25 research outputs found

    GNSS-based global ionospheric maps : real-time combination, time resolution and applications on space weather monitoring

    Get PDF
    Tesi amb una secció retallada per drets d'editor.The research of this paper-based dissertation is focused on the Global Ionospheric Maps (GIMs) based on Global Navigation Satellite System (GNSS) including real-time combination, validation, time resolution and applications. The novelty of these works can be summarized as follows: The first contribution is to connect GIM assessment methods in post-processing and real-time mode including Jason-altimeter Vertical Total Electron Content (VTEC) assessment, GNSS differences of Slant Total Electron Content (dSTEC) assessment and real-time dSTEC (RT-dSTEC) assessment. With the RT-dSTEC assessment, we can assess the accuracy and calculate the weight of different real-time GIMs for combination in real-time mode. The Jason-altimeter VTEC assessment and dSTEC assessment can be used for evaluating GIMs over oceans and continental regions, respectively. In addition, the accurate GIMs shown in the GIM assessment methods can be regarded as reliable representations of global VTEC. The second contribution is to apply the RT-dSTEC assessment in real-time mode for the combination of different International GNSS Service (IGS) real-time GIMs. The IGS combined real-time GIM is generated to provide robust ionospheric corrections for real-time GNSS positioning and reliable global VTEC distribution for earth observations. The current status of IGS real-time GIMs from different centers is summarized and compared. The Jason-altimeter VTEC assessment and dSTEC assessment in post-processing mode are used for the validation of IGS real-time GIMs. The sensibility of real-time weighting technique by RT-dSTEC assessment is also verified. The third contribution is to investigate the influence of temporal resolution on the performance of GIMs. The variation of ionosphere is typically assumed as linear between two consecutive GIM TEC maps in a sun-fixed reference frame for up to few hours. However, the variation of ionospheric TEC is irregular due to the occurrence of space weather events. One and a half solar cycle of the IGS GIM with higher time resolution and accuracy (the UPC-IonSAT Quarter-of-an-hour time resolution Rapid GIM, UQRG) has been taken as a baseline to downsample them to all possible sub-daily temporal resolutions. The performance of the resulting GIMs has been evaluated taking into account the geographical position, solar and geomagnetic activity by Jason-altimeter VTEC assessment and dSTEC assessment. The fourth contribution is to propose a new way of estimating the spatial and temporal components of the VTEC gradient. The determination of ionospheric perturbation degrees can be helpful for guaranteeing the safety level of Satellite-Based Augmentation System (SBAS) and Ground-Based Augmentation System (GBAS) services. In order to estimate the spatial and temporal components of the VTEC gradient on a global scale, the accurate UQRG is selected. The VTEC gradient indices derived from UQRG GIMs (VgUG) allow users to obtain full (non-relative) values of TEC spatial gradients and temporal variations separately. The Regional VTEC spatial Gradient indices, based on UQRG (RVGU) and the Regional Ionospheric Disturbance index based on UQRG (RIDU), are proposed to estimate the regional ionospheric perturbation degree over selected regions. In addition, the spatial and temporal components of VTEC gradient at grid points of UQRG on a global scale are also introduced. The fifth contribution is to define a new ionospheric storm scale. The ionospheric response to high geomagnetic activity, ionospheric storm, can enlarge GNSS positioning errors by the increase of ionospheric electron density and disable high-frequency communications by the decrease of ionospheric electron density. To characterize the ionospheric state on a global scale, reliable global VTEC distribution is essential. According to previous studies, UQRG is one of the most accurate GIM. In this regard, the new Ionospheric storm Scale based on UQRG, IsUG, is proposed.La investigación de esta tesis doctoral se centra en los Mapas Ionosféricos Globales (GIMs) basados en el Sistema Global de Navegación por Satélite (GNSS), incluyendo la combinación en tiempo real, la validación, la resolución temporal y su aplicación. La novedad de los trabajos presentados puede resumirse como sigue: La primera contribución consiste en conectar los métodos de evaluación de los GIM en modo de posprocesamiento y en tiempo real, incluyendo la evaluación VTEC gracias a las medidas de los altímetros Jason, la evaluación del contenido total de electrones diferencial (dSTEC) y la evaluación dSTEC en tiempo real (RT-dSTEC). Con la evaluación RT-dSTEC, podemos evaluar la precisión y calcular el peso de diferentes GIM en tiempo real para su combinación también en tiempo real. La evaluación VTEC del altímetro Jason y la evaluación dSTEC pueden utilizarse para evaluar los GIM sobre los océanos y las regiones continentales, respectivamente. Además, los GIM precisos mostrados en los métodos de evaluación de GIM pueden considerarse como representaciones fiables del contenido total de electrones vertical global (VTEC). La segunda contribución consiste en aplicar la evaluación RT-dSTEC en tiempo real para la combinación de diferentes GIM del Servicio Internacional GNSS (IGS), todo ello en tiempo real. El GIM IGS combinado resultante proporciona correcciones ionosféricas robustas para el posicionamiento GNSS en tiempo real y una distribución global de VTEC fiable para las observaciones terrestres. Se resume y compara el estado actual de los GIM en tiempo real de diferentes centros IGS. La evaluación de VTEC respecto de los altímetros Jason y la evaluación de dSTEC en modo de posprocesamiento también se utilizan para la validación de los GIM en tiempo real del IGS. Y se verifica la sensibilidad de la técnica de ponderación en tiempo real mediante la evaluación RT-dSTEC. La tercera contribución consiste en proponer una nueva forma de estimar las componentes espaciales y temporales del gradiente VTEC. La determinación de los grados de perturbación ionosférica puede ser útil para garantizar el nivel de seguridad de los servicios del Sistema de Aumento Basado en Satélites (SBAS) y del Sistema de Aumento Basado en Tierra (GBAS). Para estimar los componentes espaciales y temporales del gradiente de VTEC a escala global, se selecciona el GIM UQRG debido a su exactitud y resolución temporal. Los índices de gradiente VTEC derivados de los GIM de UQRG (VgUG) permiten a los usuarios obtener valores completos (no relativos) de gradientes espaciales de VTEC y de las variaciones temporales por separado. Los índices de gradiente espacial VTEC regional, basados en UQRG (RVGU) y el índice de perturbación ionosférica regional basado en UQRG (RIDU), se proponen para estimar el grado de perturbación ionosférica regional sobre zonas de interés. Además también se introducen los componentes espaciales y temporales del gradiente VTEC en los puntos de la cuadrícula con valores proporcionados por UQRG a escala global. La cuarta contribución consiste en definir una nueva escala de tormentas ionosféricas. La respuesta ionosférica a la alta actividad geomagnética, la tormenta ionosférica, puede aumentar los errores de posicionamiento del GNSS por el aumento de la densidad de electrones ionosféricos e inhabilitar las comunicaciones de alta frecuencia por la disminución y en general rápida variación de la densidad de electrones ionosféricos. Para caracterizar el estado de la ionosfera a escala global, es esencial contar con una distribución global fiable de VTEC. Según estudios anteriores, el UQRG es uno de los GIM más precisos. En este sentido se propone la nueva Escala de tormentas ionosféricas basada en UQRG, IsUG.Postprint (published version

    Desarrollo de algoritmos para el tratamiento de datos GNSS : su aplicación a los escenarios GPS modernizado y Galileo

    Get PDF
    Tesis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Matemáticas, Sección Departamental de Física de la Tierra, Astronomía y Astrofísica I (Geofísica y Meteorología) (Astronomía y Geodesia), leída el 24-07-2012Nowadays, the major GNSS systems are the american GPS and the russian GLONASS, however, in a near future the european project Galileo and the chinesse system COMPASS will become part of the current GNSS scenario. These systems will transmit for the first time three different frequencies, giving place to a multi-system and multi-frequency scenario which will dramatically push the boundaries of the positioning techniques. Currently, one of the most studied positioning techniques is known as Precise Point Positioning (PPP), which is aimed at estimating precise receiver position from undifferenced GNSS code and carrier phase observations and precise satellite products. In this thesis, some new and original algorithms for static PPP have been developed, which are able to deal with the future multi-system and multifrequency GNSS observations. The new algorithms have been named MAP3. In the new approach, the least squares theory is applied twice to estimate the ionospheric delay, initial ambiguities and smoothed pseudodistances from undifferenced observations, which in turn are used to recover the receiver position and its clock offset. MAP3 provides position estimations with an accuracy of 2.5 cm after 2 hours observation and 7 mm in 1 day, being at the same level as other PPP programs and even better results are obtained with MAP3 in short observation periods. Moreover, MAP3 have provided some of the first results in positioning from GIOVE observations and GPC products. In addition, these algorithms have been applied in the analysis of the influence of ionospheric disturbances on the point positioning, concluding that the presence of a high ROT (Rate of TEC), observed at equatorial latitudes, reflects a significant degradation of the point positioning from dual-frequency observations.Actualmente, los únicos sistemas globales de navegación por satélites operativos son GPS y GLONASS, sin embargo, en un futuro cercano el proyecto europeo Galileo y el sistema chino COMPASS entrarán a formar parte del actual escenario GNSS. Estos sistemas emplearán por primera vez, tres frecuencias distintas, dando lugar a un escenario multi-frecuencia que revolucionará las técnicas de posicionamiento. Entre las técnicas actuales de posicionamiento con GNSS destaca el Posicionamiento Preciso Puntual (PPP), que consiste en determinar la posición de un receptor a partir de observaciones de código y fase no differenciadas y productos precisos. En este trabajo de tesis se han desarrollado unos nuevos y originales algoritmos para PPP estático, llamados MAP3, capaces de procesar observaciones GNSS multifrecuencia y multi-sistema del futuro escenario GNSS y determinar la posición de un receptor de forma precisa y exacta. Los algoritmos MAP3 se dividen en dos partes en las cuales se ha aplicado la teoría mínimos cuadrados y se han obtenido expresiones explícitas para estimar el retraso ionosférico, ambigüedades de fase inicial y pseudodistancias suavizadas, que se emplean para determinar la posición del receptor y el offset de su reloj. MAP3 proporciona una estimación de la posición con una exactitud de 2.5 cm tras 2 horas de observación y de 7 mm tras 24 h, resultados que mejoran los obtenidos hasta el momento con otros programas para PPP en periodos cortos de tiempo. Además, MAP3 han proporcionado los primeros resultados en el posicionamiento con observaciones GIOVE y productos del GPC. Por otro lado, estos algoritmos se han aplicado al análisis de los efectos de ciertas perturbaciones ionosféricas en el posicionamiento concluyendo que la presencia de un ROT (Rate of TEC) elevado, observado en latitudes ecuatoriales, refleja una degradación significativa del posicionamiento puntual con observaciones doble frecuencia.Unidad Deptal. de Astronomía y GeodesiaFac. de Ciencias MatemáticasTRUEunpu

    S-system theory applied to array-based GNSS ionospheric sensing

    Get PDF
    The GPS carrier-phase and code data have proven to be valuable sources of measuring the Earth’s ionospheric total electron content (TEC). With the development of new GNSSs with multi frequency data, many more ionosphere-sensing combinations of different precision can be formed as input of ionospheric modelling. We present the general way of interpreting such combinations through an application of S-system theory and address how their precision propagates into that of the unbiased TEC solution. Presenting the data relevant to TEC determination, we propose the usage of an array of GNSS antennas to improve the TEC precision and to expedite the rather long observational time-span required for high-precision TEC determination

    TEC forecasting based on manifold trajectories

    Get PDF
    In this paper, we present a method for forecasting the ionospheric Total Electron Content (TEC) distribution from the International GNSS Service’s Global Ionospheric Maps. The forecasting system gives an estimation of the value of the TEC distribution based on linear combination of previous TEC maps (i.e., a set of 2D arrays indexed by time), and the computation of a tangent subspace in a manifold associated to each map. The use of the tangent space to each map is justified because it allows modeling the possible distortions from one observation to the next as a trajectory on the tangent manifold of the map. The coefficients of the linear combination of the last observations along with the tangent space are estimated at each time stamp to minimize the mean square forecasting error with a regularization term. The estimation is made at each time stamp to adapt the forecast to short-term variations in solar activity.Peer ReviewedPostprint (published version

    An evaluation of interpolation techniques for reconstructing ionospheric TEC maps

    Get PDF

    Contributions to ionospheric modeling with GNSS in mapping function, tomography and polar electron

    Get PDF
    This dissertation focuses on determining the vertical electron content distribution in low and high vertical resolution from ground-based and LEO on board GNSS data and improving the knowledge of ionosphere climatology in northern mid-latitude and polar regions. The novelty is summarized in the following four aspects: The first contribution is to propose a new ionospheric mapping function concept - Barcelona Ionospheric Mapping Function (BIMF), in order to improve STEC (Slant Total Electron Content) conversion accuracy from any given VTEC (Vertical Total Electron Content) model. BIMF is based on the climatic modeling of the VTEC fraction in the second layer - µ2, which is the byproduct of UQRG generated by UPC. The first implementation of BIMF is BIMF-nml for the northern mid-latitudes, where the latitudinal variation of µ2 is neglected. µ2 is modeled as function of date and local time. From the user’s perspective, BIMF is the linear combination of µ2 and the standard ionospheric mapping function, and only needs 41 constant coefficients, making BIMF achieve the simplicity for application. The good performance has been demonstrated in the dSTEC assessment for different IGSGIMs: UQRG, CODG and JPLG. The second contribution is to confirm the capability of UQRG GIMs to detect representative ionospheric features in polar regions through six case studies, including TOI (Tongue of Ionization), trough, flux transfer event, theta-aurora, ionospheric convection patterns and storm enhanced density. The long-term VTEC and µ2 data provide valuable databases for studying the morphology and climatology of polar ionospheric phenomena. The unsupervised clustering results of normalized VTEC distribution show that TOI and polar cap patches exhibit an annual dependence, i.e. most TOI and patches occurring in the North Hemisphere winter and the South Hemisphere summer. The third contribution is to propose a hybrid method - AVHIRO (the Abel-VaryChap Hybrid modeling from topside Incomplete RO data), to solve an ill-posed rank-deficient problem in the Abel electron density retrieval. This work is driven by the future EUMETSAT Polar System 2nd Generation, which provides truncated ionospheric RO data, only below impact heights of 500 km, in order to guarantee a full data gathering of the neutral part. AVHIRO takes advantage of one Linear Vary-Chap model, where the scale height increases linearly with altitude above the F2 layer peak, and uses Powell search to solve the full electron densities, ambiguity term, and four parameters of the Vary-Chap model simultaneously, taking into account the nonlinear interactions between the unknown parameters. The fourth contribution is to take advantage of the geometry brought by combining DORIS, ground-based Galileo, ground-based, LEO-POD and vessel-based GPS data and ingest the multi-source dual-frequency carrier phase measurements into the tomographic model to improve the GIM VTEC estimation precision. The impact of adding each type of measurements, which are Galileo data, vessel-based GPS data, DORIS and LEO-POD GPS data, to ground-based GPS data on GIM product is examined according to two complementing evaluation criteria, JASON-3 VTEC comparison and GPS dSTEC test. This study proves the expected better GIM performance by new data ingestion into tomographic model, which is a successful step forward from conception to initial experimental validation.electrones en resolución vertical baja y alta a partir de medidas GNSS terrestres y a bordo de satélites de órbita baja (LEO), además de utilizar medidas GNSS desde buques y medidas DORIS, además de mejorar el conocimiento de la climatología de la ionosfera en las regiones polares y en latitudes medias del hemisferio norte. Las contribuciones se pueden resumir en los siguientes cuatro aspectos: La primera contribución consiste en proponer un nuevo concepto de función de mapeo ionosférico: la función de mapeo ionosférico de Barcelona (BIMF), con el fin de mejorar la precisión de conversión de STEC (contenido total de electrones inclinado) a partir de cualquier modelo de VTEC (contenido total de electrones vertical). BIMF se basa en el modelado climático de la fracción VTEC en la segunda capa - μ2, que es el subproducto de UQRG generado por UPC. La primera implementación de BIMF es BIMF-nml para las latitudes medias del hemisferio norte. μ2 se modela en función del dia y la hora local. Desde la perspectiva del usuario, BIMF es la combinación lineal de μ2 y la función de mapeo ionosférico estándar, y solo necesita 41 coeficientes constantes, lo que hace que BIMF sea facilmente aplicable. Su buen comportamiento se demostró en la evaluación dSTEC para diferentes IGS GIM: UQRG, CODG y JPLG. La segunda contribución se centró en confirmar la capacidad de los GIM UQRG para detectar características ionosféricas representativas en regiones polares a través de seis estudios de casos, que incluyen lenguas de ionización (TOI), depresión de ionización en forma de canal, sucesos de transferencia de flujo, theta-aurora, patrones de convección ionosférica y densidad aumentada durante tormentas geomagnéticas. Los datos a largo plazo de VTEC y μ2 proporcionan valiosas bases de datos para estudiar la morfología y climatología de los fenómenos ionosféricos polares. Los resultados de agrupamiento no supervisados de la distribución normalizada de VTEC muestran que los TOI y los parches en los casquetes polares exhiben una dependencia anual, es decir, la mayoría de los TOI y parches ocurren en el invierno del Hemisferio Norte y el verano del Hemisferio Sur. La tercera contribución ha consistido en proponer un método híbrido: AVHIRO (el modelo híbrido Abel-VaryChap a partir de datos de RO incompletos en la parte superior), para resolver un problema de rango deficiente en la recuperación de la densidad electrónica con el modelo de Abel. Este trabajo está motivado por el futuro sistema polar EUMETSAT de segunda generación, que proporciona datos truncados de RO ionosférica, sólo por debajo de las alturas de impacto de 500 km, con el fin de garantizar una recopilación completa de medidas de la parte neutra. AVHIRO aprovecha un modelo Linear Vary-Chap, donde la altura de la escala aumenta linealmente con la altitud por encima del pico de la capa F2, y utiliza la búsqueda Powell para resolver las densidades completas de electrones, el término de ambig ¨ uedad y cuatro parámetros del modelo Vary-Chap simultáneamente, teniendo en cuenta las interacciones no lineales entre los parámetros desconocidos. La cuarta contribución es aprovechar la geometría aportada por la combinación de datos GPS DORIS, Galileo en tierra, LEO-POD y en barco, e incorporar las mediciones de la fase de la portadora de doble frecuencia de múltiples fuentes en el modelo tomográfico para mejorar la precisión de estimación de GIM VTEC. El impacto de agregar cada tipo de mediciones, que son datos de Galileo, datos de GPS basados en embarcaciones, datos de GPS DORIS y LEO-POD, a datos de GPS terrestres en productos GIM se examina de acuerdo con dos criterios de evaluación complementarios, comparación con VTEC[JASON-3] y con dSTEC[GPS]. Este estudio demuestra el mejor rendimiento esperado de GIM por la nueva ingesta de datos en el modelo tomográfico, que es un exitoso paso adelante desde la concepción hasta la validación experimental inicial

    Modelling the temporal variation of the ionosphere in a network-RTK environment

    Get PDF
    The Global Positioning System (GPS) has been widely used for precise positioning applications throughout the world. However, there are still some limiting factors that affect the performance of satellite-based positioning techniques, including the ionosphere. The GPS Network-RTK (NRTK) concept has been developed in an attempt to remove the ionospheric bias from user observations within the network. This technique involves the establishment of a series of GNSS reference stations, spread over a wide geographical region. Real time data from each reference station is collected and transferred to a computing facility where the various spatial and temporal errors affecting the GNSS satellite observations are estimated. These corrections are then transmitted to users observations in the field. As part of a Victorian state government initiative to implement a cm-level real time position ing service state-wide, GPSnet is undergoing extensive infrastructure upgrades to meet high user demand. Due to the sparse (+100km) configuration of GPSnet's reference stations, the precise modelling of Victoria's ionosphere will play a key role in providing this service. This thesis aims is to develop a temporal model for the ionospheric bias within a Victorian NRTK scenario. This research has analysed the temporal variability of the ionosphere over Victoria. It is important to quantify the variability of the ionosphere as it is essential that NRTK corrections are delivered sufficiently often with a small enough latency so that they adequately model variations in the ionospheric bias. This will promote the efficient transmission of correctional data to the rover whilst still achieving cm-level accuracy. Temporal analysis of the ionosphere revealed that, during stable ionospheric conditions, Victoria's double differenced ionospheric (DDI) bias remains correlated to within +5cm out to approximately two minutes over baselines of approximately 100km. However, the data revealed that during more disturbed ionospheric conditions this may decrease to one minute. As a preliminary investigation, four global empirical ionospheric models were tested to assess their ability to estimate the DDI bias. Further, three temporal predictive modelling schemes were tested to assess their suitability for providing ionospheric corrections in a NRTK environment. The analysis took place over four seasonal periods during the previous solar maximum in 2001 and 2002. It was found that due to the global nature of their coefficients, the four global empirical models were unable to provide ionospheric corrections to a level sufficient for precise ambiguity resolution within a NRTK environment. Three temporal ionospheric predictive schemes were developed and tested. These included a moving average model, a linear model and an ARIMA (Auto-Regressive Integrated Moving Average) time series analysis. The moving average and ARIMA approaches gave similar performance and out-performed the linear modelling scheme. Both of these approaches were able to predict the DDI to +5cm within a 99% confidence interval, out to an average of approximately two minutes, on average 90% of the time when compared to the actual decorrelation rates of the ionosphere. These results suggest that the moving average scheme, could enhance the implementation of next generation NRTK systems by predicting the DDI bias to latencies that would enable cm-level positioning

    The performance of hybrid GPS and GLONASS

    Get PDF
    In recent years, the market served by satellite positioning systems has expanded exponentially. It is stimulated by the needs of an ever increasing number and variety of scientific, business and leisure applications. The dominant system is the USA's GPS, or Global Positioning System. However, GPS is not a panacea for all positioning tasks, in any environmental situation. For example, two of the fastest growing applications, vehicle tracking and personal location, operate in an often harsh signal reception environment. This can be so severe that even with the current 29 working satellites, GPS may struggle to perform. In exceptional circumstances it can fail to provide a positioning service at all. The simplest way to improve the situation when signal reception is poor, is to add similar signals from alternative satellite systems. This has already been achieved by combining GPS with the Russian satellite positioning system, Global'naya Navigatsionnaya Sputnikova Sistema, abbreviated to GLONASS. The combination of GPS with GLONASS is referred to here as Hybrid. But how good is Hybrid relative to GPS, and how can performance be evaluated objectively? The research project presented here set out to answer this question, and to understand the situations in which Hybrid failed, and ask what solutions were then available to fulfil a positioning task. The problems associated with integrating one satellite positioning system with another, their potential inconsistencies and their impact on positioning errors were also examined. This field of research is relevant to Hybrid as defined here, and also to other mixed systems, for example GPS with EGNOS, a European geostationary satellite system, and GPS with Galileo, a proposed global system controlled by the Europeans. The issues were addressed from the viewpoint of practical usage of the positioning systems. Hence the many and varied experiments to quantify positioning performance using both static receivers, and a variety of platforms with wide ranging levels of vehicle dynamics. The capability of satellite positioning systems to work in the harshest environments, was tested in the proposed Olympic sport of bob skeleton. This involved the development of the acquisition system, and a number of programs. The latter were equally applicable to the ensuing work with road vehicles, and the quantitative assessment of positioning performance relative to a truth. The processes established to manipulate, import, and merge satellite based vehicle tracking data with Ordnance Survey digital mapping products, have already been used in four other projects within the School of Civil Engineering. The software to regularise positioning interval, smoothing processes, and to compare tracking data with a truth, have been similarly provided. Without major funding the outlook for GLONASS and hence Hybrid looks bleak, and it is predicted that without replenishment the constellation may fall to six satellites by the end of 2001. However as mentioned above, the issues identified, and ideas and software developed in this research, will be directly applicable to any future hybridisation of GPS with Galileo
    corecore