1,030 research outputs found

    POWER QUALITY CONTROL AND COMMON-MODE NOISE MITIGATION FOR INVERTERS IN ELECTRIC VEHICLES

    Get PDF
    Inverters are widely utilized in electric vehicle (EV) applications as a major voltage/current source for onboard battery chargers (OBC) and motor drive systems. The inverter performance is critical to the efficiency of EV system energy conversion and electronics system electro-magnetic interference (EMI) design. However, for AC systems, the bandwidth requirement is usually low compared with DC systems, and the control impact on the inverter differential-mode (DM) and common-mode (CM) performance are not well investigated. With the wide-band gap (WBG) device era, the switching capability of power electronics devices drastically improved. The DM/CM impact that was brought by the WBG device-based inverter becomes more serious and has not been completely understood. This thesis provides an in-depth analysis of on-board inverter control strategies and the corresponding DM/CM impact on the EV system. The OBC inverter control under vehicle-to-load (V2L) mode will be documented first. A virtual resistance damping method minimizes the nonlinear load harmonics, and a neutral balancing method regulates the unbalanced load impact through the fourth leg. In the motor drive system, a generalized CM voltage analytical model and a current ripple prediction model are built for understanding the system CM and DM stress with respect to different modulation methods, covering both 2-level and 3-level topologies. A novel CM EMI damping modulation scheme is proposed for 6-phase inverter applications. The performance comparison between the proposed methods and the conventional solution is carried out. Each topic is supported by the corresponding hardware platform and experimental validation

    Design Tools for Submersible Converter

    Get PDF

    Conducted EMI Mitigation in Power Converters using Active EMI Filters

    Get PDF
    Wide bandgap devices enable high power density power converters. Despite the advantages of increased switching frequency, the passive components are still a major bottleneck towards enabling high power density. Among the passive components in the converter, the passive EMI filters are unavoidable to ensure compliance with conducted EMI standards. Active EMI filters help reduce the volume of the passive components and have been around for three decades now. Firstly, this work presents a summary of all the different active EMI filters based on the type of noise-sensing, noise-processing, the type of active circuits used and the type of control methods. This is followed by modeling, design and stability analysis of three different active EMI filters for DM noise attenuation. The first active EMI filter is a conventional active EMI filter. The key bottlenecks to improving performance of the conventional active EMI filter are identified while still achieving volume reduction of passive components. Following this two novel active EMI filters are presented that overcome the bottlenecks of conventional active EMI filter. The second active EMI filter is based on a analog twin-circuit. This novel filter uses a twin-circuit which enables the use of low-voltage surface-mount components for compensation. The third active EMI filter uses zero-phase filtering implemented in an FPGA. While all the filters are demonstrated for differential-mode noise, their use can be extended for common-mode noise attenuation

    The Use of Active Elements to Reduce the Size and Weight of Passive Components in Adjustable Speed Drives

    Get PDF

    Assessment of novel power electronic converters for drives applications

    Get PDF
    Phd ThesisIn the last twenty years, industrial and academic research has produced over one hundred new converter topologies for drives applications. Regrettably, most of the published work has been directed towards a single topology, giving an overall impression of a large number of unconnected, competing techniques. To provide insight into this wide ranging subject area, an overview of converter topologies is presented. Each topology is classified according to its mode of operation and a family tree is derived encompassing all converter types. Selected converters in each class are analysed, simulated and key operational characteristics identified. Issues associated with the practical implementation of analysed topologies are discussed in detail. Of all AC-AC conversion techniques, it is concluded that softswitching converter topologies offer the most attractive alternative to the standard hard switched converter in the power range up to 100kW because of their high performance to cost ratio. Of the softswitching converters, resonant dc-link topologies are shown to produce the poorest output performance although they offer the cheapest solution. Auxiliary pole commutated inverters, on the other hand, can achieve levels of performance approaching those of the hard switched topology while retaining the benefits of softswitching. It is concluded that the auxiliary commutated resonant pole inverter (ACPI) topology offers the greatest potential for exploitation in spite of its relatively high capital cost. Experimental results are presented for a 20kW hard switched inverter and an equivalent 20kW ACPI. In each case the converter controller is implanted using a digital signal processor. For the ACPI, a new control scheme, which eliminates the need for switch current and voltage sensors, is implemented. Results show that the ACPI produces lower overall losses when compared to its hardswitching counterpart. In addition, device voltage stress, output dv/dt and levels of high frequency output harmonics are all reduced. Finally, it is concluded that modularisation of the active devices, optimisation of semiconductor design and a reduction in the number of additional sensors through the use of novel control methods, such as those presented, will all play a part in the realisation of an economically viable system.Research Committee of the University of Newcastle upon Tyn

    A Simple Virtual-Vector-Based PWM Formulation for Multilevel Three-Phase Neutral-Point-Clamped DC–AC Converters including the Overmodulation Region

    Get PDF
    Neutral-point-clamped (NPC) power conversion topologies are among the most popular multilevel topologies in current industrial products and in industrial and academic research. The proper operation of multilevel three-phase NPC DC–AC converters requires the use of specific pulse-width modulation (PWM) strategies that maintain the DC-link capacitor voltage balance and concurrently optimize various performance factors such as efficiency and harmonic distortion. Although several such PWM strategies have been proposed in the literature, their formulation is often complex and/or covers only particular cases and operating conditions. This manuscript presents a simple formulation of the original virtual-vector-based PWM, which enables capacitor voltage balance in every switching cycle. The formulation is presented, for the general case, in terms of basic phase voltage modulating signals, with no reference to space vectors, involving any number of levels and for any operating conditions, including the overmodulation region. The equivalence of the presented formulation to the original PWM strategy is demonstrated through simulation under different scenarios and operating conditions. Thus, this manuscript offers in a one-stop source a simple, effective, and comprehensive PWM formulation to operate multilevel three-phase NPC DC–AC converters with any number of levels in any operating condition.Peer ReviewedPostprint (updated version

    Common-mode voltage elimination in multilevel power inverter-based motor drive applications

    Get PDF
    The industry and academia are focusing their efforts on finding more efficient and reliable electrical machines and motor drives. However, many of the motors driven by pulse-width modulated converters face the recurring problem of common-mode voltage (CMV). In fact, this voltage leads to other problems such as bearing breakdown, deterioration of the stator winding insulation and electromagnetic interferences (EMI) that can affect the lifespan and correct operation of the motors. In this sense, multilevel converters have proven to be a useful tool for solving these problems and mitigating CMV over the past few decades. Among other reasons, because they provide additional degrees of freedom when comparing with two-level converters. However, although there are several proposals in the scientific literature on this topic, no complete information has been reviewed about the CMV issues and the different multilevel alternatives that can be used to solve it. In this context, the objective of this work is to determine how multilevel power converters provide additional degrees of freedom to make the reduction of the CMV possible by using specific modulation techniques, making it easier for engineers and scientists in this field to find solutions to this problem. This document consists of a descriptive study that collects the strengths and weaknesses of most important multilevel power converters, with special emphasis on how CMV affects each of them. In addition, the differences of modulation techniques aimed to the CMV reduction are explained in terms of output voltage, operating linear range, and generated CMV. Considering this last, it is recommended to use those modulation techniques that allow the generation of CMV levels of 0 V in order to be able to completely eliminate said voltage.This work was supported in part by the Government of the Basque Country within the Fund for Research Groups of the Basque University System under Grant IT978-16; in part by the Research Program ELKARTEK under Project ENSOL2-KK-2020/00077; in part by the Secretaria d’Universitats i Recerca del Departament d’Empresa i Coneixement de la Generalitat de Catalunya; in part by the Ministerio de Ciencia, Innovacion y Universidades of Spain under Project PID2019-111420RB-I00 and Project PID2020-115126RB-I00; and in part by the FEDER Funds.Peer ReviewedPostprint (author's final draft

    Design and Validation of A High-Power, High Density All Silicon Carbide Three-Level Inverter

    Get PDF
    Transportation electrification is clearly the road toward the future. Compared to internal combustion engine, the electrified vehicle has less carbon-dioxide emission, less maintenance costs and less operation costs. It also offers higher efficiency and safety margin. More importantly, it relieves human’s dependence on conventional fossil energy. In the electrification progress, the revolution of electric traction drive systems is one of the most important milestone. The traction system should keep high efficiency to avoid performance reduction. Moreover, the motor drive should be designed within limited space without sacrificing output power rating. Based on the road map from US Drive Electrical and Electronics Technical Team, US Department of Energy, a gap is still there between roadmap target and the state-of-art. To fill the gap, this dissertation performs a systematic research in motor drive system for traction inverters. This paper starts from optimal theoretical design of power converters by using loss model and real-time simulation system. Based on optimal paper design, hardware design is implemented. The component design for converter, such as the laminated busbar, are the focus in this dissertation. The optimized busbar structure can effectively reduce stray inductance in the current-commutation loop, reducing switching overshoots of power modules and increasing semiconductor reliability. The system-level design and trade-off is also analyzed and illustrated by using a 250kW three-level T-type neutral-point clamped converter. The design has reached high efficiency and high-power density. The converter system is also evaluated through comprehensive tests, such as double-pulse tests and continuous tests. The test setup, test condition and test result analysis are discussed in the dissertation. In the end, the dissertation also proposed an improved impedance characterization method for components parasitic inductance measurement in traction drive systems, such as laminated busbar, power module and capacitors. The characterization shares better accuracy and can be customized for device under test with any geometry

    Methodology to Improve Switching Speed of SiC MOSFETs in Hard Switching Applications

    Get PDF
    To meet the higher efficiency and power density requirement for power converters, the switching speed of power devices is preferred to increase. Thanks to silicon carbide (SiC) power MOSFETs, their intrinsic superior switching characteristics compared with silicon IGBTs makes it possible to run converters at faster switching speed in hard switching applications. Nevertheless, the switching speed is not only dependent on the device’s characteristics, but also strongly related to the circuit like gate drive and parasitics. To fully utilize the potential of SiC MOSFETs, the impact factors limiting the switching speed are required to be understood. Specific solutions and methods need to be developed to mitigate the influence from these impact factors.The characterization of the switching speed for SiC MOSFETs with different current ratings is conducted with double pulse test (DPT) first. Based on the result, the impact factors of switching speed are evaluated in detail.According to the evaluation, the switching speed of SiC discrete devices with low current rating is mainly limited by the gate drive capability. A current source gate drive as well as a charge pump gate drive are proposed, which can provide higher current during the switching transient regardless of the low transconductance and large internal gate resistance of SiC discrete devices.For SiC power modules with high current rating, the switching speed is mainly determined by the device drain-source overvoltage resulting from circuit parasitics. An analytical model for the multiple switching loops related overvoltage in 3L-ANPC converters is established. A simple modulation is developed to mitigate the effect of the non-linear device output capacitance, which helps reduce the overvoltage and enables higher switching speed operation of SiC power modules.Furthermore, the layout design methodology for three-level converters concerning the multiple commutation loops is introduced. The development of a laminated busbar for a 500 kVA 3L-ANPC converter with SiC power modules is presented in detail.Finally, a SiC based 1 MW inverter is built and tested to operate at cryogenic temperature. The proposed control and busbar above are utilized to increase the switching speed of the SiC power module
    • …
    corecore