128,534 research outputs found

    Vascular endothelial growth factor transgene expression in cell-transplanted hearts

    Get PDF
    AbstractObjectiveWe evaluated the effect of transplanted cell type, time, and region of the heart on transgene expression to determine the potential of combined gene and cell delivery for myocardial repair.MethodsLewis rats underwent myocardial cryoinjury 3 weeks before transplantation with heart cells (a mixed culture of cardiomyocytes, smooth muscle cells, endothelial cells and fibroblasts, n = 13), vascular endothelial growth factor–transfected heart cells (n = 13), skeletal myoblasts (n = 13), vascular endothelial growth factor–transfected skeletal myoblasts (n = 13), or medium (control, n = 12). Vascular endothelial growth factor expression in the scar, border zone, and normal myocardium was evaluated at 3 days and at 1, 2, and 4 weeks by means of quantitative polymerase chain reaction. Transplanted cells and vascular endothelial growth factor protein were identified immunohistologically on myocardial sections.ResultsVascular endothelial growth factor levels were very low in control scars but increased transiently after medium injection. Transplantation with heart cells and skeletal myoblasts significantly increased vascular endothelial growth factor expression in the scar and border zone. Transplantation of vascular endothelial growth factor–transfected heart cells and vascular endothelial growth factor–transfected skeletal myoblasts further augmented vascular endothelial growth factor expression, resulting in 4- to 5-fold greater expression of vascular endothelial growth factor in the scar at 1 week. Peak vascular endothelial growth factor expression was greater and earlier in vascular endothelial growth factor–transfected heart cells than in vascular endothelial growth factor–transfected skeletal myoblasts. Vascular endothelial growth factor was primarily expressed by the transplanted cells. Some of the transplanted heart cells and vascular endothelial growth factor–transfected heart cells were identified in the endothelial layer of blood vessels in the scar.ConclusionsTransplantation of heart cells and skeletal myoblasts induces vascular endothelial growth factor expression in myocardial scars and is greatly augmented by prior transfection with a vascular endothelial growth factor transgene. Vascular endothelial growth factor expression is limited to the scar and border zone for 4 weeks. Both heart cells and skeletal myoblasts may be excellent delivery vehicles for cell-based myocardial gene therapy

    Prognostic impact of matched preoperative plasma and serum VEGF in patients with primary colorectal carcinoma

    Get PDF
    In serum, the major part of vascular endothelial growth factor derives from in vitro degranulation of granulocytes and platelets. Therefore, plasma may be preferred for vascular endothelial growth factor measurements. However, which specimen is the best predictor of survival is still debated. The present study analyzed the prognostic value of matched preoperative serum and plasma vascular endothelial growth factor concentrations in patients with colorectal cancer. To establish the reference range among healthy people, vascular endothelial growth factor was analyzed in 50 matched EDTA-plasma and serum samples from healthy blood donors. Preoperatively, in 524 patients with colorectal cancer, matched plasma and serum vascular endothelial growth factor concentrations were analyzed. In the colorectal cancer patients, the median plasma vascular endothelial growth factor concentration (44 pg ml−1) was significantly (P=0.01) higher than the median plasma vascular endothelial growth factor concentration (30 pg ml−1) in the healthy blood donors. In serum, no significant (P=0.30) difference in the median vascular endothelial growth factor concentration was found between colorectal cancer patients (268 pg ml−1) and healthy blood donors (220 pg ml−1). The preoperative vascular endothelial growth factor concentrations were dichotomized by the 95th percentile of the healthy blood donors (plasma=112 pg ml−1, serum=533 pg ml−1). In univariate survival analyses, both high plasma vascular endothelial growth factor (>112 pg ml−1) and high serum vascular endothelial growth factor (>533 pg ml−1) predicted a reduced survival. In multivariate survival analyses, high serum vascular endothelial growth factor (>533 pg ml−1) independently predicted a reduced survival (HR=1.65, P=0.015), while high plasma vascular endothelial growth factor (>112 pg ml−1) did not (HR=1.27, P=0.23). This study indicates that preoperative serum vascular endothelial growth factor apparently is a better predictor of overall survival than the preoperative plasma vascular endothelial growth factor

    Dynamic soluble changes in sVEGFR1, HGF, and VEGF promote chemotherapy and bevacizumab resistance: A prospective translational study in the BECOX (GEMCAD 09-01) trial

    Full text link
    Despite initial responsiveness, acquired resistance to both bevacizumab and chemotherapy in metastatic colorectal cancer is universal. We have recently published that in vitro, chronically oxaliplatin resistance upregulates soluble vascular endothelial growth factor receptor 1, downregulates vascular endothelial growth factor, and also promotes c-MET, b-ca catenin/transcription factor 4, and AKT activation. We tested whether variation in three serum biomarkers such as the natural c-MET ligand (hepatocyte growth factor), soluble vascular endothelial growth factor receptor 1, and vascular endothelial growth factor-A was associated with efficacy in metastatic colorectal cancer patients treated in the prospective BECOX study. Serum levels of vascular endothelial growth factor-A165, soluble vascular endothelial growth factor receptor 1, and hepatocyte growth factor were assessed by enzyme-linked immunosorbent assay method basally and every 3 cycles (at the time of computed tomography evaluation) in a preplanned translational study in the first-line BECOX trial in metastatic colorectal cancer patients treated with CAPOX plus bevacizumab. Response was evaluated by routine contrast-enhanced computed tomography by RECIST 1.1 by investigator assessment and by three blinded independent radiologists. Ratios between soluble vascular endothelial growth factor receptor 1/vascular endothelial growth factor-A and hepatocyte growth factor/vascular endothelial growth factor-A were established and variations through time were related to RECIST 1.1 by investigator assessment and independent radiologist. The BECOX trial included 68 patients, and 27 patients were analyzed in the translational trial. A total of 80 RECIST 1.1 evaluations were done by investigator assessment and 56 by independent radiologist. We found that a 3.22-fold increase in soluble vascular endothelial growth factor receptor 1/vascular endothelial growth factor-A by investigator assessment and a 3.06-fold increase in soluble vascular endothelial growth factor receptor 1/vascular endothelial growth factor-A by independent radiologist from previous determination were associated with responses compared with 1.38-fold increase by investigator assessment and 1.59 by independent radiologist in non-responders (p= 0.0009 and p = 0.03, respectively). Responders had a 3.36-fold increase in hepatocyte growth factor/vascular endothelial growth factor-A from previous determination by investigator assessment and 3.66-fold increase in hepatocyte growth factor/vascular endothelial growth factor-A by independent radiologist compared with 1.43-fold increase by investigator assessment and 1.53 by independent radiologist for non-responders (p = 0.002 and 0.003, respectively). In conclusion, a decrease in vascular endothelial growth factor-A and an increase in soluble vascular endothelial growth factor receptor 1 during chemotherapy and bevacizumab exposure can contribute to both chemotherapy (due to c- MET/b-catenin activation) and bevacizumab (due to low vascular endothelial growth factor requirements) resistance. Because hepatocyte growth factor levels decrease also during acquired resistance, alternative strategies to hepatocyte growth factor–ligand inhibition should be investigatedThis work was supported by “beca SEOM a Jóvenes Investigadores 2009” and by the Emili Letang fellowship to Estela Pineda

    A comparison of serum and plasma levels of vascular endothelial growth factor during the menstrual cycle in healthy female volunteers

    Get PDF
    Angiogenesis is the formation of new blood vessels from the existing vasculature, and is essential for the growth and metastasis of most solid tumours. One of the most important growth factors involved in the angiogenesis process is vascular endothelial growth factor. Vascular endothelial growth factor expression has been shown to be regulated by female hormones in breast cancer cell lines, and two previous authors have reported on cyclical variations in serum vascular endothelial growth factor concentrations with conflicting results. No work has been performed on variations in plasma levels of vascular endothelial growth factor during the menstrual cycle. We therefore conducted the first prospective trial to compare serum and plasma levels of vascular endothelial growth factor in healthy pre-menopausal volunteers. Twenty healthy pre-menopausal women were recruited and had blood samples taken over one menstrual cycle with an average of eight samples taken per patient. Plasma and serum samples were then analysed for sex hormones and vascular endothelial growth factor 165. Serum vascular endothelial growth factor levels were found to be significantly higher than plasma vascular endothelial growth factor levels (P<0.005). We found no significant difference between serum and plasma vascular endothelial growth factor in the luteal and follicular phases of the cycle. The majority of the measurements for plasma levels of vascular endothelial growth factor at all phases of the cycle were under the limit of detection of the vascular endothelial growth factor ELISA kit. We found no significant correlation between plasma or serum levels of vascular endothelial growth factor and either FSH, LH, Oestradiol or Progesterone levels. This study has demonstrated no difference in serum concentrations of vascular endothelial growth factor during the different phases of the menstrual cycle in a group of healthy volunteers. We also demonstrated no obvious difference in plasma concentrations of vascular endothelial growth factor between the phases of the cycle, but most of the measurements were below the level of accuracy reported by the ELISA kit manufacturer. With the sensitivity of this ELISA test, therefore, we must still regard the question of whether there is a variation in plasma concentrations of vascular endothelial growth factor throughout the menstrual cycle as unanswered

    Effects of diabetes on myocardial capillary density and serum angiogenesis biomarkers in male rats

    Get PDF
    INTRODUCTION: Cardiovascular disease is one of the main causes of mortality and morbidity in diabetic patients. This study evaluated the effects of diabetes on myocardial capillary density and several serum angiogenic factors including nitric oxide, vascular endothelial growth factor, and soluble vascular endothelial growth factor receptors. METHODS: Twelve male rats were divided into two groups: control and diabetic (n = 6 each). Diabetes was induced with a single dose of streptozotocin (50 mg/kg). After 21 days, capillary density in the myocardial tissue was evaluated using immunohistochemical staining and is reported as capillaries per mm². Blood samples were collected before and after the induction of diabetes. RESULTS: In the diabetic group, serum nitric oxide and soluble vascular endothelial growth factor receptor 2 concentrations were lower than the levels in the control group, while the level of soluble vascular endothelial growth factor receptor 1 was significantly higher. There was no significant change in the serum vascular endothelial growth factor concentration between the diabetic and control groups; however, the ratio of vascular endothelial growth factor to vascular endothelial growth factor receptor 1 was significantly lower in the diabetic animals. The myocardial capillary density was also lower in the diabetic group compared with the control group (1549 ± 161 vs. 2156 ± 202/mm², respectively). CONCLUSION: Reduced serum nitric oxide and vascular endothelial growth factor receptor 2 levels, increased serum vascular endothelial growth factor receptor 1 levels and a lower vascular endothelial growth factor to vascular endothelial growth factor receptor 1 ratio may be responsible for the decreased myocardial capillary density in diabetic rats

    Cardiotoxicity with vascular endothelial growth factor inhibitor therapy

    Get PDF
    Angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway (VSP) have been important additions in the therapy of various cancers, especially renal cell carcinoma and colorectal cancer. Bevazicumab, the first VSP to receive FDA approval in 2004 targeting all circulating isoforms of VEGF-A, has become one of the best-selling drugs of all times. The second wave of tyrosine kinase inhibitors (TKIs), which target the intracellular site of VEGF receptor kinases, began with the approval of sorafenib in 2005 and sunitinib in 2006. Heart failure was subsequently noted, in 2–4% of patients on bevacizumab and in 3–8% of patients on VSP-TKIs. The very fact that the single-targeted monoclonal antibody bevacizumab can induce cardiotoxicity supports a pathomechanistic role for the VSP and the postulate of the “vascular” nature of VSP inhibitor cardiotoxicity. In this review we will outline this scenario in greater detail, reflecting on hypertension and coronary artery disease as risk factors for VSP inhibitor cardiotoxicity, but also similarities with peripartum and diabetic cardiomyopathy. This leads to the concept that any preexisting or coexisting condition that reduces the vascular reserve or utilizes the vascular reserve for compensatory purposes may pose a risk factor for cardiotoxicity with VSP inhibitors. These conditions need to be carefully considered in cancer patients who are to undergo VSP inhibitor therapy. Such vigilance is not to exclude patients from such prognostically extremely important therapy but to understand the continuum and to recognize and react to any cardiotoxicity dynamics early on for superior overall outcomes

    Enhanced Vascularization of Cultured Skin Substitutes Genetically Modified to Overexpress Vascular Endothelial Growth Factor11The authors declared in writing to have no conflict of interest.

    Get PDF
    Cultured skin substitutes have been used as adjunctive therapies in the treatment of burns and chronic wounds, but they are limited by lack of a vascular plexus. This deficiency leads to greater time for vascularization compared with native skin autografts and contributes to graft failure. Genetic modification of cultured skin substitutes to enhance vascularization could hypothetically lead to improved wound healing. To address this hypothesis, human keratinocytes were genetically modified by transduction with a replication incompetent retrovirus to overexpress vascular endothelial growth factor, a specific and potent mitogen for endothelial cells. Cultured skin substitutes consisting of collagen-glycosaminoglycan substrates inoculated with human fibroblasts and either vascular endothelial growth factor-modified or control keratinocytes were prepared, and were cultured in vitro for 21 d. Northern blot analysis demonstrated enhanced expression of vascular endothelial growth factor mRNA in genetically modified keratinocytes and in cultured skin substitutes prepared with modified cells. Furthermore, the vascular endothelial growth factor-modified cultured skin substitutes secreted greatly elevated levels of vascular endothelial growth factor protein throughout the entire culture period. The bioactivity of vascular endothelial growth factor protein secreted by the genetically modified cultured skin substitutes was demonstrated using a microvascular endothelial cell growth assay. Vascular endothelial growth factor-modified and control cultured skin substitutes were grafted to full-thickness wounds on athymic mice, and elevated vascular endothelial growth factor mRNA expression was detected in the modified grafts for at least 2 wk after surgery. Vascular endothelial growth factor-modified grafts exhibited increased numbers of dermal blood vessels and decreased time to vascularization compared with controls. These results indicate that genetic modification of keratinocytes in cultured skin substitutes can lead to increased vascular endothelial growth factor expression, which could prospectively improve vascularization of cultured skin substitutes for wound healing applications

    VEGF is indirectly associated with NO production

    No full text
    Background? Increased levels of vascular endothelial growth factor (VEGF) have been observed in patients with metabolic syndrome (MetS). Nitric oxide (NO) formation is reduced in MetS, but its relationship to VEGF production remains poorly defined. We evaluated the association between VEGF/NO synthesis and insulin sensitivity in obese subjects and investigated the secretory response of VEGF to an acute elevation of glucose.Materials and methods? Seven healthy normal-weight subjects, seven obese subjects without MetS and seven obese subjects with MetS were recruited. Anthropometry, body composition and cardiometabolic functions (blood pressure, glucose, insulin, triglycerides, total cholesterol, HDL-C and VEGF) were measured, and a novel stable isotope method was used to assess in vivo rates of NO production. A frequent sampling intravenous glucose tolerance test was performed to study the dynamics of VEGF release.Results? Fasting VEGF levels were significantly higher in the two obese groups compared to the control group (P for trend = 0·02), but the difference was not significant after adjustment for age. Vascular endothelial growth factor levels were associated with systolic blood pressure (? = 0·54; P = 0·01) and NO production (? = ?0·44; P = 0·04). Vascular endothelial growth factor levels increased in response to acute hyperglycaemia in normal-weight and obese subjects (P &lt; 0·001).Conclusions? Vascular endothelial growth factor levels rapidly increase during hyperglycaemia and are inversely related to NO production at steady state. The potential link between the acute secretion of VEGF and atherosclerotic risk in subjects with poorly controlled glycaemia as well as the potential of lowering elevated VEGF levels by increasing NO production and/or availability warrants further investigation

    Fibronectin and Cyclic Strain Improve Cardiac Progenitor Cell Regenerative Potential In Vitro.

    Get PDF
    Cardiac progenitor cells (CPCs) have rapidly advanced to clinical trials, yet little is known regarding their interaction with the microenvironment. Signaling cues present in the microenvironment change with development and disease. This work aims to assess the influence of two distinct signaling moieties on CPCs: cyclic biaxial strain and extracellular matrix. We evaluate four endpoints for improving CPC therapy: paracrine signaling, proliferation, connexin43 expression, and alignment. Vascular endothelial growth factor A (about 900 pg/mL) was secreted by CPCs cultured on fibronectin and collagen I. The application of mechanical strain increased vascular endothelial growth factor A secretion 2-4-fold for CPCs cultured on poly-L-lysine, laminin, or a naturally derived cardiac extracellular matrix. CPC proliferation was at least 25% higher on fibronectin than that on other matrices, especially for lower strain magnitudes. At 5% strain, connexin43 expression was highest on fibronectin. With increasing strain magnitude, connexin43 expression decreased by as much as 60% in CPCs cultured on collagen I and a naturally derived cardiac extracellular matrix. Cyclic mechanical strain induced the strongest CPC alignment when cultured on fibronectin or collagen I. This study demonstrates that culturing CPCs on fibronectin with 5% strain magnitude is optimal for their vascular endothelial growth factor A secretion, proliferation, connexin43 expression, and alignment
    corecore