1,462 research outputs found

    EEG-Based Brain-Computer Interface for Tetraplegics

    Get PDF
    Movement-disabled persons typically require a long practice time to learn how to use a brain-computer interface (BCI). Our aim was to develop a BCI which tetraplegic subjects could control only in 30 minutes. Six such subjects (level of injury C4-C5) operated a 6-channel EEG BCI. The task was to move a circle from the centre of the computer screen to its right or left side by attempting visually triggered right- or left-hand movements. During the training periods, the classifier was adapted to the user's EEG activity after each movement attempt in a supervised manner. Feedback of the performance was given immediately after starting the BCI use. Within the time limit, three subjects learned to control the BCI. We believe that fast initial learning is an important factor that increases motivation and willingness to use BCIs. We have previously tested a similar single-trial classification approach in healthy subjects. Our new results show that methods developed and tested with healthy subjects do not necessarily work as well as with motor-disabled patients. Therefore, it is important to use motor-disabled persons as subjects in BCI development

    The Impact of Flow in an EEG-based Brain Computer Interface

    Get PDF
    Major issues in Brain Computer Interfaces (BCIs) include low usability and poor user performance. This paper tackles them by ensuring the users to be in a state of immersion, control and motivation, called state of flow. Indeed, in various disciplines, being in the state of flow was shown to improve performances and learning. Hence, we intended to draw BCI users in a flow state to improve both their subjective experience and their performances. In a Motor Imagery BCI game, we manipulated flow in two ways: 1) by adapting the task difficulty and 2) by using background music. Results showed that the difficulty adaptation induced a higher flow state, however music had no effect. There was a positive correlation between subjective flow scores and offline performance, although the flow factors had no effect (adaptation) or negative effect (music) on online performance. Overall, favouring the flow state seems a promising approach for enhancing users' satisfaction, although its complexity requires more thorough investigations

    Completing Cooperative Task by Utilizing EEG-based Brain Computer Interface

    Get PDF
    We sought to design a cooperative brain computer interface (BCI), wherein multiple users contribute brain activities that are decoded towards a common goal. We used a base design involving collection of electroencephalographic (EEG) brain activity from a low-cost consumer system (the Muse Headband), then classified the ensuing signals into different mental states as either relaxed or focused. The goal of the cooperative BCI was to have two subjects drive a cursor on the screen to some acceptance range given a prescribed path. Each subject was responsible for controlling either the direction or the displacement of the ball. EEG patterns for the respective mental states were recognized and investigated through power spectral density estimation techniques. For the classification of patterns, we deployed linear discriminant analysis and support vector machine techniques on the gamma and alpha band limited EEG power. Our design yielded an average error rate of 14 percent and an average information transfer rate of 0.8 bit/s, despite the noisy data and limited array of EEG electrodes. With sufficient training for each subject, the cursor was successfully driven to the acceptance range. Our results establish the feasibility of cooperative BCI using relatively modest hardware

    A Cooperative Game Using the P300 EEG-Based Brain-Computer Interface

    Get PDF
    In this paper, we present a cooperative game, Brainio Bros 300, using a brain-computer interface (BCI). The game is cooperatively controlled by two people using P300-generating color discrimination. The two users advance through the game together, one as the “player” and the other as the “supporter” providing assistance. We assumed that players would be able-bodied, while supporters would include people with severe disabilities. Through experiments using human subjects, we evaluated the subjects’ impressions of the game and its usefulness. The results of the impression evaluation showed that the subjects generally had good impressions, and there were many opinions that such cooperative games are interesting. We also discuss the possibilities of using the P300 BCI

    An EEG-based brain-computer interface for dual task driving detection

    Full text link
    The development of brain-computer interfaces (BCI) for multiple applications has undergone extensive growth in recent years. Since distracted driving is a significant cause of traffic accidents, this study proposes one BCI system based on EEG for distracted driving. The removal of artifacts and the selection of useful brain sources are the essential and critical steps in the application of electroencephalography (EEG)-based BCI. In the first model, artifacts are removed, and useful brain sources are selected based on the independent component analysis (ICA). In the second model, all distracted and concentrated EEG epochs are recognized with a self-organizing map (SOM). This BCI system automatically identified independent components with artifacts for removal and detected distracted driving through the specific brain sources which are also selected automatically. The accuracy of the proposed system approached approximately 90% for the recognition of EEG epochs of distracted and concentrated driving according to the selected frontal and left motor components. © 2013

    An EEG-based brain-computer interface for gait training

    Get PDF
    This work presents an electroencephalography (EEG)-based Brain-computer Interface (BCI) that decodes cerebral activities to control a lower-limb gait training exoskeleton. Motor imagery (MI) of flexion and extension of both legs was distinguished from the EEG correlates. We executed experiments with 5 able-bodied individuals under a realistic rehabilitation scenario. The Power Spectral Density (PSD) of the signals was extracted with sliding windows to train a linear discriminate analysis (LDA) classifier. An average classification accuracy of 0.67±0.07 and AUC of 0.77±0.06 were obtained in online recordings, which confirmed the feasibility of decoding these signals to control the gait trainer. In addition, discriminative feature analysis was conducted to show the modulations during the mental tasks. This study can be further implemented with different feedback modalities to enhance the user performance

    GUIDER: a GUI for semiautomatic, physiologically driven EEG feature selection for a rehabilitation BCI

    Get PDF
    GUIDER is a graphical user interface developed in MATLAB software environment to identify electroencephalography (EEG)-based brain computer interface (BCI) control features for a rehabilitation application (i.e. post-stroke motor imagery training). In this context, GUIDER aims to combine physiological and machine learning approaches. Indeed, GUIDER allows therapists to set parameters and constraints according to the rehabilitation principles (e.g. affected hemisphere, sensorimotor relevant frequencies) and foresees an automatic method to select the features among the defined subset. As a proof of concept, we compared offline performances between manual, just based on operator’s expertise and experience, and GUIDER semiautomatic features selection on BCI data collected from stroke patients during BCI-supported motor imagery training. Preliminary results suggest that this semiautomatic approach could be successfully applied to support the human selection reducing operator dependent variability in view of future multi-centric clinical trials
    corecore