tasks in applications going from security, surveillance, and disaster rescue to parcel delivery or warehouse management. In this paper, a thorough review has been performed on recent reported uses and applications of deep learning for UAVs, including the most relevant developments as well as their performances and limitations. In addition, a detailed explanation of the main deep learning techniques is provided. We conclude with a description of the main challenges for the application of deep learning for UAV-based solutions
    • 

    corecore