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Abstract

Wide bandgap devices enable high power density power converters. Despite the advantages

of increased switching frequency, the passive components are still a major bottleneck towards

enabling high power density. Among the passive components in the converter, the passive EMI

filters are unavoidable to ensure compliance with conducted EMI standards. Active EMI filters

help reduce the volume of the passive components and have been around for three decades now.

Firstly, this work presents a summary of all the different active EMI filters based on the type of

noise-sensing, noise-processing, the type of active circuits used and the type of control methods.

This is followed by modeling, design and stability analysis of three different active EMI filters

for DM noise attenuation. The first active EMI filter is a conventional active EMI filter. The key

bottlenecks to improving performance of the conventional active EMI filter are identified while

still achieving volume reduction of passive components. Following this two novel active EMI

filters are presented that overcome the bottlenecks of conventional active EMI filter. The second

active EMI filter is based on a analog twin-circuit. This novel filter uses a twin-circuit which

enables the use of low-voltage surface-mount components for compensation. The third active EMI

filter uses zero-phase filtering implemented in an FPGA. While all the filters are demonstrated for

differential-mode noise, their use can be extended for common-mode noise attenuation.
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1 Introduction

The world is progressing towards more and more electrification in many major sectors such

as automotive, aerospace, automation in homes, commercial and industrial facilities. Further, the

growth in the area of renewable energy is also accelerating at a rapid pace. And, the COVID-19

pandemic has, and will continue to change how people live, learn and work. With more and more

work, education and services shifting remote or online, the cloud infrastructure will continue to

see tremendous growth. Power electronics is at the heart of all these powering more devices than

ever in our lifetime. And, all of these activities demand high-density and high-efficiency power

conversion.

Wide bandgap semiconductors such as GaN and SiC devices are key enablers for a electri-

fied future. These devices enable high switching speeds (few ns to 10s of ns) and high switching

frequencies (100s of kHz to few MHz). In addition, the higher junction temperatures enable the re-

duction in cooling requirements. The combined effect of increased switching frequency and higher

junction temperature enable high power density power converters. However, one of the major bot-

tlenecks for high power density is the passive components in the converter. Passive components

are part of power processing circuitry, output and input harmonics and electromagnetic interfer-

ence (EMI) filters. Increasing switching frequency mostly guarantees reduction in passives used

for power processing and harmonic filter. However, this is not true in case of EMI filters.

In order to understand this, it is essential to look at the factors affecting the generation and

propagation of EMI. EMI in power electronic converters is a result of switching action of power

semiconductor devices. The generation of EMI not only depends on the switching frequency, but

1



also on the switching speed and the parasitics of the semiconductor devices, passive components

and layout that are part of the power electronic converter. The EMI could be classified into two

types based on the propagation path as conducted and radiated emissions. Conducted emissions

refers to the noise that propagates in the physical connections such as cables or PCB traces. And,

Radiated emissions refers to the noise propagating through the medium enclosing the power con-

verter (typically air). All power converters generate both forms of emissions. Depending on the

area of application, the converter needs to comply with noise limits put out by organizations such

as IEC, CISPR, FCC etc. For example, a desktop power adapter for domestic use is considered

an Information Technology Equipment (ITE) and therefore needs to comply with either CISPR-

22 Class B or FCC Class B standard. Most of the time, the converter by itself is not compliant

with the standard limits. In such cases, PCB layout changes or additional components such as

filters, shielding etc. are used to make the converter comply with the emissions part of the stan-

dard. Henceforth, the discussion will be limited to the filters used for mitigation of conducted

emissions in a power converter. For nearly a century, the filters have been exclusively built using

passive components. The parasitics of the passive components result in bulky passive EMI filters

and reduced performance at high frequencies (above a few MHz). In a typical power converter,

the passive EMI filter could occupy up to one-third of system volume and weight. Even in such

power converters, the passive EMI filters form the bottleneck for major improvements in power

density. This is because of two reasons. Firstly, advancements in passive components has not kept

up with the pace of developments in the semiconductor industry. And, higher switching frequency

and switching speeds may further increase the EMI filter requirements because the limits imposed

by standards remain the same.

Therefore, it is necessary to develop high density EMI filter solutions that are more suit-
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able for future power electronic converters. One such solution to reduce the volume of passive

component in an EMI filter is active EMI filtering. In an active EMI filter, the noise in a circuit

is sensed and injected into the circuit after flipping the phase by 180 degrees. Ideally, the injected

noise would completely cancel the noise generated by the converter. But, the parasitics of the

passive components in the noise-sensing and noise-cancellation stages, and the bandwidth of the

active components, limits the maximum attenuation. Depending upon the propagation path, the

conducted emissions could be further classified into common-mode (CM) and differential-mode

(DM) noise. CM noise refers to noise that flows on both lines and returns through the ground and

DM noise flows within the lines.

This work aims at overcoming the limitations of active EMI filters for DM noise mitigation

and improving the maximum possible attenuation in ac-dc applications. This dissertation consists

of 4 main parts. In Chapter 2, a review of all existing active EMI filters based on the type of

converter, type of noise-sensing, noise-cancellation, noise-processing circuits among other factors

such as power-loss, reliability and commercial products are summarized. In Chapter 3, design,

modeling and stability analysis of a conventional analog active EMI filters for a desktop power

adapter is presented. This exercise helps identify the limitations of conventional analog active

EMI filters. To overcome these limitations, two novel active EMI filters are proposed. They are

– analog twin based active EMI filter and zero-phase filtering based active EMI filter. The analog

twin based active EMI filter is presented in Chapter 4 and zero-phase filtering based digital active

EMI filter is presented in Chapter 5. Finally, the conclusion and future work are presented in

Chapter 6.
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2 A Survey of Active EMI Filters for Conducted EMI Noise Reduction in Power

Electronic Converters

2.1 Abstract

Wide bandgap devices enable high power density power converters. Despite the advantages

of increased switching frequency, the passive components are still a major bottleneck towards

enabling high power density. Among the passive components in the converter, the passive EMI

filters are unavoidable to ensure compliance with conducted EMI standards. Active EMI filters

help reduce the volume of the passive components and have been around for three decades now.

The design and implementation of the active EMI filters depend upon the type of noise (common-

mode or differential-mode) and power converter (ac-dc, dc-dc or inverter). This paper presents a

comprehensive survey of different active EMI filters and their implementations for different power

converters presented in the literature. A comprehensive survey of noise-sensing, noise-processing,

and noise-cancellation circuits is presented. Also, a comparison of attenuation provided by the

active EMI filters for common-mode and differential-mode noise for different converters is carried

out. Further, other facets of active EMI filters such as the auxiliary power supply, power loss and

protection methods for the active EMI filter are also summarized. This paper is intended to be a

useful reference for power converter designers in both industry and academia.

2.2 Introduction

Power converters generate conducted and radiated emissions due to the switching action

of the power semiconductor devices. Conventionally, a second-order passive EMI filter is used to
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mitigate the conducted EMI noise generated by the power converter. These passive filters tend to

be bulky and could occupy up to 30% of the system volume. Therefore, minimizing the passive

EMI filter volume has been a priority for power converter designers. By reducing the noise source,

the passive filter volume could be minimized. A summary of reducing the noise at the source

by employing different techniques such as circuit topologies (soft-switching), layout optimiza-

tion and modulation have been summarized in [1, 2]. Besides these, different passive techniques

could be employed to improve the attenuation provided by a given passive EMI filter. These tech-

niques involve modifying the propagation path impedance using small passive components [3],

proper design of the inductor to avoid saturation due to the common-mode (CM) volt-second and

differential-mode (DM) currents [4–6], parasitic cancellation [7] and mutual coupling elimination

[8].

Recently, emerging applications of Wide Bandgap (WBG) device based motor drives en-

able high efficiency and high power-density owing to superior switching speeds resulting in lower

switching losses than their Si counterparts [9, 10]. WBG devices have been used to demonstrate

high power density converters [11, 12]. But, passive filters are still one of the major bottlenecks to

increasing power density due to other adverse effects of higher switching speeds [13]. Active EMI

filters (AEF) show great promise in reducing the passive component volume in power converters.

There have been numerous works in the area of applying AEF for power converters in the past

three decades with volume reductions higher than 50% [14–16]. The fundamental building blocks

of the AEF were identified and basic topology classification was carried out previously[17, 18].

In 2010, a summary of the classification of AEF was provided in [2]. The methodology of AEF

topology selection for a given source and load impedance was presented in [16]. The generaliza-

tion of the attenuation provided by the AEF and their corresponding impedance was studied in
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[19]. Along with the AEF, another passive component could be used to improve the overall atten-

uation and bandwidth. These are referred to as hybrid EMI filters (HEF). The generalization and

basic classification of HEF based on the equivalent circuits was presented in [20]. The generaliza-

tion approach proposed in [20] was experimentally verified in [21, 22] for ac-dc converters. All

these works discuss the generalized approach and classification of AEF and HEF. Besides these

works, there are a few commercially available AEF and HEF. For input side EMI reduction, HEF

for CM and DM noise mitigation (Picor® Quietpower® series) are available from Vicor Corp [23]

and AEF for CM noise mitigation is available from Schaffner Inc [24] for dc-dc converters. A CM

AEF is also available for ac-fed converters and inverters from EMcoretech Inc [74]. However, a

comprehensive survey and comparison of different implementations of AEF/HEF for CM and DM

noise mitigation in different power converters has not been performed yet.

Since the publication of [16, 19–21], there have been numerous other implementations in-

volving different active techniques to achieve passive volume reduction. It is therefore important

to revisit, compare and summarize these works in the literature to identify the best implementa-

tions. This work aims at summarizing the different implementations of these active techniques in

different power converters (dc-dc, ac-dc and inverters) for CM, DM and line (positive/negative or

line/neutral) noise. The passive volume reduction is proportional to the attenuation provided by

the AEF. Therefore, different implementations of the AEF are compared in terms of the attenua-

tion provided at frequencies of 150 kHz and 1 MHz for both CM and DM noise. Comparisons

are made to identify the benefits and drawbacks of different implementations. Other aspects such

as the types of noise-sensing networks, noise-cancellation networks, the implementation of the

AEFs, the power source for the AEF, the power loss associated with AEF, and other considerations

specific to different methodologies of implementation are also summarized.
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The organization of the paper is as follows. Section II presents the various topologies of

AEF and HEF. Section III presents the different implementations (noise-sensing, active circuits,

and noise-cancellation methods) of the AEF for different power converters. Section IV presents

the summary of different stability analysis and compensation techniques. Section V presents a

comparison of the attenuation of AEF for different converters in literature. Section VI presents the

summary of different implementations of the power source and power loss for the AEF. Section

VII presents the different protection circuits for AEF. Section VIII presents the conclusion which

identifies the prominent works of AEF and areas that require future research to enable widespread

adoption of AEF.

Fig. 2.1: Noise source (IS), noise source impedance (ZS) for DM noise, noise load impedance (ZL)
in an RCD (resistor capacitor diode) clamped flyback converter

2.3 Active EMI filter Topologies and Implementation

2.3.1 Introduction and Basic Classification of AEFs

A typical ac-dc converter is shown in Fig. 2.1. IS denotes the noise source which is the

converter, ZS represents the noise source impedance and ZL represents the load impedance which

is the LISN. There are 3 main parts of an AEF circuit. They are: noise-sensing circuit, noise-

processing active circuit and noise-injection circuit. Conventionally, the noise-processing active
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Fig. 2.2: Active EMI Filter Topologies (a) feedforward voltage-sense voltage-cancellation (b)
feedforward current-sense current-cancellation (c) feedback voltage-sense voltage-cancellation (d)
feedback voltage-sense current-cancellation (e) feedback current-sense current-cancellation (f)
feedback current-sense voltage-cancellation. ZS is the noise source impedance, ZL is the load
impedance. Different passive elements could be added in place of ZS and ZL to form different HEF
(A - represents the gain of the active circuit)

circuit involves an amplifier stage that is capable of driving the injection stage. But, there have

been other implementations of the AEF that use other components such as DSP (Digital Signal

Processor) or an FPGA (Field Programmable Gate Array) in addition to the amplifier. Therefore,

in this paper, this part of the circuit would be referred to as the noise-processing circuit. The AEF

may either use noise-current or noise-voltage sensing or cancellation. The combination of different

noise-sensing and noise-cancellation methodologies yields the conventional AEF as shown in Fig.

2.2. Further, depending upon whether the noise-sensing is done at the source or the load side, the
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control scheme is either feedforward or feedback. The AEF by itself is a one-order filter. Owing

to the bandwidth limitation of sensing, processing and cancellation stages, the AEF is intended to

provide noise attenuation at frequencies from the start of EMI frequency range (150 kHz in case

of the CISPR (International Special Committee on Radio Interference standard) up to a few MHz.

In order to provide noise attenuation at higher frequency ranges, it is essential to have another

passive element. This passive element in combination with the AEF forms the hybrid EMI filter

(HEF). The higher the attenuation and bandwidth provided by the AEF, the smaller is the additional

passive component required to form the HEF. The selection of a particular AEF topology depends

upon the source and load impedance. The selection of the appropriate AEF and HEF topologies

for CM and DM noise reduction was discussed in detail in [16, 19, 20].

2.3.2 Different noise sensing implementations for AEF

Depending on whether CM, DM or line/neutral noise is sensed, different implementations

of noise-sensing have been demonstrated in the literature. Some of the most commonly used

implementations are shown in Fig. 2.3.

Noise Current Sensing Implementations

In [68], a Rogowski coil was used to sense the DM noise current at the output of a dc-dc

converter. In [53], a current transformer (CT) with high bandwidth was used for DM noise current

sensing in a dc-dc converter. In ac-dc converters for noise sensing, the CT is part of a high pass

filter to attenuate the fundamental frequency and its harmonics. In [54–58, 69], a CT is used as

part of a second-order high pass filter for DM noise current sensing in ac-dc converters. No work

has implemented current sensing using CT for DM noise reduction in inverters. The CM noise-
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Fig. 2.3: Noise-sensing methodologies (a) second-order high pass filter for DM noise voltage
sensing on single-phase ac lines [22, 25] . For dc systems just the capacitor or a single order high
pass filter can be used [15, 17, 23, 26–32] (b) Y-capacitors on both lines for CM noise voltage
sensing in single-phase ac and dc systems [14, 33–39] (c) Y-capacitors on all lines for CM noise
voltage sensing in three-phase systems [16, 32, 40–48] (d) first order high pass filter for sensing
on individual lines (line/neutral or Positive/Negative) for single-phase ac or dc systems [21, 31,
41, 49–52] (e) current transformer for DM noise current sensing in single-phase ac or dc systems
[53–58] (f) current transformer for CM noise current sensing in single-phase ac or dc systems
[20, 24, 53, 59–65] (g) current transformer for CM noise current sensing in three-phase systems
[16, 19, 66, 67]

sensing CT could be directly connected to the active circuit and does not require any high/low

pass filtering. However, there is one exception to this implementation. For output noise sensing

in inverters, the CT has to be implemented alongside a high pass filter to prevent the AEF from

compensating for low-frequency harmonics of fundamental frequency. In [20, 24, 53, 59–62], a

CT was used for CM noise current sensing in a dc-dc converter. In [70–75], a CT was used for

CM noise current sensing in an ac-dc converter. In [19, 66, 67], a CT was used to measure input

CM noise in an ac fed motor drive. In [63, 64] a CT was used for measuring input CM noise in a

full-bridge inverter. In [16], a CT was used for sensing output CM noise current in a dc fed motor

drive. In [65], a CT was used for sensing CM noise in a single-phase grid-tied inverter.
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Noise Voltage Sensing Implementations

DM noise voltage sensing requires only one capacitor that is rated for the operating voltage

of the converter. In dc-dc converters, this capacitor could be directly connected to the active circuit.

In ac-dc and dc-ac converters, the capacitor is part of a high pass filter network to attenuate the

fundamental frequency and its harmonics and other low frequency that may be present in the

source voltage. DM noise voltage sensing using capacitors was used in AEF for dc-dc converters

in [15, 17, 23, 26–32]. Noise voltage sensing using capacitors as part of a high pass filter network

is used in [22, 25]. For CM noise-sensing, capacitors are required on each of the lines with the

other end of all the capacitors connected together. In [14, 33–37], capacitors were used on line and

neutral for CM noise-sensing. In [38, 39], noise voltage sensing using capacitors was used for AEF

in the input side of a three-phase sparse matrix converter. Noise voltage sensing was realized using

a capacitor on all three-phase outputs in [40–45] for an ac-dc-ac converter (ac-fed motor drive) and

in [16, 32, 46–48] for dc-ac converters (dc-fed motor drive). Besides CM and DM noise sensing,

RC networks were used on each line to sense the individual line noise. This method was used in

[21, 49, 50] for ac-dc converters, in [51] for a dc-dc converter, [52] for a grid-tied single-phase

full-bridge inverter and [31] for a single-phase ac-dc-ac inverter (arc welding inverter). Another

implementation used resistive voltage dividers along with high-voltage isolators to sense the CM

noise voltage in a three-phase inverter [41].

2.3.3 Different Noise Processing Circuits for AEF

Active circuits process the noise from the sensing circuit and provide the cancellation volt-

age/current. Noise-processing involves multiple functions such as compensation for ensuring sta-
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bility, amplification and others depending upon the control scheme. The active circuit should be

capable of providing the necessary gain depending on the control scheme and should be capable

of driving the noise injection stage without becoming unstable. In an AEF, instability may occur

at frequencies lower or higher than the EMI frequency range. Typically, the active circuits have

compensation networks to ensure stability. The different implementations of active circuits in lit-

erature are discussed based on the control scheme and the type of elements used in active circuits

for CM, DM, and L/N noise-cancellation.

Different Control Scheme Implementations

Feedforward and feedback control are two basic control schemes of the AEF. The feed-

forward control requires unity gain throughout the desired frequency range. Because of parasitics

of different elements in the circuit, the gain could easily overshoot or undershoot unity gain at

different frequencies. While the feedforward control method could easily ensure stability, its per-

formance is subjected to component tolerances. On the other hand, the feedback control requires

a high-gain feedback loop. While the feedback control method is immune to component value

variations, it could potentially become unstable at high or low frequencies. Therefore, it requires

suitable compensation to ensure stable operation.

In [15, 32, 68], the AEF with feedforward control was used in for DM noise-cancellation

in a dc-dc converter. In [34], AEF with feedforward control was used in AEF for CM noise-

cancellation in an ac-dc converter. Feedback control was used for DM noise-cancellation in [23,

29, 30, 76] for dc-dc converters and [22, 25, 55, 58, 69] for ac-dc converters. Feedback control

was used for CM noise-cancellation in [20, 59, 60, 62] for dc-dc converters and [14, 21, 24, 35–

37, 61, 71, 73–75, 77] for ac-dc converters. In [16, 32, 40–42, 44, 47, 48, 78–80], feedforward
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control is used for output CM noise-cancellation for inverters. In [19, 38, 39, 63, 64, 66, 67] and

[44, 46, 65, 65], feedback control method was used for CM noise-cancellation on input and output

of inverters respectively. A combination of feedforward and feedback control was used for DM

noise-cancellation in [27, 28, 53, 81] for dc-dc converters and in [56] for ac-dc converters. In [57],

a comparison of feedforward & feedback with series and parallel feedback structures was carried

out.

Fig. 2.4: Different active circuits (a) only op-amp [14–16, 20, 21, 23, 29–34, 44, 46, 47, 50–
52, 54, 59–61, 65, 68, 70–72, 76, 80] (b) op-amp + discrete device based amplifier [27, 28, 36, 36,
38, 39, 53, 65, 74, 75, 81] (c) only discrete device based circuit [17, 26, 82] (d) For inverters (i)
High-voltage BJTs based active circuit / 4th leg [48, 66, 78, 79, 83] (ii) Low-voltage BJTs based
active circuit [19, 40–43, 67? ] (e) DSP/FPGA + op-amp active circuit where the converter control
is implemented in the same DSP/FPGA [31, 32, 40–44, 51] (f) negative impedance converter based
active circuit [77]
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Different Active Circuit Implementations

A summary of different active circuits used in literature is shown in Fig. 2.4. The first

implementation of AEF used only BJTs (bipolar junction transistors) as active circuits [17, 26, 82].

In most of the cases a single op-amp was used to drive the noise-injection stage or the active circuit

to set the gain and as well as to drive the noise injection for CM and DM noise-cancellation in dc-

dc, ac-dc and inverters [14–16, 20, 21, 23, 29–34, 44, 46, 47, 50–52, 54, 59–61, 65, 68, 70–72, 76,

80]. However, there are instances where it is economical to use discrete transistors only or along

with a low power high gain op-amp to set the gain for the active circuit. Such implementations

could be seen for DM noise-cancellation in [27, 28, 53, 81], for CM noise-cancellation [75] for

dc-dc converters and for DM noise-cancellation in [55, 58, 69] and for CM noise-cancellation in

[36, 36, 74] for ac-dc converters and for CM noise-cancellation in [38, 39, 65] for single-phase

inverters.

For three-phase inverters, different active circuits have been implemented. First implemen-

tation used high-voltage BJTs fed from the dc-link for CM noise reduction [66, 78]. In [19, 67],

the high-voltage BJTs were replaced with low-voltage BJTs. The transistors were connected to the

dc-link via a dc blocking capacitor and were used to reduce output CM noise [40–44]. In [63, 64],

used the CM noise current sensed to modulate the gate signals to achieve CM noise-cancellation.

Another prominent method was using a 4th leg in the three-phase inverter. This method was used

in [79, 83] to reduce the CM noise in the circuit. Another implementation used BJTs rated for

VDC/3 for CM noise reduction [48].

In [73], multiple op-amps were cascaded to obtain higher gain for the feedback implemen-

tation. In [51], the use of DSP along with high-speed ADC/DAC (analog to digital converter/digital
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to analog converter) was used as part of the active circuit. This is referred to as the digital AEF.

The digital AEF was extended to a three-phase inverter in [50] and grid-tied inverter in [52]. In

[84], the effect of delay between noise sensing and injection in a digital AEF was studied and

methodology for decoupling the sensing and injection stages was presented and demonstrated in a

single-phase arc welding inverter. In [31], an FPGA was used along with high-speed ADC/DAC to

implement a filter that uses the noise sensed from the previous switching cycle to compensate for

the current switching cycle. In [32], using noise from the previous cycle to inject into the current

cycle using wavelet transforms was proposed and demonstrated in a dc-dc boost converter and dc

fed z-source inverter.

Fig. 2.5: Different noise-cancellation circuits (a) DM noise current cancellation in ac-dc and dc-dc
converters [22, 25, 26, 29, 49, 53–58, 68, 70] (b) CM noise current cancellation in single-phase
ac and dc lines [14, 21, 35, 37, 49, 54, 62, 72–75] (c) CM noise current cancellation in three-
phase lines [16, 19, 38, 39, 48, 65–67, 85] (d) Line (/positive) and Neutral (/negative) noise current
cancellation in single-phase ac (/dc) lines [50–52, 84] (e) DM noise voltage cancellation in ac-dc
and dc-dc converters [27, 28, 76, 81] (f) CM noise voltage cancellation in single-phase ac lines
[34, 36, 71] (g) CM noise voltage cancellation in three-phase ac lines [32, 40, 42–46, 78, 79]
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2.3.4 Different noise-cancellation implementations

Noise-cancellation techniques involve noise current and noise voltage cancellation. Some

of the cancellation techniques in the literature are shown in Fig. 2.5. In current cancellation,

the active circuit drives a voltage across an injection capacitor resulting in cancellation current

injected in the circuit. In voltage cancellation, the active circuit drives a voltage injection trans-

former that injects the cancellation voltage in the main circuit. The voltage cancellation is usually

not preferred for DM noise, since the voltage injection transformer can be bulky. Since current

cancellation requires only high-voltage capacitors, they are usually preferred. But, for CM noise-

cancellation, the maximum value of capacitance is limited by the leakage current. Therefore, the

maximum attenuation using current cancellation is limited. So, some implementations use noise

voltage cancellation for CM noise. The connection of capacitors and voltage injection transform-

ers for noise-cancellation is the same as that of noise current sensing. Another implementation of

DM noise mitigation is to use a low-voltage MOSFET in series in the line. This was demonstrated

in [23, 30] for dc-dc converters. The DM noise current cancellation using capacitors was demon-

strated in [26, 29, 49, 53, 68] for dc-dc converters and in [22, 25, 54–58, 70] for ac-dc converters.

The CM noise current cancellation using capacitors have been demonstrated for ac-dc converters

in [14, 21, 35, 37, 49, 54, 62, 72–75]. For inverters, CM noise current cancellation using capacitors

have been demonstrated for ac-dc-ac, dc-ac and other inverters in [16, 19, 38, 39, 48, 65–67, 85].

Capacitors have been used for line and neutral noise current cancellation in [50–52, 84].

The DM noise voltage cancellation using voltage injectors was performed in [27, 28, 76, 81]

for dc-dc converters, for CM noise-cancellation in [34, 36, 71] for ac-dc converters. CM noise-

cancellation using voltage injectors for CM noise-cancellation was demonstrated in [32, 40, 42–
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46, 78, 79] for inverters. In [47], the voltage was injected into the chassis of the motor directly to

reduce the CM noise.

Fig. 2.6: Different compensation methods. The compensation circuit could be an RC network
across the lines (Rc and Cc) or could be part of active circuit impedance (Z f ,Zb) or could be part
of the injection stage (Zin j). Either one of these compensation methods could be used with noise
current/voltage sensing or cancellation

2.4 Stability analysis and compensation of AEF

The AEF is expected to have a bandwidth of at least 1 MHz. This is to ensure a substantial

reduction in the passive component volume. The AEF should be stable throughout the entire

frequency range. Low-frequency instability could occur due to resonance between the AEF and

the passive component that forms the hybrid filter [25, 34, 58]. In AEF that uses higher-order high

pass filters for noise-sensing, the low frequency instability is exacerbated. For high gain AEF,

even the first pole of the op-amp used in the active circuit could reduce the phase margin. High

frequency instability could occur due to different parasitic components and a second pole of the op-

amp present in the AEF [25, 58, 62]. Therefore, stability analysis is crucial for any AEF. Stability

analysis is essential to develop the design procedure and come up with a suitable compensation

technique for the AEF. Ideally, the compensation needs to be part of the active circuit. While some

of the compensation could be added to the op-amp feedback loop, some AEF require additional
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compensation that involves high-voltage or high-current elements. So, there is always a trade-off

between the stability of the AEF and the possible passive component volume reduction. Because

any new component introduced for compensation adds to the volume of the AEF. Various papers

have studied the stability analysis of different topologies of AEF and their implementation. Some

of the components used for compensation is shown in Fig. 2.6. All the components that are part

of the active circuit (Z f ,Zb and Zin j) are low voltage components and do not add to the bulk of

the volume. Any series injection impedance (Zin j) used for stability improvement adversely affects

the bandwidth and attenuation in case of current-cancellation and voltage-cancellation respectively.

Some works use external RC network for stability improvement. While this method does not affect

the performance or the bandwidth of the AEF, it adds to the overall passive volume because the C

has to be rated for line voltage.

In [17, 82], the stability analysis for DM noise-cancellation using feedback voltage-sense

current-cancellation topology for dc-dc converters was carried out. In [53], the stability analysis for

DM noise-cancellation using feedback + feedforward current-sense current-cancellation topology

for a dc-dc converter was performed. In [20, 59–62], stability analysis for CM noise-cancellation

for feedback current-sense current-cancellation topology. Stability analysis was conducted for DM

noise-cancellation in [54, 55, 58, 69, 70] for feedback, [56] for feedback + forward, feedforward

+ feedback and series feedback. In [38, 39], stability analysis for feedback voltage-sense current-

cancellation topology for input side CM noise-cancellation in an ac fed three-phase inverter was

performed. In [16], stability analysis for feedforward current-sense current-cancellation topology

for output side CM noise-cancellation in a dc fed motor drive was carried out. The stability analysis

for feedback voltage-sense voltage-cancellation topology for output side CM noise-cancellation in

ac fed three-phase motor drive was presented in [44]. The stability analysis for the digital AEF
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was presented in [50, 52]. The stability analysis for feedback current-sense current-cancellation

topology is presented for CM noise-cancellation in a single-phase grid-tied inverter in [65].

Fig. 2.7: DM noise attenuation provided by active EMI filters for (a) ac-dc converters and (b) dc-dc
converters

2.5 AEF Attenuation Comparison of Different Implementations

Consider an LC passive filter whose corner frequency is decided by the noise at 150 kHz.

The capacitor in the passive filter is now replaced by a feedback control based voltage-sense

current-cancellation based AEF. The attenuation provided by the AEF depends on the gain of
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Fig. 2.8: CM noise attenuation provided by active EMI filter for dc-dc and ac-dc converters

the active circuit. If the active circuit is set to a gain of 20 dB at 150 kHz, then the value of the

injection capacitor, Cin j can be reduced by 10 times while still providing the same attenuation as

that of the original passive EMI filter at 150 kHz. Therefore, there is a direct relationship between

the attenuation provided and the passive volume reduction. However, there is additional overhead

from the components used for noise-sensing and active circuits. Most often, even with these addi-

tional components, the relationship between the attenuation and passive volume reduction remains

the same.

Therefore, the effectiveness of the filter in minimizing the passive volume could be under-

stood by comparing the attenuation provided by the active stage. Also, the same topology of the

AEF performs differently in different converters and for CM and DM noise mitigation. Further,

some topologies/implementations of AEF tend to fare well at frequencies lower than 100 kHz and

some at frequencies around 1 MHz. For standardization of the comparison, the attenuation of dif-

ferent implementations are made at frequencies of 150 kHz and 1 MHz. And comparisons are made

for DM AEF for dc-dc and ac-dc converters separately. This is because the high pass filter required

in the sensing stage for ac-dc converters limits the possible attenuation. But, AEF implementations
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for CM noise mitigation are similar for both ac-dc and dc-ac converters with the exception of dif-

ferent maximum values for Y-capacitance limited by the leakage current. For inverters (dc-ac and

ac-dc-ac), almost all of the works deal with CM noise or line/neutral noise mitigation. Therefore,

they are compared together to identify a methodology for maximum attenuation.

2.5.1 Attenuation comparison of AEF in dc-dc converters and ac-dc converters

The chart showing DM and CM noise attenuation for dc-dc and ac-dc converters across

different literature is shown in Fig. 2.7 and Fig. 2.8 respectively. For DM noise attenuation in dc-dc

converters, the highest attenuation reported in the literature is 70 dB at 150 kHz [23]. However, this

implementation uses a series MOSFET to provide attenuation to DM noise and therefore suffers

from 1% to up to 10% loss in efficiency depending on the input voltage levels of the converter.

If there is no attenuation required at 150 kHz, attenuation of the order of 40 dB and above is

possible [17, 26, 82] at 1 MHz. However, around 150 kHz, the highest attenuation reported is of the

order of 35 dB [27, 53, 81] which used a combination of feedforward and feedback topologies to

accomplish this. For ac-dc converters, the converters with and without PFC needs to be considered

for comparison. This is because, for converters without PFC (power factor correction), the input

current is spurious in nature and therefore requires special considerations [25]. For ac-dc converters

with PFC, the highest attenuation reported is 40 dB around 150 kHz. This implementation uses

a series of two feedback current-sense current-cancellation topology [57]. For converters without

PFC, the highest attenuation around 150 kHz is 16 dB using a feedback voltage-sense current-

cancellation topology [25]. Attenuation of about 30 dB reported in [21] is the highest attenuation

at 1 MHz for ac-dc converters with PFC. For CM noise mitigation, the highest attenuation of about

50 dB around 150 kHz was reported [23]. However, it is not clear how much of the attenuation
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is from the active stage itself. An attenuation of around 40 dB at 150 kHz was reported in [24]

. However, only small-signal tests were performed in this case. In [20, 21], an attenuation of

about 30 dB around 150 kHz was demonstrated for ac-dc converters. In [62], an attenuation of 24

dB around 150 kHz was demonstrated in a dc-dc converter using feedback current-sense current-

cancellation topology. At 1 MHz, many works including [14, 21, 71] have reported an attenuation

of around 30 dB for both ac-dc and dc-dc converters with different feedback topologies of AEF.

Fig. 2.9: CM/Line noise attenuation provided by active EMI filters at (a) 150 kHz and (b) 1 MHz
for inverters
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2.5.2 Attenuation comparison of AEF in Inverters

The chart showing attenuation for CM and line noise for inverters across different litera-

ture is shown in Fig. 2.9. For inverters, it was proposed to use an additional phase leg (referred

to as 4th leg) in an inverter for CM noise reduction in [79]. The work observed the CM voltage

at the output of the inverter and reported a 40 dB reduction. But, there were no noise measure-

ments that were made in the system to verify if this CM voltage reduction translates to actual noise

reduction. Using low-voltage circuitry (capacitor to block the dc or fundamental frequency volt-

age), the highest attenuation for CM noise attenuation at the three-phase output is 30 dB around

150 kHz. This was demonstrated in [43, 45] using feedforward voltage-sense voltage-cancellation

topologies. At 1 MHz, the highest reported attenuation is 30 dB [66] using feedback current-sense

current-cancellation using high-voltage BJTs. Using low-voltage circuitry, [44] has demonstrated

attenuation of the order of 25 dB using feedback voltage-sense voltage-cancellation topology.

2.6 Power loss in AEF

The power source and power loss associated with the active circuit are important. Because

the additional components for the auxiliary power supply increases the associated power loss and

the cost involved in the implementation of the AEF. The losses in the AEF consists of three parts.

First is the constant power or standby power in the active circuit. Second is the power loss asso-

ciated with driving (output) the cancellation current or voltage in the active circuit. Third is the

power loss in the additional passive elements used for noise-sensing and compensation to improve

stability. Usually, the loss involved in the driving stage dominates when compared to the standby

power and passive losses. Further, higher the noise attenuation, the active circuit with higher driv-
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ing capability is required and therefore incurs higher power loss.

In ac-dc converters and dc-dc converters, it was demonstrated that either the source voltage

[53, 82] or output dc voltage [15] along with voltage regulators could be used for providing power

to the active circuit. In inverters, the DC link [48, 66, 78, 79, 83] or capacitive voltage divider on

the DC link [19, 67] could be used to power the active circuit. Besides these, most of the works

demonstrated the AEF using auxiliary power supplies that were external to the system and do not

quantify the power loss.

In [23], the AEF used a series MOSFET for DM noise attenuation. But, it suffered from a

1% to 10% loss in efficiency in dc-dc converters up to 600 W and the losses change with the input

voltage. In [14], the AEF resulted in a 1.4% reduction in efficiency when used in a 600 W SMPS

(switch mode power supply). In [43, 45] the power loss in AEF is studied in detail for application

in a motor drive. At 1.52 kW, the AEF had a loss of about 1.9% which reduced to 0.5% at 20 kW.

So, as the power level scaled up, the contribution of AEF towards the power losses reduces. In

[58], the power loss from the auxiliary power supply, the AEF circuit and leakage current increase

by the added capacitance were taken into account. It was found that the AEF saw a total power

loss of about 2.3 W which resulted in a decrease in 0.66% lowering of efficiency at full load in a

boost PFC at 350 W. At lower power levels the efficiency took a greater hit. In [36], a power loss of

288 mW was reported when AEF was used in a 2.2 kW current source inverter. This is negligible

compared to the inverter power level. However, the attenuation provide by the AEF is only 6 dB

around 150 kHz. In [74], a power loss of 310 mW was reported in a 200 W SMPS which is around

0.15% of the efficiency at full load for a 15 dB attenuation around 150 kHz.
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2.7 Protection for AEF

Depending on the topology of the AEF, either the sensing or injection stage may be con-

nected to the grid. The AEF should be resilient to the grid voltage transients or current transients

due to the operation of the converter. Some literature has demonstrated techniques using galvanic

isolation for both noise-sensing and cancellation. In a few other literature, additional components

for protection are added when using AEF topologies without galvanic isolation. A CM AEF that

has galvanic isolation from the grid using CT for current sensing and a transformer for voltage

injection for use in an SMPS was presented in [71]. Also, [36] presented a CM AEF topology

that does not use transformers for a resonance current inverter. This work uses capacitors for both

sensing and noise-cancellation and uses a varistor on the noise-sensing side and TVS diodes on

the noise injection side to implement the protection for the AEF. Another isolated topology that

utilizes current-cancellation was proposed in [74]. This work uses a CT for noise current sensing

and uses another transformer to inject voltage in the current injection branch. This way both the

input and output of the active circuit have galvanic isolation from the mains voltage.

2.8 Conclusion

There are numerous AEF implementations for conducted EMI mitigation in power elec-

tronic converters. Different implementations of the AEF topologies have been summarized based

on the noise-sensing, noise processing active circuits, the control methods, noise-injection and

stability studies for dc-dc, ac-dc converters, and inverters (dc-ac and ac-dc-ac). Different sens-

ing and cancellation methods have different advantages and disadvantages for implementation in

terms of volume reduction. Careful attention must be paid to the stability, which depends on the
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type of converter and the type of noise in order to select the appropriate AEF. Only then the at-

tenuation and possible volume reduction with AEF could be maximized. The key points in terms

of performance (attenuation), power loss and protection of AEF are as follows. Looking at the

performance comparison, it is more challenging to achieve high attenuation at lower frequencies

(around 150 kHz) using AEF than to design the filter for high attenuation at 1 MHz. For DM

noise-cancellation in ac-dc converters without PFC, [25] reported highest attenuation of 16 dB

around 150 kHz using feedback voltage-sense current-cancellation topology. For ac-dc converters

with PFC, [57] achieves an attenuation of 40 dB around 150 kHz with multiple feedback current-

sense current-cancellation topologies. For CM noise-cancellation, attenuation of around 24 dB was

achieved using feedback current-sense current-cancellation topology for dc-dc converters. For out-

put CM noise-cancellation in inverters, feedforward voltage-sense voltage-cancellation topologies

to achieve an attenuation of about 30 dB around 150 kHz was demonstrated in [43, 45].

However, majority of these implementations uses additional high-voltage passive elements

for compensation to ensure stability or rely on inductors either in the form of CTs for noise-

sensing or voltage transformers for noise-cancellation. Novel methods that could further enhance

the performance of the filter without the need for additional high-voltage capacitors for stability

improvements or injection transformers on power lines are required. These new topologies could

use all analog or hybrid analog and digital active circuits. Further, there only have been few

works that studied the auxiliary power supply, power loss and protection for the AEF to enable

widespread adoption. Further, a Figure of Merit (FoM) for implementation of AEF taking into

account the volume reduction of passive components at different power levels and for different

power converters is an important one that requires further research.
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3 Modeling and Design of Voltage Sensing based Differential Mode Active EMI Filters

for ac-dc Power Converters without PFC

3.1 Abstract

Passive EMI filters are bulky and are a major bottleneck to achieve high power density

particularly in the current Wide Bandgap devices era. Active EMI filters offer a solution to this

problem and help reduce the volume of the passive elements in EMI filters. This paper presents

the modeling and design of voltage sensing based active EMI filter for an ac-dc converter. The

major bottleneck that limits the performance of the filter is identified as the phase shift introduced

by the noise sensing stage which causes low-frequency instability. The trade-off between the

low-frequency stability and the high-frequency attenuation are discussed. The design guidelines

to choose the optimal gain of the active EMI filter and compensation to ensure the stability of

the active EMI filter is presented. The limitation of using conventional compensation methods is

identified and suitable compensation methods are selected. The model is verified by both small

signal and in-circuit experimental results.

3.2 Introduction

Power converters generate conducted and radiated EMI due to the switching action of the

power semiconductor devices. The passive EMI filter used to mitigate the noise is bulky and could

occupy up to 30% total system volume. Active EMI filters and Hybrid EMI filters (active + pas-

sive) have been shown to reduce the volume of the filters by up to 75% [1]. Different active EMI

filter topologies are possible based on noise sensing methods, noise cancellation methods and con-
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trol schemes. Various previous works including [3-10] have studied the selection and suitability of

active EMI filter topologies. Active EMI filters have been designed for separately for DM [9-15]

and CM noise attenuation [3, 17-31] or together [1, 7-8] for both CM and DM noise attenuation.

The factors for selection of a particular topology mainly depends on the noise source and load

impedance and how the active EMI filter maximizes the impedance mismatch between them [3,5-

7].

TABLE 3.1: Comparison of active EMI filters in this work and literature for DM noise attenuation
(FF - Feedforward, FB - Feedback, V - Voltage, C - Current, eg. VSCC - Voltage Sense Current
Cancellation, Multiple - combination of FF and FB

Reference Converter Topology Noise Sensor Noise Injection
[2] 30 W DC-DC FB VSVC Capacitors Transformer
[8] 600 W AC-DC with PFC Multiple Capacitors & CT Transformer & Capacitors
[11] 230 W DC-DC FF CSCC Rogowski coil Capacitors

[12-14] 360 W AC-DC with PFC Multiple CT Capacitors
[15] Small signal only FB CSCC CT Capacitors
[16] 230 W DC-DC Multiple Capacitor Transformer

This work 30 W AC-DC w/o PFC FB VSCC Capacitor Capacitor

After a particular topology is selected, the implementation could be carried out using dif-

ferent methods. Previously, noise current sensing was employed using Rogowski coil [11] and

current transformers [3,7-8, 11-13,18,20]. Noise voltage sensing was carried out using capacitive

voltage dividers by several authors [1-3, 13, 17, 21-23, 27-31]. Current-cancellation was imple-

mented using capacitors in [1, 3,9-12,14-15,17,24-26,27-32] and voltage cancellation was carried

out using voltage injecting transformers [2, 9, 15-16, 18-20]. Control schemes for the active EMI

filters reported previously by different authors include feed-forward control scheme [3,11,24,27-

30] and feedback control scheme [1-3, 9-10, 12, 14-16, 20, 25-26, 30-31]. A combination of both
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feed-forward and feedback schemes in [13, 16-17]. Active EMI filters and hybrid EMI filters were

applied to common mode and differential mode noise attenuation in dc-dc [2, 11, 17-18, 23-24]

and ac-dc [1, 8-10, 12-15, 19-20] converters and dc-ac [3, 21-22, 25-32]. The main metric for

application of active EMI filters is the passive volume reduction.

A summary of major works for DM noise attenuation in previous literature is presented

in Tab. 3.1. All the previous works either involve dc-dc converters or ac-dc converters with PFC

(power factor correction). Also, the original high voltage passive element (X-capacitor and induc-

tor) would be replaced with multiple high voltage/high current components. These components are

used for noise sensing, cancellation and compensation to improve stability. Nonetheless, overall

volume reduction of up to 50% was achieved [14]. The most commonly used topology for DM

noise cancellation is feedback control based current sense current cancellation [11-13] topology.

In this topology, a second order high pass filter including a Current Transformer (CT) is used for

noise current sensing. For a non-PFC converter, the CT required to sense the noise will be bulkier

than for a converter with PFC stage. This is because of the spurious nature of the rectifier input

current.

The contributions of this paper are as follows. Active EMI filter design methodology from

literature cannot be applied to ac-dc converters without PFC due to the spurious nature of the in-

put currents. Thus new design methodology for active EMI filter that uses less number of high

voltage/high current components need to be developed for non-PFC ac-dc converters. Firstly, this

paper presents the selection of the active EMI filter topology. Then, the individual sub-circuits

are modeled in detail. Based on this modeling, design procedure is presented in the form of a

flowchart. The design procedure involves deciding the loop gain and suitable compensation meth-

ods to optimize the volume reduction without the need for too many high voltage/high current
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components. The model and design procedure are verified using small signal as well as experi-

mental results in a power converter. The volume reduction of passive components using the active

EMI filter is summarized.

The organization of the paper is as follows. Section II involves the DUT, suitability of

selected topologies for DM noise attenuation and volume reduction is discussed. In section III the

modeling and design of individual sub-systems is laid out and models are developed and small

signal measurements of individual sub-circuits are carried out. In Section IV the modeling and

stability analysis of the active EMI filter is carried out. Section V presents the small signal mea-

surements of the insertion loss and the impedance with and without active EMI filter. Section VI

presents the description of the noise measurement setup and the experimental results with and with-

out the active EMI filter and provides comparison of the volume of active EMI filter components

with that of the passive filter. Section VII presents the conclusion of this work.

Fig. 3.1: Schematic of ac-dc converter without PFC and baseline passive filter
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Fig. 3.2: (a) DM noise Norton equivalent circuit (b) Measured ZS and ZL impedance

3.3 DUT and Suitability of Active EMI Filter Topology

3.3.1 DUT and Baseline Passive EMI Filter

The schematic of a typical ac-dc converter without PFC (RCD clamped flyback converter)

with passive EMI filter is shown in Fig. 3.1. The ripple voltage across the dc-link CDC is the noise

source voltage. The ripple voltage comprises of two components. The 120 Hz ripple (2 x fo)

and harmonics of the switching frequency, fsw. This voltage divides between the cable connecting

the power adapter and the LISN when the diode bridge is conducting. For demonstration of the

active EMI filter, a 30 W commercial desktop power adapter from Meanwell [34] is chosen as the

DUT. In the DUT, the DM filter consists of a 120 µH leakage inductance of the CM choke and

an X-capacitor of 470 nF. The converter employs spread spectrum around 65 kHz of switching

frequency. The passive filter provides an attenuation of about 32 dB around 200 kHz and it ensures

the DM noise is below the standard throughout the entire frequency range. The active EMI filter

should be able to provide the same attenuation for while having lower volume than the original

passive components.
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3.3.2 Active EMI filter Topology Selection for ac-dc converter DUT

The Norton equivalent circuit representing the noise source (the converter) and the LISN is

shown in Fig. 3.2a. The current source represents the converter, and ZS and ZL denotes the noise

source and load impedance respectively. ZS represents the impedance of the DC link capacitor and

ZL represents combination of the load and input cable. These impedance are shown in the Fig.

3.2b. In [3, 5-6] the insertion losses with different topologies of filters based on the gain of the

active stage, noise source and load impedance are identified. The active EMI filter could either

enhance the inductor (voltage cancellation topology) or capacitor (current cancellation topology).

Therefore, the possible topologies of hybrid EMI filters that can be used here are:

1. Feedforward voltage sense voltage cancellation (active LDM) + CDM

2. Feedback voltage sense voltage cancellation (active LDM) + CDM

3. Feedforward current sense current cancellation (active CDM) + LDM

4. Feedback current sense current cancellation (active CDM) + LDM

Feed-forward vs. Feedback

In order to implement feed-forward active filter, the amplifier stage should have unity gain

for good noise attenuation. This is difficult to achieve especially because of the parasitics in the

sensing and voltage injection components. The feedback active EMI filter implementations require

high gain for better attenuation. While this poses risk for instability, compensation network using

relatively small passive components can be implemented to ensure stability. Therefore, feedback

topology is adopted here and options 1 and 3 are ruled out.
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Voltage sensing vs. current sensing

In current sensing based topology, the current sensor has to be rated for carrying the rated

current. In this case, the maximum value of input current is 1.8 A. The number of turns have

to be 1 turn on each line to cancel out the CM current [5]. Therefore, the total AT for primary

side of the CT is 3.6 AT. Also, the core should accommodate a single layer winding with suitable

number of turns that form the secondary of the transformer. Single layer of winding is essential to

reduce the parasitic capacitance and ensures high bandwidth of the active EMI filter. Considering

a turns ratio of 1:10 for the CT, the core ZW41610TC can be chosen. The volume of this CT

is approximately 2010 mm3. This is comparable to that of the CM choke that is present in the

power adapter. Therefore, current sensing based topology does not help reducing the volume of

the EMI filter. Current-sensing based active EMI filter topologies are more suitable for PFC based

ac-dc or dc-dc converters. An ac-dc converter with PFC and 1.8 A input current would be rated for

approximately 150 W and therefore has large passive filters.

In comparison, voltage sensing requires only one high voltage safety rated capacitor (Cs1)

connected across one of the lines to block the ac line voltage. This capacitor could be used along

with low voltage components will be used to formulate the high pass filter for noise sensing.

Therefore, voltage sensing based topology is adopted here and option 2 is ruled out.

Voltage cancellation vs. current-cancellation

Voltage cancellation requires a voltage injector (transformer). Similar to the current trans-

former, because of the nature of input current, voltage injectors will be bulky and will not result

in overall volume reduction. Therefore, current-cancellation methodology which requires a high
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voltage safety rated capacitor for current injection is adopted here. The schematic of the overall

implementation of this filter is shown in Fig. 3.3. LDM serves two purposes here, 1. It enhances the

impedance mis-match resulting in improved filter performance and 2. It prevents the active circuit

from being loaded by the dc link capacitor. Thus option 4, feedback control based voltage sense

current cancellation topology is selected as the topology of active EMI filter.

Fig. 3.3: Feedback control based voltage-sense current-cancellation active EMI filter topology

3.3.3 Insertion Loss of active EMI filter topology

For the case without filter, the transfer admittance is given by

GOL(s) =
IS(s)
IL(s)

=
ZS

ZN +ZS
(3.1)

The closed loop transfer admittance is given by,

GCL(s) =
GOL(s)

1+A(s)GOL(s)
) (3.2)
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The insertion gain is given by the ratio of IL with and without filter is given by

IG(s) =
1

1+A(s)GOL(s)
=

1
1+LG(s)

(3.3)

LG(s) should have sufficient gain and phase margin to maintain stability. As previously

mentioned, ZN is a DM inductance. At high frequencies, the ZN >> ZS. In this case,

GOL(s)≈ 1 =⇒ LG(s)≈ A(s) and IG(s) =
1

1+A(s)
(3.4)

Fig. 3.4: Typical Measurement Setup of VNA for Impedance, Loop Gain and Transfer Gain

3.4 Modeling and Design of VSCC active EMI filter

The modeling of the individual sub-circuits and design guidelines are discussed in this

section. This involves the selection of the values of Cs1, Cs2, Rs1, Rs2, Cin j, Rin j, op-amp, Z f and

Zb such that the overall implementation is stable. The equations of the sub-circuit models are

implemented in MATLAB and compared to the experimental measurements. The measurements
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are carried out using Bode-100 Vector Network Analyzer. A typical measurement setup is shown

in Fig. 3.4. The following are the steps taken to ensure the validity of the models.

1. The results from MATLAB are compared to the experimental measurements in order to verify

the validity of the models of individual sub-systems, the loop gain of the filter and the small signal

insertion loss (Section III and Section IV).

2. The active EMI filter is tested in the circuit and the resulting noise attenuation is obtained by

comparing it to the noise without filter. The loop gain is obtained from the models is compared to

the experimental results to further verify the validity of the model (Section V and VI).

3.4.1 Model of the LISN

For DM noise, the equivalent impedance of the LISN and the power cable form the load

impedance. Since the power cable is less than 1 m long, its inductance and the stray capacitance

introduced is much less than the 100 Ω equivalent impedance of the LISN up to a few MHz.

Therefore for simplicity, the impedance of the cable is ignored. Since the active EMI filter is

expected to operate at frequencies less than 1 MHz, ignoring the cable impedance does not affect

the modeling. The equivalent impedance of the LISN is given by (3.5).

ZL =
s2∗LL

2∗RL +1/(sCL/2)
≈ 100 Ω (3.5)

3.4.2 Model of the Sensing Network

The converter is fed from an ac supply. Therefore, the noise sensing stage has to provide

attenuation of the order 80 dB at 60 Hz so that the 60 Hz ac voltage its harmonics, and the high

frequency currents due to rectifier are also sufficiently attenuated. Otherwise, any low frequency
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harmonic can easily saturate the output of the active circuit. The output of the high pass filter

should ideally be switching frequency and its harmonics in the desired EMI frequency range (150

kHz to few MHz). Therefore, the design of the sensing network requires careful consideration to

ensure that it:

1. has the desired performance throughout the entire frequency range and

2. it does not add too much to the volume of the filter

Fig. 3.5: Noise Sensing Network

It is not possible to get around 80 dB attenuation at 60 Hz with a 1st order high pass filter.

Therefore a 2nd order high pass filter is used as the sensing network. The schematic of the high

pass filter along with the measurement configuration is shown in Fig. 3.5. The capacitor Cs1 needs

to be rated for the input voltage and needs to be safety rated (X1Y1 rated). The other components

Cs2, Rs1 and Rs2 are low voltage and low power components. The capacitor Cs2 is a 50 V rated
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X7R surface mount capacitor. The transfer function of the filter is given by the equation 3.6.

THPF(s) =
s2

s2 + s(1/(Cs1Rs1)+1/Cs1Rs2 +1/(Cs2Rs2))+1/(Cs1Cs2Rs1Rs2)
(3.6)

TABLE 3.2: Sensing Network Parameters

Noise Sensing Cs1 (pF) Cs2 (nF) Rs1 & Rs2 (kΩ)
HPF1 470 10 100
HPF2 4700 10 10
HPF3 4700 3.3 3.3

The design of the filter not only affects the volume but also the design of the active circuit.

The same transfer function of the high pass filter can be implemented with different components.

The value of the Cs1 occupies the highest volume among the 4 components. Therefore, the sensing

network design has to optimized to achieve lowest volume overall volume while maintaining the

required frequency response. Three possible designs as shown in Tab. 3.2 are discussed here.

While HPF1 with Cs1 of 470 pF is desired, it requires 100 kΩ high frequency surface mount

resistors with very low parallel capacitance. Any parallel capacitance from the resistor or the PCB

will affect the frequency response of the filter and in turn affect the performance and stability of

the filter. If Rs1 and Rs2 value and integration could be strictly controlled HPF1 becomes feasible.

Even for HPF2 implementation, special 10 kΩ thin film high frequency resistors are used to ensure

the frequency response. Finally, HPF3 is the filter of choice which uses 3.3 kΩ high frequency

resistors. While HPF2 could be realized, HPF3 is more suitable. The reason behind this will

discussed in the stability analysis section (Section IV). The frequency response of the model and

the experimental measurement is shown in Fig. 3.6.
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Fig. 3.6: Frequency response of the sensing network HPF3 model vs measurement
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3.4.3 Operational Amplifier Circuit

The following are major considerations for the selection operational amplifier (op-amp) for

the filter to be implemented in inverting configuration. The conventional considerations for the

op-amp are should:

1. Have open loop gain equal to higher than the required gain of the active circuit in the operating

frequency range

2. Have gain bandwidth (GBW) greater than the required bandwidth of the active EMI filter

3. Be unity gain stable to ensure high frequency stability

In many previous works that utilize current cancellation topology [11-13], the active circuit

consists of two parts. The first part is a low power high bandwidth op-amp that is used to set the

gain at different frequencies for the active EMI filter. The second part consists of an amplifier

stage that is capable of supplying the high power current. This type of design is required in ac-dc

converters at a higher power level where the bare noise level is also high (around 140 dB at 150

kHz). This makes the stability analysis more complex since the frequency response and thermal

performance of both the stages need to be carefully designed in order to ensure stability. But, in

this work, the DUT is at a power level of 30 W and therefore the noise level is also low (around 80

dB at 150 kHz). Therefore a single op-amp could be utilized for the active circuit. But, there are

other special considerations that need to be taken into account because of the 2nd order high pass

filter.

The op-amp is configured in the inverting configuration with the output of the noise sensing

network connected to the inverting input. Z f and Zb represent the two impedance in the inverting

amplifier circuit. There are two ways of implementing the gain setting that is required for the ac-
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Fig. 3.7: Model of op-amp in the inverting configuration

tive circuit. Select Z f >> Rs2 and select Zb to set the required gain of the active circuit. In case

of HPF1, where Rs2 is of the order of 100 kΩ, Z f should be at least 1 MΩ to effectively decouple

the output impedance of the high pass filter network. This causes another problem. Any input bias

current will flow through the Z f and add to the input offset voltage. This input offset voltage would

then be amplified at the output terminal of the op-amp. This reduces the effective output swing

and therefore will impact the performance of the filter. And at high temperatures, the bias current

combined with high Z f can cause complete saturation of the op-amp rendering it completely use-

less. The solution to this problem is two fold. First, instead of decoupling the output impedance

of the sensing network from the active circuit, set Z f to zero. Now, Zb could be set depending on

the required gain of the active circuit. In order to ensure that the bias current does not cause any

large voltage offset at the output, a FET input is required. Compared to BJT input op-amps which

have bias current of the order of 10s of nA to 100s of nA, FET input op-amps have bias current of

the order of 10s of pA throughout the entire operating temperature range. Therefore, in addition

to conventional considerations, the op-amp for current cancellation in a ac-dc converter needs to

meet the following considerations.

4. Be capable of supplying the required cancellation current and handle the leakage current from

the 60 Hz line voltage
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5. Low input bias current such that the op-amp does not saturate at high value of DC feedback

resistor Zb

The open loop gain and the output impedance of the op-amp are available in the datasheet

[35]. The values from the datasheet are verified by measurements. The open-loop gain is measured

based on [36] and the output impedance of the op-amp is measured by configuring it at a known

value of closed loop gain [37]. The model of the op-amp could be derived based on the open-loop

gain and its output impedance. Following the same procedure, the op-amp OPA828 is modeled.

The open-loop gain is around 70 dB at 10 kHz and is capable of supplying up to 30 mA of current

and therefore does not require a dedicated current-amplifier circuit. The input bias current is of

the order of a 8 pA at room temperature and can be up to 400 pA at 85 oC. The active circuit is

designed such that the increase in input offset voltage due to the bias current is only 1 µV even

at 85 oC. This ensures that the the op-amp does not saturate. Also, because the op-amp of choice

has FET input, the input resistance (Ri = 1012 Ω) and capacitance (Ci = 6pF) could be ignored.

In current-cancellation active EMI filter, the output impedance of is in series with Cin j. Therefore,

it plays a significant role in the attenuation provided by the filter. It is represented by Zo. The

open-loop gain of the op-amp is represented in 4.13. The model vs. the measured open loop gain

is shown in Fig. 3.8.

Gop−amp(s) =
Go

(1+ s/ω1)(1+ s/ω2)
(3.7)

where, Go is the open-loop gain at DC and ω1 and ω2 represent the gain rollover frequencies.

Go = 107;ω1 = 2∗5.3 rad/s;ω2 = 2∗70 Mrad/s
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Fig. 3.8: Open loop gain of the op-amp measurement vs. model
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The feedback factor of the op-amp in the inverting configuration with the high pass filter

and the load is given by the following equation.

β =

(
Z f f

Z f f +Zb

)(
Zl//(Z f f +Zb)

Zl//(Z f f +Zb)+Zo

)
(3.8)

where,Z f f = Z f //

(
Rs2//

(
1

sCs2
+

1
Cs1

//Rs1

))
(3.9)

The transfer function of the op-amp in the inverting configuration with the high pass filter

and the load is therefore given by the following equation.

Top−amp(s) =
Gop−amp(s)(Zb +(Zo//Zl))

Z f f +Zb +(Zo//ZL)

1
1+Gop−amp(s)β

(3.10)

3.4.4 Model of the Injection Network

The injection network comprises of Rin j and Cin j. The original CDM capacitor of the passive

filter is 470 nF. When active EMI filter is employed, the value of the injection capacitance could

be reduced. The transfer function of the injection network is given by 3.11. The selection Rin j will

be discussed in the stability analysis section (Section IV).

Zin j(s) = Rin j +
1

sCin j
(3.11)
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Fig. 3.9: Block diagram of feedback voltage sense current cancellation active EMI filter

Fig. 3.10: Configuration for loop gain measurement
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3.5 Modeling and Stability Analysis

The signal flow graph of the VSCC active EMI filter is given in Fig. 3.9. In order to carry

out the stability analysis, the loop is disconnected at the sensing node and a small signal voltage

vss is applied. The high pass filter is in parallel to the LISN impedance and therefore does not

affect the loading of the op-amp even when disconnected for loop gain measurement. The voltage

across the parallel combination of LDM and ZL denoted as vout . The loop gain is the ratio of vout to

vss. This can be obtained by the product of transfer function of the sensing network, the inverting

op-amp and the voltage divider at the output of the op-amp (Zin j and ZL//ZS).

LG(s) =
vout(s)
vss(s)

=
VHPF(s)
Vss(s)

Vout(s)
Vin(s)

VLISN(s)
Vout(s)

(3.12)

From (5),(9) and (10),

LG(s) = THPF(s) Top−amp(s)
ZL//ZS

(ZL//ZS)+Zin j
(3.13)

Fig. 3.11: Possible compensation techniques for stability improvements
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3.5.1 Feasibility of Conventional Compensation Scheme

The gain of the op-amp is varied by changing Z f and Zb to see the condition that the active

EMI filter will become stable. As specified earlier, Z f is set to zero. Now, Zb has to be adjusted

in order to set the required gain. As mentioned in Section II, the gain of the active circuit is

going to determine the insertion loss of the active EMI filter. Instability arises both at low and

high frequency. Low frequency instability occurs due to the phase shift introduced by the noise

sensing network and the due to the roll-off in the gain of the op-amp due to the first pole. High

frequency instability occurs to due to other parasitics and 2nd pole in the open-loop gain of the

op-amp. For this topology of the active EMI filter, it is impossible to ensure stable condition in

low frequency (< 100 kHz) even for very low gains of 6 dB without any compensation. The

conventional compensation methods is to introduce a pole-zero pair at that frequency range to

improve the phase margin. This could be implemented by using an RC network (Rc1 and Cc1) in

parallel to Zs (connected across the line and neutral in the actual circuit) as shown in Fig. 3.11.

This would require a safety rated capacitor of the order of 100 nF along with a resistor. Now,

the original 470 nF CDM1 capacitor needs to be replaced with a Cin j, 4.7 nF Cs1 and a 100 nF

CC1. Therefore, this method would not be viable as it would not help achieve volume reduction.

Other method to use an LR network across the LDM. This would also require another magnetic

component and would also reduce the volumetric benefits of using the active EMI filter.

3.5.2 Compensation Scheme

The proposed compensation scheme realizes two functions:

1. Improves the low frequency stability and
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2. Reduces the gain at high frequencies thereby improving the high frequency stability as well

In order to improve the low frequency stability, Rin j is used. The Rin j in combination of

the Cin j helps improve phase margin at low frequency. But, using high value of Rin j reduces the

attenuation of the active EMI filter. However, the noise at around 150 kHz decides the cut-off

frequency and therefore the CDM required. So, the gain of the active circuit is set such that the

active EMI filter provides attenuation comparable to 470 nF from 150 kHz to a few 100 kHz.

Above this, Rin j dominates and reduces the effective attenuation of the filter. With the high pass

filter, there is nothing that limits the gain at frequencies above a few MHz. This will result in

high frequency instability of the active circuit. This helps limiting the gain of the active circuit at

high frequencies thus improving high frequency stability. In order to improve the high frequency

stability, a gain compensation capacitor Cc2 is used across the feedback resistance to reduce the

gain of the active EMI filter at frequencies above 1 MHz. The flowchart for overall design of the

active EMI filter is shown in Fig. 3.12.

TABLE 3.3: Component values in the passive filter and active EMI filter

Component Value Ratings
LDM 120 Leakage of CM choke

CDM1 470 nF X2 and 275 V
CDM2/Cin j 68 nF X2 and 275 V

Cs1 4.7 nF X1Y1 and 275 V
Cs2 10 nF 50 V SMD

Rs1&Rs2 3.3 kΩ 1/8 W SMD
Z f - -
Zb Rb ||el Cc2 -
Rb 100 kΩ 1/8 W SMD
Cc2 470 pF 16 V SMD
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Fig. 3.12: Schematic for experimental testing
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Fig. 3.13: Frequency Response of HPF and Active Circuit measurement configuration

3.6 Small Signal Measurements

The final component values used in the filter are listed in Table. 3.3. Firstly, the gain of the

active stage along with the high pass filter is measured. The schematic of the measurement is shown

in Fig. 3.13. The measurement result is shown in Fig. 3.14. The measurement and the model shows

good agreement up to a few MHz. Next, the Cin j and Rin j are added to this circuit and the loop gain

is measured by disconnecting the HPF at the sensing node. The measured loop gain is shown in

Fig. ??. From the figure, it can be seen that the active EMI filter has about 28 degrees phase margin

around 40 kHz and around 80 kHz around 20 MHz. Thus both low frequency and high frequency

stability are ensured. The output impedance of the actively enhanced 68 nF capacitor is measured

using 1-port measurement of the VNA. This measurement vs. model is shown in Fig. 3.18. Then,

the CM choke whose leakage inductance serves as the LDM is connected and transfer gain of the

filter is measured. This measurement vs. model shown in Fig. 3.20. From the impedance and the
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Fig. 3.14: Frequency Response of HPF and Active Circuit
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Fig. 3.15: Configuration for measuring loop gain

transfer gain it can be observed that the 68 nF capacitor’s impedance is enhanced starting at 5 kHz.

This ensures that low frequency harmonics of the ac line frequency and other harmonics from the

operation of the rectifier do not saturate the active circuit. The impedance and the transfer gain

with the actively enhanced 68 nF is comparable to that of the original 470 nF capacitor up to a few

100 kHz. Above this frequency range, the effectiveness of the active circuit reduces because of the

reduction in gain due to the compensation capacitance Cs2 and Rin j. Since the noise at frequency

range around 150 kHz determines the values of the filter component required, this is sufficient to

ensure that the noise level is below the standard. This will be shown in the next section.
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Fig. 3.16: Comparison of loop gain model vs. measurement
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Fig. 3.17: Impedance measurement configuration of CDM1, CDM2 and Cin j with active EMI filter

3.7 Experimental Setup and Results

3.7.1 Experimental Test Setup

The converter under consideration is a 30 W ac-dc converter. The test setup is done as

described in CISPR-16 standard and is shown in Fig. 3.22. The Line Impedance Stabilization

Network (LISN) pair used for EMI measurement is COM-Power LI-50A which is designed to carry

out measurements for CISPR-22 standard. The differential mode measurements are made using

power splitter ZSCJ-2-B+ from Mini-Circuits. The 3-dB bandwidth of the noise splitter covers the

conducted emissions frequency range of CISPR-22 standard. The noise measurements are carried

out using the Keysight N9038 MXE receiver. The resolution bandwidth, video bandwidth and the

dwell times of the EMI receiver are setup as specified in the standard. The 110 V, 60 Hz single

phase power supply from the wall outlet is fed to the power converter through the two LISNs.

The neutral is tied to the ground at the wall outlet. An external isolated power supply is used to
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Fig. 3.18: Comparison of measured impedance of CDM1, CDM2 and Cin j with active EMI filter
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Fig. 3.19: Comparison of measured frequency response of filter with and without active EMI filter

Fig. 3.20: Comparison of measured transfer gain of filter with LDM1, CDM1, CDM2 and Cin j with
active EMI filter
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Fig. 3.21: Schematic for experimental testing

power up the active circuit. The active circuit uses the operational amplifier OPA828 from Texas

Instruments.

Fig. 3.22: Conducted Emissions Measurement Test Setup

3.7.2 Experimental Results

The noise measurements with the Quasi-peak detector are carried out and the results are

shown in Fig. 3.23. From this it can be seen that with the active EMI filter, the attenuation is

16 dB using the same 68 nF capacitor around 150 kHz. Thus the performance of this filter is
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Fig. 3.23: Experimental results - Quasi peak detector

comparable to that of using 470 nF capacitor. The obtained attenuation from the filter is within

the expected range. This validates the model obtained earlier. The filter prototype is shown in Fig.

3.24 and the volumetric comparison is summarized in Fig. 3.25. Thus, with a 68 nF capacitor,

the equivalent attenuation would be approximately same as using a 470 nF capacitor. The volume

of the 470 nF capacitor is 3901 cu. mm. The volume of the 68 nF Cin j capacitor 945 cu. mm.

The volume of the 4.7 nF high voltage sensing capacitor (Cs1) is about 180 cu. mm. Thus, using

this topology of active EMI filter, the volume of the X-capacitor has been reduced by about 67%.

The filter prototype is shown in Fig. 3.24 and the volumetric comparison is summarized in Fig.

3.25. For low power ac-dc converters, the proposed work achieves two important things. It uses

low voltage components for compensation and uses only one high voltage component for noise

sensing. Even with one additional high voltage component, a volume reduction of 67% is achieved

for the differential mode capacitor.
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Fig. 3.24: Comparison of Passive Components with and without active EMI filter

Fig. 3.25: Volumetric Comparison of the Capacitance with and without active EMI filter

3.8 Conclusion

The suitability of different active EMI filter topologies are discussed for the ac-dc converter

without PFC is discussed. Because of the spurious nature of the input currents with higher peak

values, current sensing or voltage cancellation topologies cannot be used for these converters.

The feedback control based voltage sense current cancellation topology uses only high voltage

capacitors for noise sensing and cancellation. The individual sub-circuits are modeled in detail.

Based on this modeling, design procedure is presented in the form of a flowchart. The design

procedure involves deciding the loop gain and suitable compensation methods to optimize the

volume reduction without the need for too many high voltage/high current components. Feasibility

of conventional compensation scheme was identified and a compensation scheme with better low

and high frequency stability that uses only low voltage components is proposed. Small signal

measurements are compared to the models in order to show the effectiveness of the models. The

filter is tested with power adapter with and the results are consistent with the model and small
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signal results.Active EMI filter helps reduce the value of the X-capacitor by about 10 times from

470 nF to 68 nF and the volume of the X-capacitor by 67%.
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4 Modeling and Analysis of a Differential-Mode Active EMI Filter with an Analog

Twin-circuit

4.1 Abstract

Conventional passive EMI filters are bulky and occupy up to 30% of converter volume

and weight. Active EMI filters are a key technology that enables the volume reduction of pas-

sive components in the EMI filter. The effectiveness of traditional active EMI filter for volume

reduction is limited by the additional overhead from the passive components for noise-sensing and

compensation to ensure stability. A novel active EMI filter is proposed and demonstrated for DM

noise attenuation. The filter consists of a twin-circuit made up of low voltage/current components

that mimic the high-power passive filter components in the main circuit. Unlike the conventional

active EMI filter, the proposed filter uses compensation networks which consists of low-voltage

surface-mount components only. The modeling of the entire circuit is carried out, and verified

with small-signal measurements. The filter is then tested in a converter and the experimental re-

sults are shown to be consistent with the model and the small-signal measurements.

4.2 Introduction

Power converters generate conducted EMI noise due to the switching action of the power

semiconductor devices. Conventionally, a second-order passive EMI filter is used for noise miti-

gation to ensure compliance with standards. With the advent of wide-bandgap devices such as SiC

and GaN, the power density of the power stages is ever increasing, as demonstrated in the literature

[1–3]. While the power density of the power stage increases, the high switching frequency and high
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switching speeds of the wide-bandgap devices require careful design of EMI filters to ensure the

high power density of the entire power converter. However, the passive components have not kept

up with the developments in the power semiconductors area. Therefore, passive EMI filters are a

significant bottleneck for power density and could occupy up to 30% of power converter volume

and weight.

Active EMI filters are a key technology that will enable high-density passive solutions

for the next generation of power converters. Typically, active EMI filters are implemented along

with another passive component. This is essential because of the limitation of the bandwidth of

the passive components and the active circuits used in the active EMI filter. Using active EMI

filters along with a passive component is referred to as hybrid EMI filters. Active and hybrid

EMI filters have been shown to reduce the volume of the passive components by over 50% [4–

6]. The active EMI filters provide attenuation up to a few MHz, and a smaller passive filter is

used to provide high-frequency attenuation. The active EMI filters can be classified based on

the methodology of control, noise-sensing, and noise-cancellation mechanisms [7–9]. Previously,

active EMI filters using feedforward[7], feedback[6, 10, 11] and a combination of both control

techniques [12] have been demonstrated. Also, active EMI filters utilizing a combination of voltage

or current sensing and cancellation have been demonstrated [4, 5, 13–15]. Active and hybrid EMI

filters have been applied to common-mode (CM) and differential-mode (DM) noise attenuation in

both dc-dc [5, 16], ac-dc [6, 10, 13] and dc-ac [7, 17] converters.

Among existing work, transformer-less current-cancellation topologies have been shown

to offer higher volume reductions than voltage-cancellation topologies that use a voltage injector.

Recently, a summary of different active EMI filters and their implementation of different power

converters was presented in [18]. In [18], the need for novel analog or digital active EMI filters
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Fig. 4.1: Schematic of typical feedback control based voltage-sense current-cancellation active
EMI filter

with improved performance (attenuation) while avoiding additional passive components for com-

pensation was identified. In order to get good attenuation with the feedforward topology, tight

control of tolerance of all the passive components is required. Moreover, for the most part, the

feedforward topology remains stable.

While the feedback topology is resilient to component tolerances, it is subject to stability

issues at low (<150 kHz) and high (>30 MHz) frequencies. Instability at low frequency occurs

due to the phase shift introduced by the noise-sensing circuit. High-frequency instability stems

from the gain roll-off of the op-amp circuit, and other parasitics in the circuit. In order to ensure

stability, damping networks comprising of high-voltage/high-current components are added to the

circuit. These components add to the bulk and reduce the benefits of using active EMI filters. The

schematic of a typical feedback control based voltage-sense current-cancellation active EMI filter

is shown in Fig. 4.1. There are four main parts of the active EMI filter. They are: the noise-

sensing circuit, the active circuit (op-amp), the main passives and the compensation network. In

[11], attenuation of up to 34 dB around 150 kHz in an ac-dc converter with PFC. using feedback

current-sense current-cancellation topology active EMI filter was reported. However, in addition
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to the CT (Current Transformer) for noise-sensing, additional high-voltage capacitor (CC) and

resistor (RC) compensation network to ensure the stability of the active EMI filter. This additional

high-voltage compensation network prevents maximizing the volumetric benefit of using an active

EMI filter. It was shown in [10] that for an ac-dc converter without PFC, voltage-sense current-

cancellation active EMI filter offers the most volume reduction. While this method avoided any

current-transformers and additional high-voltage compensation network, an attenuation of only 12

dB was achieved around 150 kHz. The main bottleneck that limits the performance was identified

as the phase shift introduced by the noise-sensing second-order high-pass filter.

This work proposes a novel active EMI filter with a twin-circuit. The proposed active EMI

filter overcomes the stability issues facing a conventional feedback control based implementation.

The proposed topology does not require any high voltage/current components for compensation,

and instead only uses low-voltage surface mount components. Some of the preliminary results

in this paper were previously presented by the authors in [19]. The organization of the work is

as follows. Section II describes the proposed concept of the active EMI filter with a twin-circuit.

Section III involves the modeling, design, and frequency domain measurements using the VNA

to verify the modeling of individual sub-circuits and insertion loss of the entire filter as a whole.

Section IV describes the experimental test setup, and discusses the small-signal and experimental

results. Section V presents the conclusion.
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4.3 Active EMI filter with twin circuit

4.3.1 Topology selection of active EMI filter

The active EMI filter could use either noise current or noise voltage-sensing and cancel-

lation. Topologies that employ current-sensing and voltage-cancellation requires the use of CTs

for current-sensing and voltage-injection transformers for voltage-injection, respectively. For DM

noise, the CTs and voltage injection transformers can be bulky since they have to carry the line

current without getting saturated. Therefore, using these topologies would affect volume reduc-

tion benefits that come with the use of the active EMI filter. Therefore, it is more desirable to use

active EMI filter topologies that do not require the use of any additional magnetic components.

The voltage-sense current-cancellation topology uses only high voltage capacitors in combination

with low voltage active circuits for noise-sensing and cancellation. Therefore, using this topology

will help maximize the volume reduction and therefore, is used in this paper. Previously, feedback

control based voltage-sense current-cancellation topology was demonstrated in [10]. However, in

order to avoid using additional high-voltage components for compensation for stability improve-

ment, the attenuation of the active EMI filter was limited to 12 dB around 150 kHz. This work

proposes a topology that only uses low-voltage components for compensation but still implements

voltage-sense current-cancellation active EMI filter for DM noise cancellation while achieving 24

dB attenuation around 150 kHz.

4.3.2 Feedforward voltage-sense current-cancellation active EMI filter

The schematic of the overall implementation of the proposed active EMI filter for DM noise

attenuation is shown in Fig. 4.2. The converter is represented by the current source, IS, and the
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Fig. 4.2: Schematic of proposed feedforward control based voltage-sense current-cancellation
active EMI filter with twin-circuit

noise source impedance ZS represents the impedance of the dc-link capacitor. The load impedance

ZLISN represents the equivalent impedance of the LISN for DM noise. The original passive EMI

filter consists of inductance, LDM, and capacitor, CDM. The proposed active EMI filter enhances the

impedance of CDM. And, in combination with LDM, it forms the hybrid EMI filter. This LDM could

be a discrete inductor or leakage inductance of the CM choke. In the active EMI filter, the CDM is

referred to as the CINJ since the noise current is injected through this capacitor. Noise-sensing is

carried out at the converter end, making this implementation a feedforward topology.

There are four parts of the proposed active EMI filter circuit. The first stage involves

the noise-sensing high pass filter. It consists of a second-order high pass filter that rejects any

line frequency and other harmonics and senses only the switching frequency and its harmonics.

The second stage is the compensation stage. The output of the high pass filter is buffered, and
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the compensation network is used to improve the gain and phase around 150 kHz (start of EMI

frequency range). The compensation network uses only low-voltage components and is key to

enhance the attenuation of the active EMI filter. The next stage is the twin circuit. The output of

the compensation network is fed to the twin circuit that comprises of the components that mirror

the main filter components. That is, corresponding to LDM, CINJ , and ZLISN in the main power

circuit; there are LDMt , CINJt , and ZLISNt in the twin circuit. The twin-circuit consists of a feedback

control based voltage-sense current-cancellation topology active EMI filter. All the components in

the twin circuit are low-voltage and low-power components. The final stage is the noise injection

stage. This circuit buffers the injected noise in the twin circuit, VINJt , and injects into the main

circuit. Ideally, all the active circuitry and its components of the active circuit with the exception

of LDMt and CINJt could be integrated into a single IC. Even then, since these components do not

carry the line current or do not have to block the line voltage, they can be made from surface mount

components or much smaller in volume relative to passive components in the power circuit for all

cases. Moreover, the filter would be more beneficial at higher power levels. Further, in the entire

active EMI filter, there are only two high-voltage components – CS1 and CINJ capacitors avoiding

the need for additional magnetic components or high-voltage capacitors.

4.4 Modeling of the active EMI filter and twin circuit

The block diagram of the entire active EMI filter circuit is shown in Fig. 4.3, and the

equivalent circuit is shown in Fig. 4.4a. ISS is the current through ZS, and ISA represents the

current flowing through the filter. This cancellation current injected by the filter and the noise

current through the LISN is represented by ISC and ISL, respectively. Alternatively, the DM noise

source could be represented by the voltage source VS given by (4.1) in series with an impedance,
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Fig. 4.3: Block diagram of proposed active EMI filter - twin circuit block diagram collapsed into
GINJ

Fig. 4.4: (a) Equivalent circuit of proposed active EMI filter with noise source represented by
current source (b) noise source represented by voltage source

as shown in Fig. 4.4b. Now, the sensed voltage, VSEN is given by (4.2). Combining the impedance

of LDM, ZDM, and noise-source impedance, ZS, simplifies the derivation of the open-loop current

gain. The new equivalent noise source (I′S) and noise source impedance (Z′S) is given by (4.3) and

(4.4), respectively. Now, the open-loop current gain (GOL) without the active EMI filter is given

by (4.5).

VS = IS ZS (4.1)
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VSEN =VS− ISAZS = ZS(IS− ISA) (4.2)

I′S =
ZS

ZS +ZDM
IS (4.3)

Z′S = ZS +ZDM (4.4)

GOL =
ISL

I′S
=

Z′S
Z′S +ZL

=
ZS +ZDM

ZS +ZDM +ZL
(4.5)

The noise source voltage VSEN is sensed by the active EMI filter using a high pass filter.

The output of the high pass filter VHPF is then inputted to the compensation stage. The output of

the compensation stage is VCOMP is then used as the noise source VSt to the twin circuit. Let GINJ

be the ratio of the VINJ to VSEN . The injected cancellation current ISC is given by (4.6). Substituting

for VSEN in (4.6), results in (4.7).

ISC =
ISLZLISN +GINJVSEN

ZINJ
(4.6)

ISC =
ISLZLISN +GINJ(VS− (ISL + ISC)ZS)

ZINJ
(4.7)

.

The twin-circuit comprises of feedback control based voltage-sense current-cancellation

active EMI filter circuit. The detailed derivation of the topology used in the twin circuit is presented
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Fig. 4.5: Block diagram of twin circuit - feedback voltage-sense current-cancellation topology

Fig. 4.6: Equivalent circuit of twin circuit with noise source represented by (a) voltage source and
(b) current source

in [10] and general current-injection based active EMI filter topologies for DM noise are discussed

in detail [6, 11, 12]. So, only final equations are given here for the sake of brevity. The block

diagram of the twin-circuit is shown in Fig. 4.5. The circuit schematic and the equivalent circuit

of the twin circuit are shown in Fig. 4.6a, and Fig. 4.6b respectively. The noise voltage source in

the twin circuit is VSt . The current through LDMt is ISLt , and the cancellation current is ISCt and the

current through ZLISNt is given by ISLt . The feedback gain of the active circuit is represented by

A jt . The feedforward current gain and the loop gain of the feedback loop is given in (4.8) and (4.9)

respectively.
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ISLt

I′St
=

Gt

1+Gt
ZLISNt
ZINJt

(1+A jt)
(4.8)

where Gt =
ZDMt

ZDMt +ZLISNt

VINJt

VSt
=

ISLt

I′St

ZLISNt

ZDMt
A jt (4.9)

Substituting (4.8) in (4.9), gives (4.10).

VINJt

VSt
=

A jt
1

Gt

ZINJt
ZLISNt

+1+A jt

ZINJt

ZDMt
(4.10)

The attenuation with the active EMI filter with the twin circuit is then given by (4.11).

GCL = 1− VINJt

VSt

ZDM

ZINJt
THPFTCOMP (4.11)

GCL = 1 −
A jt

1
Gt

ZINJt
ZLISNt

+1+A jt

ZINJt

ZDMt

ZDM

ZINJ
THPFTCOMP (4.12)

Substituting (4.10) in (4.11), yields (4.12). From (4.12), it can be seen that the attenuation

of the proposed filter is highest when the second term is unity. For this to occur, the following

conditions need to be satisfied:

1. The gain of the twin circuit which in turn determines the ratio of VINJt to VSt ,

2. The degree to which there is a good match between ZINJ and ZINJt , ZDM and ZDMt , and

3. THPFTCOMP should be unity in the EMI frequency range.
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Further, the attenuation does not depend on the accurate match between ZLISN and ZLISNt , which

makes the filter more robust to noise source impedance variations. The component selection, mod-

eling, and design of each sub-circuit and overall circuit design to achieve maximum attenuation

with the proposed active EMI filter are discussed next.

4.4.1 Operational Amplifier

The proposed active EMI filter uses op-amps in four parts of the circuit. Ideally, all four

op-amps could be integrated into one single IC. The first three op-amps are all small signal circuits

and do not need The open-loop gain and the output impedance of the op-amp are available in the

datasheet [20]. The values from the datasheet are verified by measurements using the VNA. The

open-loop gain is measured based on [21] and the output impedance of the op-amp is measured by

configuring it at a known value of closed-loop gain [22]. The simplified model of the op-amp is

shown in Fig. 4.7. The transfer function of the open-loop gain of the op-amp is given by 4.13. The

open-loop gain is around 65 dB at 100 Hz and is capable of supplying up to 75 mA of current. This

op-amp is over-designed to be used as the buffer for the noise-sensing and compensation stages.

However, for the simplicity of modeling, the same op-amp is used in all three stages.

Fig. 4.7: Schematic of simplified model of op-amp
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Gamp =
Go

(1+ s/ω1)(1+ s/ω2)
(4.13)

where, Go is the open-loop gain at DC, and ω1 and ω2 represent the gain rollover frequen-

cies. Go = 1780;ω1 = 2∗180 krad/s;ω2 = 2∗350 Mrad/s

Fig. 4.8: Frequency response of high pass filter for noise-sensing - model vs. measurement
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4.4.2 High Pass Filter

The converter that uses this filter could be fed from ac or dc supply. Either way, the noise-

sensing stage has to sufficiently attenuate any 60 Hz ac voltage its harmonics, and the high-

frequency currents due to rectifier operation or any other converters connected to the same node.

Otherwise, any low frequency harmonics can easily saturate the output of the active circuits. Ide-

ally, the output of the high pass filter should only include the switching frequency and its harmonics

in the desired EMI frequency range (150 kHz to few MHz). The design of the sensing network

requires careful consideration to ensure that it:

1. has the desired performance throughout the entire frequency range and

2. it does not add too much to the volume of the filter

It is not possible to get around 80 dB attenuation at 60 Hz with a 1st order high pass filter.

Therefore a 2nd order high pass filter is used as the sensing network. The capacitor Cs1 needs to be

rated for the input voltage and needs to be safety rated (X1Y1 rated). The other components Cs2,

Rs1, and Rs2 are low voltage and low power components. The capacitor Cs2 is a 50 V rated X7R

surface mount capacitor. The transfer function of the filter is given by 4.14. The output of the high

pass filter is buffered (op-amp configured as voltage-follower) and fed to the compensation stage.

The selected op-amp is unity-gain stable with a gain-bandwidth of about 500 MHz. Therefore, the

output of the buffer could be assumed to be the same as that of the high pass filter. The transfer

function of the filter and the buffer is measured for Cs1 = 4.7 nF , Cs2 = 10 nF , Rs1 = 3.3 kΩ and

Rs2 = 3.3 kΩ using the Bode-100 VNA. The comparison of model and measurement is shown in

Fig. 4.8.

86



THPF =
s2

s2 + s( 1
Cs1Rs1

+ 1
Cs1Rs2

+ 1
Cs2Rs2

)+ 1
Cs1Cs2Rs1Rs2

(4.14)

Fig. 4.9: Frequency response of high pass filter output with and without compensation

4.4.3 Compensation

The low-frequency compensation is a lead-lag compensator. As a whole, the proposed

analog-twin based active EMI filter is a feedforward implementation. Therefore, the attenuation

is maximum when the gain is unity with no phase shift. The high-pass filter that is used to sense

the noise reduces the gain and introduces phase-shift up to a few 100 kHz. In order to reduce
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Fig. 4.10: Frequency response of compensation stage and high pass filter - model vs. measurement

this, a pole-zero pair (lead-lag compensator) is introduced after the high-pass filter. This transfer

function of the sensed noised with and without compensation is illustrated in Fig. 9. The lead-lag

compensator is chosen such to reduce the distortion in gain and phase in the EMI frequency range

without overshooting the gain above unity. The compensation stage consists of a non-inverting

amplifier with a gain of 2. Since the GBW of the op-amp is of the order of 500 MHz, the transfer

function of the op-amp can be assumed to be approximately given by (4.15). The output of this

circuit is fed to the compensation network. The compensation network consists of Rc1, Rc2, and

Cc1 and is used to introduce a pole-zero pair (lead-lag compensation) around 150 kHz to improve
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the gain and the phase distortion introduced by the noise-sensing stage. The transfer function of

the compensation stage is determined by the non-inverting amplifier and the passive network. The

transfer function of the compensation network and the non-inverting amplifier is given by (4.16).

The transfer function of the filter and the buffer is measured for Cc1 = 47 nF , Rc1 = 120 Ω and

Rc2 = 120 Ω using the Bode-100 VNA. The comparison of model and measurement is shown in

Fig. 4.8, and the comparison of the sensing stage with and without compensation is shown in Fig.

4.9.

TA =
1+ R2

R1

1+ 1+(R2/R1)
Gamp

≈ 2 (4.15)

TCOMP =

1
sCc1

+Rc2

Rc1 +
1

sCc1
+Rc2

TA (4.16)

Besides this, all the op-amps require high-frequency compensation to avoid instability.

This is ensured by conventional lag compensation by using a small capacitor across the feedback

resistor to reduce the gain at frequencies higher than 30 MHz.

4.4.4 Twin Circuit

The twin-circuit comprises of feedback control based voltage-sense current-cancellation

active EMI filter circuit. The detailed derivation of the topology used in the twin circuit is presented

in [6, 10]. So, only final equations are given here for the sake of brevity. The block diagram of

the twin-circuit is shown in Fig. 4.5. The circuit schematic and the equivalent circuit of the twin

circuit are shown in Fig. 4.6a, and Fig. 4.6b respectively. The noise voltage source in the twin

circuit is VSt . The current through LDMt is ISLt , and the cancellation current is ISCt and the current
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Fig. 4.11: Frequency domain measurement of VLISNt - model vs. measurement

through ZLISNt is given by ISLt . The feedback gain of the active circuit is represented by A jt .

The feedforward current gain and the loop gain of the feedback loop is given in (4.8) and (4.9)

respectively.

The twin circuit comprises of feedback voltage-sense current-cancellation topology which

is designed based on [10] and only key details are provided here for the sake of brevity. The gain

of the inverting amplifier is set using C f , Z f , and Zb to 24 dB in the frequency range of 150 kHz

to 1 MHz. The three main components of the twin circuit are LDMt , CINJt , and ZLISNt which are
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Fig. 4.12: Frequency domain measurement of VINJt - model vs. measurement

identical to the components LDM, CINJ , and ZLISN in the main power circuit. The twin circuit is

configured in the feedback configuration. It operates to reduce the noise in ZLISNt , which is a 100 Ω

resistor. The gain of the amplifier circuit is directly related to the attenuation provided by the active

EMI filter. The high-frequency stability of the twin circuit is ensured by using lead-compensation

method (adding a capacitor across the feedback resistor) and using an injection resistor in series

with CINJt . The loop gain of the twin circuit is given by (4.17). The gain of the twin circuit is set to

ensure that the twin circuit is stable and the output of the op-amp in the twin circuit is not saturated
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by any low-frequency and its harmonics. The voltage VINJt is then fed to a buffer in the injection

stage. The output of this buffer is fed to CINJ in the main circuit. The voltages VLISNt and VINJt are

measured using the VNA for LDMt = 33 µH, CINJt = 47nF , and ZLISNt = 100Ω. The comparison

of model and measurement is shown in Fig. 4.11, and Fig. 4.12 and show good agreement.

A jt = TIA(s)
ZL//ZS

(ZL//ZS)+Zin j
(4.17)

where,

TIA =
Gop−amp(Zb +(Zo//Zl))

Z f f +Zb +(Zo//Zl)

1
1+Gop−ampβ

β =

(
Z f f

Z f f +Zb

)(
Zl//(Z f f +Zb)

Zl//(Z f f +Zb)+Zo

)

Zl = ZINJt +ZLISNt//ZDMt

4.4.5 Injection Network and Insertion Loss

The VINJt voltage from the twin circuit is buffered and injected in the main circuit using

CINJ . A series resistor RINJ is added to damp the resonance between LDM and CDM, similar to

the twin-circuit. The model vs. measurement of insertion loss of the proposed analog-twin based

active EMI filter is shown in Fig. 4.13. The measurement shows good agreement to the model

up to a few MHz. The comparison of insertion loss with the inductor LDM (33 µH) , passive

components LDM (33 µH) and CDM (47 nF) only, the same passive components, LDM (33 µH) and
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CINJ (47 nF), when used with the analog-twin based active EMI filter , is shown in fig. 4.14. In

order to see the additional attenuation by the active EMI filter, the value of CDM and CINJ is kept

the same. When compared to the passive components only, the active EMI filter provides 24 dB

at 150 kHz with the bandwidth of 1 MHz. However, along with LDM, the bandwith of the overall

hybrid filter encompasses the entire conducted EMI frequency range of CISPR-22 standard (150

kHz to 30 MHz).

Fig. 4.13: Insertion loss of analog twin active EMI filter - model vs. measurement
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Fig. 4.14: Measured insertion loss of LDM = 33 µH only, passive components (LDM = 33 µH and
CDM = 47 nF) only and with analog twin (LDM = 33 µH, CINJ = 47 nF and active circuit)

4.5 Experimental Results

4.5.1 Small Signal Test Results

For carrying out the small-signal tests, the function generator is used as the noise source.

Since the output of the function generator has a 50 Ω output impedance, the function generator is

used with an op-amp configured as a voltage-follower. In addition, a 30 µF capacitor in series to

the output of the voltage-follower to represent the capacitive noise source impedance in the actual
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Fig. 4.15: Small-signal time-domain measurements

Fig. 4.16: Small-signal frequency-domain measurements with EMI receiver
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converter. The output through the capacitor is then connected to the active EMI filter, and tests are

carried out under two cases. One with the LDM and CDM and another with the LDM and the proposed

active EMI filter. The active EMI filter uses CINJ same as that of CDM. The noise is measured at the

LISN with a DM noise splitter (Mini-circuits ZSCJ-2-2+). The output of the DM noise splitter is

connected to the Keysight MXE EMI receiver. The time-domain waveforms at different stages of

the proposed active EMI filter are measured using TPP1000 1 GHz passive probes and a Tektronix

MSO-56 Oscilloscope and shown in Fig. 4.15. The noise voltage (Vsource) is sensed using the high

pass filter (VHPF ) is distorted due to the non-linear phase shift introduced by the high pass filter.

The output of the compensation network has lower distortion and corresponds well to Vsource. The

injection signal( VINJ) does not have any high frequency or low-frequency ringing confirming that

the filter is stable. The frequency-domain measurements from the EMI receiver are shown in Fig.

4.16. With the proposed active EMI filter, there is about 24 dB attenuation around 150 kHz and

the bandwidth of 1 MHz corresponds to the frequency domain measurements using the VNA.

4.5.2 Experimental results with converter

The measurement setup is the same as that of the small-signal test results. The filter is

connected to a buck-converter with a switching frequency of 50 kHz and 75% duty cycle. The

measurements are carried out under the same two cases, as previously mentioned in the small-

signal tests. The time-domain measurements and are shown in Fig. 4.17 and the EMI receiver

measurements are shown in Fig. 4.18, respectively. From Fig. 4.17 the distortion introduced

by the high pass filter has been corrected by the compensation network. The injection stage has

no high-frequency or low-frequency ringing, ensuring that the filter is stable. From Fig. 4.18,

the attenuation at 150 kHz is around 24 dB, which is consistent with the small-signal results and
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Fig. 4.17: Time-domain converter test results

Fig. 4.18: Converter test frequency-domain measurements with EMI receiver
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VNA measurement. There is some attenuation up to 1 MHz, which is also consistent with the

measurements using the VNA.

4.5.3 Power Loss and Volume Reduction

The demonstration of the proposed filter includes three op-amps. For simplicity of model-

ing all the four op-amps were chosen to be same model. Also, as mentioned earlier, all of these

op-amps could be integrated into a single op-amp. Therefore, the bias power of only one op-amp

is considered for calculation of power loss. All the losses in the op-amp are calculated using 5 V

bias power. The quiescent power loss in the op-amp is about 50 mW corresponding to quiescent

current of about 10 mA. There are losses in the injection op-amp due to the leakage current in the

injection capacitors. For dc systems, this loss is negligible. For ac 110 V 60 Hz supply, the leakage

current is about 2 mA (for 47 nF CINJ) which translates to about 10 mW in losses in the op-amp.

Besides these losses, there is loss due to injected current. From Fig. 18, the majority of the in-

jected noise current is only up to 500 kHz. So higher harmonics can be neglected. At 150 kHz,

the noise reduces from 66 dBµV to 42 dBµV. These corresponds to 39.9 mA and 2.5 mA of cur-

rent measured at the LISN at 150 kHz. Therefore, the losses in the injection op-amp is about 188

mW. Similarly, corresponding to noise injected up to harmonics of 500 kHz, the total power loss

due to injection current is about 725 mW. Thus, the total power loss (quiescent + leakage current

+ injection current) is 785 mW. Majority of the losses comes from due to the noise cancellation

current. At 30 W power level, the losses are about 2.5%. However, for the same attenuation, same

amount of cancellation-current is injected in the circuit at any power level. For example, consider

the case where the analog-twin based active EMI filter is used in 300 W converter. To arrive at

worst case estimates, the bias voltage for the amplifiers is assumed to 15 V instead of 5 V. Then
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the power losses in incurred in the injection circuit will be 2.175 W which corresponds to about

0.7%. Therefore, the percentage of losses incurred in the active EMI filter for the same attenuation

reduces as the power level increases. Further, corresponding to a reduction of capacitance (X2,

275 Vac rated) from 470 nF (3790 cu. mm.) to 47 nF (1215 cu. mm.), the volume reduction of

required capacitor is about 68%.

4.6 Conclusion and future work

A novel feedforward control based voltage-sense current-cancellation topology with a twin-

circuit that uses only high-voltage capacitors for noise-sensing and cancellation is proposed. The

topology uses only low-voltage surface mount components for compensation to improve attenu-

ation and ensure the stability of the active EMI filter. The twin-circuit consists of components

that are identical to that of the main circuit. The individual sub-circuits are modeled in detail to

arrive at the overall system model and insertion loss. The small-signal measurements are carried

out using the VNA at the sub-circuit level, and system level, and the insertion loss of the proposed

filter is compared to the passive filter. The model is in good agreement with the measurement up

to a few MHz. The small-signal test results and experimental test results show an attenuation of 24

dB at 150 kHz using a 47 nF capacitor, and a bandwidth of 1 MHz. This would enable replacing a

470 nF capacitor with a 47 nF one using the proposed active EMI filter resulting in a 68% smaller

capacitor.
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5 Zero-Phase-Filtering based Digital Active EMI Filter

5.1 Abstract

Zero-phase filtering is a methodology of achieving filtering without any phase distortion.

This methodology is applied to digital active EMI filters to enhance the attenuation at frequencies

from 100 kHz to 1 MHz. The methodology for implementing this in an FPGA and the tuning

procedure are presented. The novel filter is then demonstrated in a feed-forward voltage-sense

voltage-cancellation active EMI filter for differential mode noise attenuation. Tests are carried out

with small signal source and as well in a power converter. The test results show that the proposed

filter can have up to 46 dB attenuation in the frequency range of 100 kHz to 500 kHz which is 22

dB higher compared to conventional digital active EMI filter.

5.2 Introduction

Power converters generate conducted EMI noise due to the switching action of the power

semiconductor devices. Conventionally, a second order passive EMI filter is used to mitigate this

noise. These passive filters tend be bulky and could occupy up to 30% of the system volume.

Active EMI filters (AEF) could be used to reduce the volume of the passive components. The

AEF provides attenuation up to a few MHz and a smaller passive filter is used to provide high

frequency attenuation. The AEF along with the passive filters is referred to as hybrid EMI filters

(HEFs). The HEFs have been shown to reduce the volume of the passive components by over

50% [1, 2]. The AEFs can be classified based on the methodology of control, the active circuits,

noise sensing and noise cancellation mechanisms [3–5]. Previously, AEFs using feed-forward[5],
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feedback[6–8] and a combination of both control techniques [8] have been demonstrated. Also,

AEFs utilizing different voltage or current sensing and cancellation have been demonstrated [1,

2, 9–11]. All these implementations use analog ICs along with passive components for the active

circuits. Recently, digital AEFs [12–15] that use DSP/FPGAs in addition to the analog circuitry

have been demonstrated.

Fig. 5.1: A typical digital active EMI filter

A typical implementation of a digital active EMI filter is shown in Fig. 5.1. It comprises

of the noise sensing high pass filter (HPF), the DSP/FPGA, the active circuit, the main passives

and the compensation circuitry. The DSP/FPGA will not be present in an analog only implemen-

tation. The main limitations to the performance of any AEF is the stability. The stability is mainly

influenced by the phase shift introduced by the noise sensing stage [7]. Particularly, in convert-

ers with ac voltage, a second order high pass filter is required to separate the sensed noise from

the fundamental voltage or current signal. This results in reduced attenuation of the AEF and

additional compensation network. Some compensation networks require high voltage capacitors

thus reducing the volumetric benefits of using an active EMI filter. This limitation is applicable to

both analog and digital AEF. In [16] showed how the processing delay in digital AEF affects the
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attenuation. In [15], it was shown the noise from the previous switching cycle could be used to

compensate noise in the next switching cycle to avoid the delay. However, an attenuation of only

24 dB could be achieved in the process.

A second order passive filter used for noise sensing introduces non-linear magnitude and

phase distortion in the filtered signal. If the high pass filter could have linear phase response, then

it could be compensated with ease in the DSP/FPGA thus resulting in zero-phase filter. This would

boost the performance of the active EMI filter as well. However, this would require higher order

passive filter with non-realizable passive component values. Other method is to use time reversed

filtering [17, 18]. In this method, in addition to the passive filter, another set of digital filters are

used in the DSP/FPGA to obtain linear phase filtering. But, this method introduces a minimum

delay to carry out the time-reversed digital filtering in DSP/FPGA. Linear-phase filters for signal

processing was first proposed in [17] for eliminating phase distortion in recursive filters. However,

this method could be used offline and for signals of finite length only. This method was improved in

[19] for offline filtering of infinitely long signals by considering one section of the signal at a time.

This is referred to as block processing technique. Later, [18, 20] extended the block processing

technique to carry out linear-phase filtering in real-time. Improvements to the method have been

proposed to achieve reduced delay and distortion [21–23]. This methodology has been applied for

applications ranging from robotics [24, 25] to motor-control [26].

For active EMI filters, by using the noise information from the previous cycles and syn-

chronizing with the current cycle of data, zero-phase filtering could be obtained. This would boost

the attenuation of the active EMI filter theoretically by up to 60 dB which is 35 dB higher than

conventional digital active EMI filters. The contribution of this paper is as follows. This paper

proposes a novel digital AEF that completely nullifies the phase shifts introduced at harmonics of
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the sensed noise signal. This enables the digital AEF to have very high attenuation without the

need for any additional compensation networks. The proposed AEF achieves an attenuation of 46

dB around 150 kHz which is 25 dB higher than conventional active EMI filter. This is the highest

reported attenuation in the literature using a first order digital or analog AEF.

The organization of the paper is as follows. The concept of zero-phase filtering is discussed

in Section II. Application of the zero-phase filtering to active EMI filters and its implementation in

FPGA is discussed in Section III. The methodology of tuning the zero-phase filter and small signal

tests are discussed in Section IV. The experimental test setup and results are discussed in Section

V. The conclusion is presented in Section VI.

Fig. 5.2: A typical digital active EMI filter
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5.3 Ideal Zero-phase Filtering based Digital Active EMI Filter

5.3.1 Ideal zero-phase filtering

Let X(z), Y1(z) and H(z) be the input, output and the filter transfer function respectively.

The output, Y (z) is given by (5.1). This is conventional filtering where Y1(z) has non-linear phase

distortion introduced by the filtering action.

Y1(z) = X(z) H(z) (5.1)

If the filter is applied to Y1(z) in the opposite direction, the output Y2(z) is given by 5.2.

Now, if Y2(z) is time-reversed again, the resulting output Y (z) is given by (5.3).

Y2(z) = Y1(z−1) H(z) (5.2)

Y (z) = Y2(z−1) (5.3)

Substituting (5.1) and (5.2) in (5.3) gives (5.4). Substituting z = e jω in (5.4) gives (5.5).

Y (z) = Y1(z) H(z−1) = X(z) H(z) H(z−1) (5.4)

Y (e jω) = X(e jω) |H(e jω)|2 (5.5)

The final output given in (5.5) is only affected by the magnitude of the filter applied but has no

phase distortion. The gain-phase plot of a passive high pass filter and ideal zero-phase filtered

HPF (ZPF HPF) is shown in Fig. 5.2. The conventional high pass filter has phase shift at frequen-
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cies where it provides attenuation. But, the zero-phase filter completely nullifies the phase shift

introduced by the high pass filter. If this technique could be used in a digital active EMI filter,

there will be no-phase distortion introduced by the noise sensing stage resulting in a much higher

attenuation than conventional analog or digital active EMI filter. One possible realization of the

real-time implementation of zero-phase filtering is as follows.

5.3.2 Implementation Methodology

In this case, the noise sensed from one switching cycle is used to compensate the noise 2

cycles in the future. The flowchart of the implementation is shown in Fig. 5.5 and the correspond-

ing time domain signals are shown in Fig. ??. The implementation of the zero-phase filtering is as

follows:

1. Save one switching cycle of noise sensed using the passive high pass filter.

2. The stored signal is time reversed.

3. The digital filter is then applied to the time-reversed signal.

4. Save the filtered signal.

5. Time reverse the save data and synchronize noise injection with the next switching cycle.

The flowchart of the zero-phase filter is shown in Fig. 5.6. The time domain waveforms

shown in the Fig. 5.6 assume a delay of one cycle for processing which results in a two cycle delay

from sensing to injection. This delay could vary depending on the hardware implementation.

The above implementation assumes that only the harmonics of the switching frequency

are present in the source voltage. However, this is not true in many systems in which multiple

converters operating at different switching frequencies may be connected to the same node in the

system. In zero-phase filtering, digital filtering is carried out section by section of the sensed
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noise signal. When filtering by sections, any transients are introduced. These transients result in

distortion and reduce the attenuation of the filter. The methodology to avoid these transients and

ensure high attenuation with the digital active EMI filter is discussed next.

Fig. 5.3: Flowchart for cycle-by-cycle implementation

5.4 Real-time implementation of zero-phase filtering

The repetitive nature of the EMI noise is used for the real-time implementation of zero-

phase filtering based digital active EMI filter. A passive high pass filter is firstly used to separate

the harmonics of the switching frequency in the EMI frequency range from the line frequency and

other low frequency harmonics. The sensed noise signal has non-linear phase distortion introduced

by the high pass filter. Next, a section of this sensed noise is stored for time-reversal and digital

filtering. Let L denote the length of the section of the stored signal for time reversal and digital

filtering. And, fsw denotes the switching frequency and Tp (1/ fsw) denotes the time period. Ideally,
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L would be equal to Tp where noise from one switching cycle stored and used for zero-phase

filtering. But, such an implementation is not possible because of the transients introduced by

digital filtering. Therefore, L would have to be integer multiple of Tp. The effect of transients on

the performance of zero-phase filtering and selection of an appropriate L is discussed as follows.

5.4.1 Transients due to digital filtering in sections

In zero-phase filtering, the sensed noise signal is divided into sections of length L and

time reversed for digital filtering. When filtering is carried out in sections, transients occur during

filtering of each section. These transients distort the filtered signal and affect the performance of

the active EMI filter. Therefore this needs to be avoided. Previously, different overlap save and

overlap add based techniques were introduced in [18, 23] for reducing the distortion of the zero-

phase filtered signal. In this work, the overlap save technique is used to avoid transients. The

overlap save technique uses section length that is long enough for the transients to die out. Ideally,

infinite section length is required for the transient to die out. In order to realize the real-time

implementation, the section length cannot be infinitely long. Also, the larger is the section length,

larger is the delay introduced between the noise sensing and noise cancellation. Therefore, section

length needs to be decided based on the trade-off between the distortion of the signal at the output

of the digital filter and the delay. The effect of transients on signal distortion and the methodology

for selecting the section length is discussed next.

The effects of transients is illustrated using an example. Consider two signals: signal-1 first

a 40 kHz square wave signal with 50% duty cycle and signal-2 is made up of a 15 kHz sinusoidal

signal and 40 kHz square wave signal with 50% duty cycle. The 15 kHz signal represents an

external signal that could be present on the grid and the 40 kHz signal represents the EMI noise.
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The choice of 15 kHz is arbitrary and used for illustration only. The high pass filter transfer

function considered for illustration is given in5.6 with ω1 = ω2 = 20 kHz. The filter is applied

to both the signals under two different section lengths. The effects of transients on these signals

under two different section lengths are considered for discussion below.

THPF(s) =
s2

(s+ω1)(s+ω2)
(5.6)

Case 1: L = Tp

The signals are divided into sections of length equal to 25 µs which is one time period of

40 kHz signal. The time-domain waveforms and FFT of the filtered signal are shown in Fig. The

FFT of filtered signal-1 is as expected while the FFT of filtered signal-2 contains even harmonics

which are a result of the transients from filtering.

Case 2: L = n∗Tp When one time period of the 40 kHz.

5.4.2 Application of zero-phase filtering to digital active EMI filter

The noise sensing comprises of a passive first order or second order high pass filter (HPF).

This blocks the low frequency power and line transients on the main power line from saturating

the following active circuit. But, the phase shift introduced by the HPF reduces the attenuation

provided by the AEF.

However, this methodology is suitable only when the power source is free from any other

noise with the exception of switching frequency and its harmonics. Because, when one switching
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(a) Cycle-by-cycle implementation

(b) Multiple-cycle implementation

(c) FFT comparison

Fig. 5.4: Simulation results

cycle of noise data is saved, a fraction of other frequency components (which are not harmonics

of fsw) are present. When digital filter is applied to this noise data, transients occur during each

cycle. These transients results in undesired frequency components which affects the performance
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of the filter. The frequency of these components depend upon the switching frequency fsw and the

frequency of the noise fnoise and occur at m ∗ fsw± fnoise where m = 1, 2, ... ,n. Therefore, the

cycle-by-cycle implementation could be carried out only when the power source is free from other

frequency components.

This phenomenon is illustrated using simulation in MATLAB. A signal of length 1 ms that

consists of two components is considered here. This signal will be referred to as original signal.

The two components of this signal are: a 40 kHz square pulse representing the noise source from a

power converter and a 15 kHz sinusoidal component representing the noise on the grid. A second

order high pass filter with transfer function shown in Fig. 5.2 is implemented using the f ilter

command in MATLAB. The high pass filter is applied to the full length of the original signal. This

filtering corresponds to the passive high pass filter. This filtered signal is then split into sections

corresponding to a length 25 µs (one period of 40 kHz). Then each section is time reversed

and filtered individually using the same high pass filter. In real implementation, this sectioning

and filtering would be carried out in the DSP or FPGA. The time reversed filtering will nullify

the phase shift introduced by the first filtering action. Finally, each section of the signal is time

reversed again to obtain the ZPF out put signal. The ZPF out put is subtracted from the original

signal to get the di f f erence signal. The subtraction represents the filtering action and di f f erence

signal represents the final filtered signal. The time domain waveforms of all the signals are shown

in Fig. 5.4a. From the Fig. 5.4a, the discontinuities due to the transients could be observed in

both the ZPF out put and the di f f erence signal. These transients cause the output of the ZPF

to include undesired harmonics such as 25 kHz, 55 kHz, 65 kHz, 80 kHz etc which could be

observed from the FFT in Fig. In real systems with either ac or dc source, the power supply will

have other frequency components from other converters connected to the same source or from the
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same converter itself. Therefore, the cycle-by-cycle implementation is not suitable for most of the

systems.

Fig. 5.5: Flowchart for multiple cycle implementation

Multiple cycle implementation

To ensure that the transients do not affect the performance of the filter, the length of the

section of signal input to the digital filter should be longer than the impulse response of the digital

filter [18, 23]. That is, the length of the signal for filtering should be longer than the length of the

transients. This would result in impractical length of signals for real time filtering implementations.

Previously, different implementations using overlap-add or overlap save methods [18] have been

demonstrated to enable real time implementation of zero-phase filtering. In this work here, the

overlap-save methods is used to implement the digital active EMI filter. Instead of sensing cycle-

by-cycle, multiple-cycles are used. The implementation is as follows:
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1. Save multiple switching cycle of noise data sensed using the passive high pass filter.

2. The stored signal is time reversed.

3. The digital filter is then applied to the time-reversed signal.

4. Save the last cycle of digital filtered data that is free from transients.

5. Time reverse the saved data and synchronize noise injection with the next switching

cycle.

In multiple-cycle implementation, selecting the number of cycles is a crucial step. Firstly,

the transients are characteristic of the digital filter. Ideally, signal of infinite length is required to

negate the effect of the transients. But, depending upon the magnitude of the allowable distortion

of the ZPF out put, a finite section length is sufficient. The procedure to obtain the section length

is as follows. A spectrum of the expected level of noise on the power supply is taken. For example,

in an ac power source, the grid harmonics from the standard along with the conducted EMI levels

from the CISPR-22 standard could be taken. These are plotted together in Fig.

5.5 FPGA implementation and Tuning of the ZPF AEF

5.5.1 FPGA implementation

The implementation of the zero-phase filtering is shown in Fig. 5.6. The high pass filter

output is fed to the ADC. The time reversal is carried out using a last-in first-out (LIFO) register.

One switching cycle of noise is stored and time reversed in the LIFO. The digital filter whose

transfer function is same as that of the analog passive filter is implemented as transfer function in

Verilog. Another LIFO is used for the time reversal that follows the digital filter. Finally, a first-in

first-out (FIFO) register is used to implement the delay to synchronize the noise injection with that
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of the next switching cycle. The process is continuously repeated. The P0035 AD/DA daughter

card from Terasic that comprises of ADC AD9254 from Analog Devices and DAC DAC5672 from

Texas Instruments. The sample rate of ADC and DAC are set at 100 MSPS. The Altera DE2-

115 demo board with Cyclone IV EP4CE115 FPGA is used to implement the zero-phase filter.

While the AD and DA operate at 100 MHz, the computation inside the FPGA is carried out only

at 10 MHz to ensure that the multiple-cycle implementation with 10 cycles can be implemented.

Therefore, at frequencies above 1 MHz, the sample sizes are insufficient to prevent aliasing which

may in turn result in instability or signal distortion. In order to avoid these, a zero-phase low-pass

filter with corner frequency of 2 MHz is added.

Fig. 5.6: Proposed zero-phase filtering implementation in DSP/FPGA for digital AEF

5.5.2 Tuning Procedure

The circuit used for tuning the digital AEF is shown in Fig. 5.7a and the methodology for

tuning is shown in Fig. 5.7b. There are 3 parameters that needs to be tuned. They are the gain, the

processing delay and the pole locations. The procedure for tuning is as follows:

Step 1: Disconnect the HPF from the circuit. Set the pole location of digital filter to 0 Hz.

Apply a small signal ac source to ADC input and verify unity gain at the DAC output. Adjust gain

if necessary. Step 2: With the pole location of digital filters at 0 Hz, apply small signal square

wave source to ADC input. Measure ADC input and DAC output and calculate delay. This is the
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(a)

(b)

Fig. 5.7: (a)Test setup for tuning (b) Methodology for tuning

delay introduced due to the processing of the zero-phase implementation. Set this delay in FIFO

to synchronize the input and the output. Step 3: Connect the high pass filter back in the circuit.

Apply small signal square waveform to the input of the high pass filter. Tune the pole locations so

that there is no distortion between the input and the output of the DAC.

5.6 Modeling and stability analysis

This section discusses the Modeling and Stability analysis of the proposed zero-phase fil-

tering based digital active EMI filter with multiple-cycle implementation. The filter is implemented

in a feedforward voltage-sense voltage-cancellation topology. While the feedforward implementa-

tion is inherently more stable, still the stability needs to be ensured in the entire frequency range.

The schematic of the test setup is shown in Fig. 5.8 and the block diagram of the implementation
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Fig. 5.8: Experimental results with converter

Fig. 5.9: Block diagram of Zero-phase filtering based digital Active EMI filter

is shown in Fig. 5.9. From Fig. 5.8, the voltage injector is implemented using a nano-crystalline

core based inductor. The voltage injector consists of primary and secondary with 4 turns each

implemented on VAC w453 core. Noise sensing is carried out using a second order high pass filter

is fed to the AD/DA circuit. There are buffers present both at input and the output stages of the

FPGA for impedance matching. Also, in order to prevent the voltage injector from saturating due

to any dc offset voltages that might be present at the DA buffer, a series capacitance Cin j is added.

In order to carry out the stability analysis, firstly the transfer gain of the zero-phase filtering im-

plementation in the FPGA is measured. This is then followed by the loop-gain measurement and

equivalent circuit development.
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Fig. 5.10: Measurement setup for transfer gain of the FPGA

Fig. 5.11: Measured transfer gain of the FPGA implementation
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5.6.1 Transfer Gain of FPGA implementation

The zero-phase filtering implementation in the FPGA is carried out as explained in section

5.5.1. This ensures that the sytem does not become unstable at high freqeuencies. Measurement of

the transfer gain is carried out using the Keysight E5061B Vector Network Analyzer and Keysight

41800A 500 MHz probe. The measurement setup is shown in Fig. 5.10. The small-signal exci-

tation from the VNA is applied to the input of the buffer which has a matching 50 Ω impedance.

The response is measured at the output buffer is measured using the RF probe. This is done to

avoid loading the output buffer which might affect the measurement. Further, the RF probe has

very low capacitance (2 pF) and therefore ensures good high-frequency measurement. Also, the

phase measurement is going to jump between -180 degrees and +180 degrees in the measurement

due to the 10 cycle delay that is introduced in the FPGA. The mesurement is shown in Fig. 5.11.

It can be seen that at low frequencies (< 150 kHz), the transfer function is similar to that of the

high pass filter and at high frequencies (> 2 MHz), the gain reduces due to the low-pass filter. As

mentioned previously, the computation in the FPGA is carried out at 10 MHz. This causes aliasing

at 5 MHz and its multiples and is the reason there are resonances at 5 MHz and its harmonics.

5.6.2 Loop Gain of zero-phase filtering based digital active EMI filter

In order to measure the loop-gain of the filter, the loop is broken at a point such that the

impedance seen by any part of the circuit is not affected. The loop is broken after the high pass

filter at the input of the buffer. The high input impedance of the buffer ensures that the impedance

seen by other parts of the circuit remain largely unchanged. The measurement setup is shown in

Fig. 5.12 and uses the same equipment as the FPGA transfer gain measurement. The measured
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Fig. 5.12: Measurement configuration of loop gain of the zero-phase filtering based digital active
EMI filter

Fig. 5.13: Simulation model for loop gain estimation

loop-gain is the blue curve shown in Fig. 3.16. It can be seen that around 4 kHz, the gain margin is

low. This is due to some resonance in the circuit. While this is occurring below the EMI frequency

range (< 150 kHz), it can still make the entire system unstable. In order to understand the source

of the resonance, an equivalent circuit simulation representing the measurement configuration is

setup in LTSpice. The simulation schematic is shown in Fig. 5.13. The simulation is mainly used

to identify the source of resonance and not to accurately match the loop-gain from the experiment.

Further, the voltage injector is modeled as T-network with a constant inductance value with the

leakage inductance measured separately using the impedance analyzer. This is not accurate be-
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Fig. 5.14: Comparison of loop-gain with and without Rin j

cause the inductor uses a nano-crystalline core and whose permeability changes with frequency.

But, since the resonance that needs to be identified is happening at a few kHz, the assumption for

the simulation is valid one up to few 10s of kHz. All the other components are also modeled for

simulation. It is seen that the resonance at 4 kHz is due to the resonance between the injection

capacitor (Cin j), and combination of LISN inductance (LLISN) and the voltage injector mutual in-

ductance (Lin j). This can be resolved by using a injection resistor (Rin j) in series with the voltage

injector and the injection capacitor. This helps reduce Q of the resonance and improves the gain

margin by 16 dB. This ensures that the filter is stable through out the entire frequency range. The

match between simulation and experimental measurement of the loop-gain after addition of Rin j is
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shown in Fig. 5.15.

Fig. 5.15: Comparison of loop-gain from measurement and circuit simulation

While the

Previous discussion and the experimental measurement of loop gain dealt with frequencies

only up to 30 MHz. While the FPGA has a low-pass filter with corner frequency at 2 MHz, the

overall implementation of the filter could become unstable at frequencies above 30 MHz. There-

fore, is essential to measure the loop gain at least till 500 MHz. While, the frequency of 500

MHz is limited by the active probe used for measurement, it still encompasses the bandwidth of

the FPGA clock frequency (100 MHz), the bandwidth of the op-amps used in the buffer circuit

(230 MHz). This way high-frequency instability due to any component could be identified. The

measured loop-gain up to 500 MHz is plotted in red in Fig. 5.16. Throughout the entire frequency
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Fig. 5.16: Comparison of loop gain with the active circuit ON (Loop Gain) and OFF (Try out)

range, the filter seems to be stable. However, the gain margin at 400 MHz is only about 15 dB.

This may cause the filter to become unstable when operating with the converter. Therefore, the

source of this needs to be identified. The power to the FPGA and buffers is turned off, and the loop

gain is measured. This is plotted in blue in Fig. 5.16. From the figure, the loop gains match each

other above 10 MHz. This means some stray impedance that is not part of the converter nor the

FPGA or buffer circuit is causing this.

In order to identify the reason behind this, an equivalent circuit schematic of the mea-

surement setup with the power to the FPGA and the buffers turned-off is made in LTspice. The

schematic is shown in Fig. 5.17. The excitation port of the VNA with the 50 Ω is modeled along

with the impedance of the active probe connected to port 2 which measures the response. The high

pass filter and the dc link capacitor are still present in the measurement, and therefore are included
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Fig. 5.17: Schematic of simulation to simulate the effect of the stray capacitance in the PCB on
the loop gain measurement

Fig. 5.18: PCB layout showing the SMA connector location for loop gain measurement on the
board

Fig. 5.19: Simulation of loop-gain to identify high-frequency effect

in the schematic. The snapshot of the PCB containing the two SMA ports used for loop-gain mea-

surement are shown in Fig. 5.18. The header connecting the two ports is shorted during normal

operation and is removed during loop-gain measurement. The stray capacitance between the two
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SMA ports is assumed to be 1 pF. The simulated result is shown in Fig. 5.19. The simulation result

is identical to the measurement in Fig. 5.17. Thus the high-frequency measurement is just due to

the stray capacitance on the PCB between the measurement ports and does not affect the stability

of the filter.

Fig. 5.20: Schematic of test setup for small-signal tests

Fig. 5.21: Time-domain measurement results with signal-generator for multiple-cycle implemen-
tation
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Fig. 5.22: Frequency-domain measurement results with signal-generator for multiple-cycle imple-
mentation

5.7 Small signal and converter experimental test setup and results

5.7.1 Small Signal Results

The ZPF AEF is demonstrated using a feed-forward voltage-sense voltage-cancellation

topology for differential mode noise attenuation. A 100 kHz square wave signal is used as a noise

source. The schemtaic of the test setup for small-signal tests is shown in Fig. 5.20. The tests

are carried out under 2 conditions. First, the noise is measured without any filter. Then, the ZPF

in FPGA is connected between the high pass filter and the voltage injector. The time-domain

measurement is shown in Fig. 5.21. It can be seen that the output of the zero-phase filter has

no distortions and closely follows the noise source. This reflects on the frequency domain noise

measurements carried out in the EMI receiver. This is whon in Fig.5.22. With ZPF AEF, the

attenuation is 49 dB, 46 dB and 44 dB at 100 kHz, 300 kHz and 500 kHz respectively.

The ZPF AEF is then tested in the converter. The schematic of the test setup is shown in

Fig. 3.22 and the test setup is shown in Fig. 5.23 and 5.24. The power converter comprises of

a CREE SiC half bridge configured as a buck converter switching at 40 kHz. The top device is
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Fig. 5.23: Experimental test setup

Fig. 5.24: CREE SiC half-bridge connected to PCB with Vin j, high pass filter and buffer circuitry
with SMA connections to the ADC to DAC board

switched and the bottom device is kept off. The gate signal is fed from the same FPGA in which the

ZPF AEF is implemented. This enables synchronizing the gate signal and the ADC/DAC board.

The dc link for the converter, voltage injector, second order high pass filter and the buffers are

implemented in a PCB and is connected to the SiC half bridge. Because the input of ADC and

DAC are limited to 1.2 V, it is necessary to reduce any high frequency ringing that can have high

magnitude. The noise measured with and without ZPF based AEF and is shown in Fig. 5.26. The

attenuation at 120 kHz is 42 dB which is very close to attenuation from the small signal tests. The

differential mode noise attenuation at 300 kHz and 500 kHz is 36 dB and 31 dB. This is limited by
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the noise floor and the actual attenuation is higher.

Fig. 5.25: Time-domain measurement results with converter for multiple-cycle implementation

Fig. 5.26: Frequency-domain measurement results with converter for multiple-cycle implementa-
tion

5.8 Conclusion

Zero-phase filtering (ZPF) is a method to implement filtering without any phase distortion.

This methodology was applied in a digital active EMI filter (AEF) to compensate the phase distor-

tion introduced by the noise sensing passive high pass filter. The architecture for implementation
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in the FPGA was presented. The modeling of the entire system with the filter is carried out and

steps to improve the gain margin is presented. The ZPF based digital AEF is demonstrated using

a simple feed-forward voltage-sense voltage-cancellation filter for differential mode noise atten-

uation. The small signal test results test results show up to 43 to 59 dB attenuation from 100 to

500 kHz. Converter test results show attenuation of 42 dB attenuation around 120 kHz. This is the

highest attenuation reported with a single order filter around 150 kHz with analog or digital active

EMI filters. This idea could be extended to any type of active EMI filter for both common mode

and differential mode noise attenuation.
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6 Conclusion and Future Work

6.1 Conclusion

From the literature review in Chapter 2, there are numerous AEF implementations for con-

ducted EMI mitigation in power electronic converters. Different implementations of the AEF

topologies have been summarized based on the noise-sensing, noise processing active circuits, the

control methods, noise-injection and stability studies for dc-dc, ac-dc converters, and inverters

(dc-ac and ac-dc-ac). Different sensing and cancellation methods have different advantages and

disadvantages for implementation in terms of volume reduction. Careful attention must be paid

to the stability, which depends on the type of converter and the type of noise in order to select

the appropriate AEF. Only then the attenuation and possible volume reduction with AEF could

be maximized. The key points in terms of performance (attenuation), power loss and protection

of AEF are as follows. Looking at the performance comparison, it is more challenging to achieve

high attenuation at lower frequencies (around 150 kHz) using AEF than to design the filter for high

attenuation at 1 MHz. Further, majority of these implementations uses additional high-voltage pas-

sive elements for compensation to ensure stability or rely on inductors either in the form of CTs

for noise-sensing or voltage transformers for noise-cancellation. Novel methods that could further

enhance the performance of the filter without the need for additional high-voltage capacitors for

stability improvements or injection transformers on power lines are required. The state-of-art im-

plementation of active EMI filter for DM noise implementation has an attenuation of 34 dB at 150

kHz using feedback current-sense current-cancellation active EMI filter. This additional overhead

as a result of the current-transformer and additional high-voltage capacitor for stability improve-
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ment reduces the volumetric benefits of using an active EMI filter. Three different approaches that

do not use additional magnetics or high-voltage components is presented in Chapters 3 to 5 in this

dissertation.

Fig. 6.1: Comparison of attenuation at 150 kHz of proposed active EMI filters against state-of-art
analog and digital active EMI filters for ac-dc applications

In a conventional active EMI filter presented in Chapter 3, the non-linearity in the noise-

sensing circuit and the active circuit introduce phase shift and result in instability. To ensure sta-

bility, either the gain of the active circuit has to be lowered or additional high-voltage components

will have to be used. These additional passive components reduces the overall volumetric benefits

of using an active EMI filter. A conventional active EMI filter is developed for an RCD clamped

Flyback converter and could only achieve 16 dB attenuation around 150 kHz. Next, an analog-twin

based active EMI filter which enables using low-voltage components for compensation is proposed

and discussed in Chapter 4. This requires good matching between components in the high-voltage

and low-voltage circuit for high attenuation. With this implementation, an attenuation of 22 dB

was achieved around 150 kHz. While this is definitely an improvement over conventional active

EMI filtering, it does not significantly improve the attenuation. Finally, a zero-phase filtering based
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digital active EMI filter that overcomes the limitations of both conventional and analog-twin based

active EMI filter is proposed. The proposed method completely nullifies the phase shift introduced

by the sensing stage, and therefore enables attenuation of the order of 45 dB without the need

for additional high-voltage components for compensation. This is the highest reported attenuation

in the literature for any analog or digital active EMI filter. A comparison of attenuation of the

proposed filters against the state-of-art is shown in Fig. 6.1. It can be seen that the digital active

EMI filter with zero-phase filtering has 15 dB higher attenuation than any implementation without

the need for any additional magnetics or high-voltage components. Further, modeling stability

analysis, design example, and experimental verification is carried out for all three types of active

EMI filters.

6.2 Future Work

Based on the literature review, the need for new topologies or implementations with high

attenuation was identified and demonstrated. However, the experimental results were limited to a

particular type of converter (constant duty cycle) or by the availability of the AD/DA and FPGA

hardware. The following needs to be carried out as part of the future work to further research in

this area:

1. Extend conventional active EMI filter to inverters. In particular, the motor drives for

aerospace applications where cost premium is acceptable provided there is weight saving.

2. For analog twin based active EMI filter, extend to more converters and study the vari-

ability of attenuation with component tolerances, temperature, and grid-impedance variations.

3. For the digital active EMI filter, implement in current-cancellation topologies while us-

ing feedback control method. With the feedback control method, the filter could be easily adopted
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to inverters with ease.

4. For all topologies of active EMI filter, the auxiliary power supply, power loss and pro-

tection need to be studied.

5. Further, a Figure of Merit (FoM) for implementation of active EMI filters taking into

account the volume reduction of passive components at different power levels and for different

power converters is an important one that requires further research.
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