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Abstract: This work presents an electroencephalography (EEG)-based Brain-computer Interface (BCI) that decodes
cerebral activities to control a lower-limb gait training exoskeleton. Motor imagery (MI) of flexion and extension of
both legs was distinguished from the EEG correlates. We executed experiments with 5 able-bodied individuals under a
realistic rehabilitation scenario. The Power Spectral Density (PSD) of the signals was extracted with sliding windows
to train a linear discriminate analysis (LDA) classifier. An average classification accuracy of 0.67±0.07 and AUC of
0.77±0.06 were obtained in online recordings, which confirmed the feasibility of decoding these signals to control the
gait trainer. In addition, discriminative feature analysis was conducted to show the modulations during the mental tasks.
This study can be further implemented with different feedback modalities to enhance the user performance.
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1 INTRODUCTION

Brain-computer Interfaces (BCIs) are direct communica-
tion and control systems between the brain and an external
device, bypassing the physiological output pathways of pe-
ripheral nerves and muscles [1]. For severely disabled in-
dividuals suffering from illnesses such as amyotrophic lat-
eral sclerosis (ALS), spinal cord injury (SCI) or strokes,
BCI provides a promising approach for them to interact
with the surroundings. In the past decades, non-invasive
EEG-based BCI has been developed in both experimental
contexts and clinical trials, e.g., brain-actuated intelligen-
t wheelchair [2], powered lower-limb exoskeleton [3] and
robotic arm [4].
EEG-based BCI can be categorized into spontaneous and
evoked paradigms, according to the types of control signal-
s. Evoked BCI exploits brain patterns in response to visual,
auditory or tactile stimulus. Typical examples are steady
state visually evoked potential (SSVEP) and P300. SSVEP
is brain activity modulated in the visual cortex evoked by
repetitive visual stimuli which has distinctive frequencies.
It has been used to control a mobile robot [5]. Further-
more, P300, elicited about 300 ms after the desired target
stimulus presented within a random sequence of nontarget
stimuli, can be implemented for the user to navigate un-
known and evolving scenarios [6]. The advantages of these
systems include high information transfer rate (ITR), min-
imum training sessions and high accuracy. However, the
subjects are easy to be fatigue with the consecutive stimu-
lus and they have to keep following the cues all the time in
order to transfer the information, which limits the applica-
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bility of evoked BCIs.
Spontaneous BCI, on the other hand, is fully operated
by the user without any external stimulus. The subjec-
t can send their commands voluntarily to interact with
the devices, e.g., neuroprosthesis and wheelchair. One
of the most commonly-used neurophysiological signatures
in such BCI systems is the modulation of sensorimotor
rhythms (SMRs) during motor imagery (MI). SMRs can
display event-related desynchronisation (ERD) and event-
related synchronization (ERS) [7], which reflects the pow-
er changes in certain frequency bands, e.g., mu (7−13 Hz)
and beta bands (15−30 Hz). Imagination of kinaesthet-
ic movement of left hand, right hand and/or both feet can
produce distinctive lateralized patterns on the primary sen-
sory and motor cortex. Therefore, MI of left and right hand
has been widely exploited as EEG correlates in BCI frame-
works for motor training. Much attention has been focused
on the development of brain-controlled robots for assistive
strategy and rehabilitation tools using upper-limb MI [8].
More recently, interest has been devoted to studies about
the gait rehabilitation. Brain-actuated robotic devices have
been shown as an alternative to conventional physical ther-
apy. In these paradigms, either healthy subjects or patients
were required to imagine movement of the arms to mod-
ulate EEG activity to generate motor commands to con-
trol the lower-limb movement. For instance, MI of hand
movement was used to control the Lokomat (Hocoma AG,
Volketswil, Switzerland), a commercially available robot-
ic walker [9]. Another work by Lee et al used MI of both
hands to build a cascaded ERD classifier, to control the Rex
(Rex Bionics LTD, Auckland, New Zealand), a hand-free,
self-supporting robotic mobility device [10].
In contrast, directly performing lower-limb MI as mental
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Figure 1: Architecture of a brain-controlled system. In the
current study, the external device is a lower-limb gait train-
ing exoskeleton.

tasks would be an intuitive yet challenging method for gait
rehabilitation oriented BCI. Cortical homunculus, a physi-
cal representation of functional region within the brain, has
shown a relatively small brain region mapping to leg move-
ments [11]. The cortical areas of legs, feet and toes are
located closely at primary motor cortex from the frontal
lobe. Besides, Brodmann cortical areas show that left and
right legs are controlled by overlapping regions from the
primary somatosensory cortex. As a result, the implemen-
tation of discriminative features from MI of left and right
legs are difficult to be applied in non-invasiveBCI. Howev-
er, a recent study has shown that the direction of imagined
visual motion can be decoded using functional magnetic
resonance imaging (fMRI) [12]. Similar patterns were per-
formed in human gait therapy, e.g., repetitive and cyclic
knee and ankle movement. Other lower-limb BCIs include
sitting and standing classification from pre-movement s-
tates [13] and ankle dorsiflexion MI detection from readi-
ness potential, a type of slow cortical potentials (SCPs)
[14].

The main goal of this work is to build an EEG-based BCI
with lower-limb MI as control signals. In contrast to hand
MI, we used MI of directional movement of both legs to
differentiate flexion and extension. There are three char-
acteristics of the proposed framework. First, directly us-
ing MI of leg flexion and extension is natural and intuitive,
which is in consistent with the physical gait training proce-
dures. Second, this paradigm is a spontaneous BCI, with-
out time-locked to any external stimulus. The subject can
initialize the task in a self-paced manner and get involved
for a long period with full manipulation. Third, visual feed-
back was provided to form a closed loop. The subjects can
modulate their mental strategies accordingly in order to en-
hance the performance. Furthermore, we performed fea-
ture analysis to show the discriminate power in the classifi-
cation of leg flexion and extension. Another classification
was conducted between mental task and rest period (base-
line) in order to show the brain pattern modulations.

In this work, we will first describe our BCI framework as
a pattern recognition system. Then we will continue by
materials and methods used for classification of leg flexion
and extension, as well as feature analysis. Results will be
shown followed by the discussion and conclusion.

(a) (b)

Figure 2: Visual cues presented to the subject during the
experiment: (a) Baseline period and (b) MI period.

2 MATERIALS AND METHODS

2.1 A brain-controlled system
A BCI is an artificial intelligence system which collects
and analyzes biological neural signals. To date, specif-
ic patterns in brain signals can be identified with a pat-
tern recognition architecture, composed of five consecutive
stages: signal acquisition, feature engineering, classifica-
tion/regression, action generation and feedback interface,
as shown in Figure 1.
Signal acquisition captures the brain signal using neu-
roimaging techniques, e.g., EEG in the current work. Other
processes, e.g., notch filtering, band pass filtering and arti-
fact rejection, might also be integrated in this module. Fea-
ture engineering include feature extraction and feature se-
lection. Typical features include signal envelope or ampli-
tude in the time domain, power or phase lag in the frequen-
cy domain, and Mahalanobis distance. Feature selection
is performed to overcome the curse of dimensionality, as
well as to find the subject-specific patterns corresponding
to the mental tasks. Classification/regression are the main
part as a decoder, which are typical supervised machine
learning techniques for discrete and continuous output to-
wards various applications. Actions are generated based on
the decision made from the decoder, and then transferred to
devices such as wheelchair, speller and even drone. A cer-
tain set of feedback, e.g., visual, tactile and proprioceptive,
is provided to inspect the real-time performance of the user.
In this work, the five modules were merged to translate the
brain signals to control the robot, and visual feedback was
presented for online testing.

2.2 Experimental protocol
Five subjects (three females, mean age 24.68±1.04) partic-
ipated in the experiments. They were all naive BCI users
with normal or corrected-to-normal vision. None of them
reported any known neurological or psychiatric disease.
The experimental protocol was approved by the local re-
search ethical committee and all participants gave their in-
formed consent.
Each subject did two sessions of recordings: offline for
training and online for testing. Each session consists of
five successive runs with a rest period in between. A cus-
tomized gait training exoskeleton called the legoPress (by
LSRO, EPFL, Lausanne, Switzerland) was implemented in



Figure 3: BioSemi-32 layout, and other configurations can
be found at http://www.biosemi.com/headcap.htm.

this study. This robot is a simple and cost-effective device
for gait retraining. More importantly, it can simulate the
real movement of leg extension and flexion as a natural ap-
proach for inducing sensory feedback. In each run, trials of
extension and flexion were randomized and balanced and
a total of 60 trials were performed (around 10 min). This
yielded 300 trials for one session and each recording was
around 1.5 h including experiment preparation and robot
familiarization.
During the experiment, the subject was seated in the lego-
Press with a monitor in front of the robot. The visu-
al cues were presented with a customized Python scrip-
t (https://c4science.ch/diffusion/1299/) and synchronized
with the lower-level routines. As shown in Figure 2, vi-
sual bars pointing upwards indicated leg extension MI and
downwards for leg flexion MI. The preparation period in
each trial was 2 s followed by MI period lasting 4 s for
training sessions. In testing sessions, the MI period de-
pended on the user performance and the time out was 5 s.
The interval between these two sessions for each subject
was around 2 weeks in order to simulate the realistic reha-
bilitation scenario.

2.3 Signal acquisition and preprocessing
EEG signals were recorded from 32 channels according to
the international 10/20 system using a Biosemi Active T-
wo system. The sampling frequency was set to 2048 Hz.
Ground was replaced by the Driven Right Leg (DRL) pas-
sive electrode and all signals were referenced to the Com-
mon Mode Sense (CMS) active electrode placed 1 cm to
the left of POz. The layout of bioSemi32 cap can be seen
in Figure 3. Before recording, the signals were inspect-
ed with a GUI (eegviewer), as shown in Figure 4. Between
runs, the waveformswere also checked by the experimenter
to ensure the quality of signal.
For signal preprocessing, peripheral channels were first re-
moved, since they were prone to bodymovement and phys-
iological electrical artifact, e.g., electromyogram (EMG)
and electrooculogram (EOG). We kept 17 channels: F3,
FC1, FC5, C3, CP1, CP5, P3, Pz, P4, CP6, CP2, C4, FC6,

Figure 4: Customized GUI to show the EEG signals in real
time.

Figure 5: Sample-based and trial-based classification error
from offline and online sessions, respectively.

FC2, F4, Fz, and Cz to reduce the signal contamination.
In order to increase the Signal-to-Noise Ratio (SNR), a s-
mall Laplacian spatial filter was used by removing the local
activity of neighboring electrodes as formula (1).

ei(t) = ei(t)− 1/Nk

Nk∑

j=1

ej(t) (1)

where ei(t) was the value of ith channel and Nk was the
number of considered nearest neighbor channels. The DC
component of the spatially filtered signal was further re-
moved as follows,

ei(t) = ei(t)− ei(t− T, t) (2)

where ei(t− T, t) was the mean value from time t − T to
t in the ith channel, and T is the length of time window.

2.4 Feature selection
As there were power changes in the EEG signals duringMI
tasks, we extracted the features in the frequency domain.
The Power Spectral Density (PSD) was calculated over 1
s windows (T = 1)overlapped for 0.75 s using Hamming
windows of 500 ms for all the channels, with 62.5 ms in-
crements. The PSD was estimated in the range of 4 to 48



Figure 6: Classification result of one subject across the val-
idation sets for session 1.

Hz with a resolution of 1 Hz. Therefore, the number of fea-
tures was 765, given the remaining EEG channels (17) and
the frequency components (45). We did a log transforma-
tion on the features in order to fit the normality assumption
for the following analysis.
After feature extraction, we performed feature selection us-
ing Canonical Variate Analysis (CVA), also known as mul-
tivariate discriminant analysis [15]. CVA was used to ex-
tract Canonical Discriminant Spatial Patterns (CDSPs) on
the original feature space, e.g., powers after log transfor-
mation. Given the two mental tasks, i.e., leg flexion and
extension, CVA maximized the separability between the t-
wo classes. We kept 10 features for further classification.

2.5 Classification
We used linear discriminant analysis (LDA) to classify the
two mental tasks. LDA is a simple and well-known classi-
fication approach based on normal distribution assumption
and Bayes rule. To calculate the sample-based accuracy, we
relied on a 5-fold cross validation. It is worth noting that
the feature selection aforementioned was only performed
on training data. Furthermore, chronological order of the
data was maintained in order to yield a better,and less opti-
mistic, estimation of accuracy.
In addition to sample-based classification, trial-based per-
formance, also known as BCI command accuracy, was e-
valuated based on the posterior probabilities from the slid-
ing windows. An evidence accumulation shown in formu-
la (3) was implemented as an exponential smoothing filter,
in order to eliminate effects from the outliers.

pt = α ∗ pt−1 + (1− α) ∗ pt (3)

where pt was the integrated probability at time t and α was
the smoothing factor. As α defined a trade-off between the
command speed and confidence, we empirically set it to
0.95 in the current study. When the integrated probability
reached the user-specific threshold, an action was generat-
ed and the command would send to the robot to execute
either flexion or extension movement accordingly. Final-
ly, we reported the results in terms of both accuracy, and

Figure 7: Classification result of one subject across the val-
idation sets for session 2.

Table 1: Average AUC for each subjects in the two sessions
subject ID s1 s2 s3 s4 s5
session-1 0.76 0.73 0.73 0.74 0.71
session-2 0.84 0.71 0.81 0.70 0.78

sensitivity-specificity in the receiver operating characteris-
tics (ROC) space.

2.6 Feature analysis
A post-processing of feature analysis was conducted to
estimate the discriminant power (DP) for the two mental
tasks. Given the number of features as c and number of
classes as k, the feature matrix T was defined as:

T =

k∑

i=1

Ti (4)

The normalized eigenvalues were defined as

γu =
λu∑k−1

u=1
λu

(5)

where λu was the eigenvalues of the CDSP matrix. DP of
single feature can be computed as formula (6).

DPe = 100 ∗

∑N

i=1

∑k−1

u=1
γi
ut

i
eu

2

∑N

i=1

∑c

e=1

∑k−1

u=1
γi
ut

i
eu

2
(6)

where N was the number of runs, and tieu was the element
from feature matrix with e = 1, ..., c. The calculation of
DP took the stability of features among data chunks into
consideration, since it penalized the features not consisten-
t during runs. We reported the DP with both topographic
and heat maps between MI of leg extension and flexion.
Furthermore, DP between focus and rest was shown to es-
timate the brain patterns during the mental tasks.
3 RESULTS
3.1 classification
Figure 5 depicts the classification error from both session-
s. As expected, the BCI command accuracy was signifi-
cantly better than sample-based performance (two-sample



Figure 8: Heat maps to shown the DP of a typical subject.
Peripheral channels were removed for the analysis.

Figure 9: Topographic maps to shown the DP of a typical
subject. The DP of peripheral channels was set to 0.

t-test, p < 0.01 and p = 0.017, respectively). No signif-
icant difference was found (two-sample t-test, p > 0.05)
between these two sessions. The average BCI command
accuracy of offline and online sessions were 0.63±0.05
and 0.67±0.07, respectively. Furthermore, chance level
was calculated based on binomial distribution [16], which
yielded an accuracy of 0.56. The performance of all sub-
jects was significantly better than the chance level, with an
accuracy of 0.76 in the best case.
Results of binary classification with ROC curves are shown
in Figure 6 and 7. Each curve represents the performance
of one subject averaged across 5-fold cross validation. The
chance level was calculated by shuffling the labels for the
training data and performing 1000 times 5-fold cross vali-
dation, as shown in dotted red lines. The mean Area Under
the Curve (AUC) values across the cross validation are il-
lustrated in Table 1. The mean AUC of the two sessions
were 0.73±0.02 and 0.77±0.06, respectively.

3.2 Feature analysis
Based on CVA, DP for the classification was estimated for
each subject. Discriminative features of a typical subject
are shown in both heat maps and topoplots, as displayed in
Figure 8 and 9, respectively. The DP is distributed at prima-
ry motor cortex, mainly in the mu band. C3 and C4 are the
discriminant channels for the classification. Features, i.e.,
channel and frequency component pairs, selected by CVA
from offline and online sessions are shown in Table 2 and
Table 3, respectively. Although the DP is highly subject-
specific, mu and beta bands located at frontal and central
brain areas are the most frequently selected features.

Table 2: Features selected by CVA for all subjects in the
offline session.

s1 s2 s3 s4 s5
C3/11 Hz Cz/27 Hz C3/30 Hz C3/11 Hz FC6/42 Hz
C3/12 Hz FC5/42 Hz C3/29 Hz C4/10 Hz FC6/41 Hz
C4/11 Hz FC1/41 Hz F4/30 Hz C4/23 Hz Fz/21 Hz
C4/12 Hz FC5/41 Hz FC6/18 Hz Fz/11 Hz F3/19 Hz
C3/10 Hz CP6/41 Hz F4/39 Hz C3/10 Hz F3/35 Hz
C3/23 Hz CP6/19 Hz F4/31 Hz Fz/23 Hz CP6/07 Hz
CP2/12 Hz CP6/24 Hz F3/30 Hz Fz/22 Hz FC1/19 Hz
C3/13 Hz CP6/40 Hz C3/31 Hz CP1/11 Hz P4/19 Hz
C4/10 Hz FC5/39 Hz CP5/39 Hz Fz/12 Hz C3/11 Hz
CP1/11 Hz FC5/40 Hz CP1/30 Hz CP1/12 Hz FC1/34 Hz

Table 3: Features selected by CVA for all subjects in the
online session.

s1 s2 s3 s4 s5
CP6/29 Hz Cz/23 Hz FC6/28 Hz P4/07 Hz F3/29 Hz
FC5/30 Hz Cz/20 Hz FC6/29 Hz C4/10 Hz FC5/30 Hz
CP6/30 Hz Cz/21 Hz FC6/30 Hz FC5/15 Hz F3/30 Hz
FC5/28 Hz Fz/04 Hz FC6/27 Hz CP5/10 Hz F3/26 Hz
FC5/29 Hz Cz/24 Hz FC6/26 Hz C4/11 Hz F3/22 Hz
CP6/28 Hz Cz/22 Hz FC6/25 Hz CP6/07 Hz F3/25 Hz
FC5/27 Hz F3/17 Hz CP6/30 Hz CP6/10 Hz FC6/28 Hz
FC5/26 Hz Cz/25 Hz FC6/24 Hz C3/07 Hz FC6/27 Hz
FC6/29 Hz Fz/05 Hz CP6/28 Hz Fz7/07 Hz FC5/22 Hz
FC5/24 Hz CP5/14 Hz CP6/29 Hz P4/22 Hz F3/21 Hz

Furthermore, the DP of focus vs. rest was estimated, to
compare with the leg extension vs. flexion, as shown in
Figure 10. The channels selected in the leg extension vs.
flexion are FC5 and CP6, located in BrodmannArea 40 and
44, with the function of motor planning and somatosensory
integration. On the other hand, the features of MI vs. rest
are located in the the primary motor cortex, especially at
Cz, which is in consistent with previous works of lower-
limb MI [7].

4 Discussion

Brain-actuated robotics usually exploit spontaneous EEG
correlates, e.g., MI, as control signals. To design a BCI for
gait rehabilitation, directly performing lower-limbMI, e.g.,
leg extension and flexion is a natural and intuitive strategy.
In this study, we built classifiers and executed experiments
in a closed loop to tackle this issue. The goal is to evaluate
whether we can find significant difference between MI of
leg extension and flexion, as well as discriminative features
employed in the mental tasks. Although the DP is highly
subject-specific and session-specific, we showed promising
results with both sample-based and BCI command accura-
cy. The results reveal that it is possible to distinguish MI
of leg extension and flexion, based on the proposed pattern
recognition framework.
In the current work, CVAwas used for feature selection and
LDA classifier was built to differentiate the mental tasks.
We assume that the log transformed PSD follows a Gaus-
sian distribution and the two classes are linearly separable.
However, the brain signal might be highly nonlinearity and
more sophisticated machine learning techniques, e.g., di-
mensionality reduction and classification, could be intro-
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Figure 10: Topographic maps to compare the DP between leg extension vs. flexion (a) and focus vs. rest (b).

duced to enhance the capability of the model. Besides,
heathy subjects participated in the experiments as a proof
of concept. Our ultimate users would be motor disabled
subjects, e.g., paraplegic patients, to help them with the
proposed brain-controlled gait trainer for therapy.
The main limitation of a MI-based BCI is the long period
required for training. In this study, each subject was record-
ed with two sessions with visual feedback provided during
online testings. The users learned fast on the modulation
of their brain patterns for the mental tasks, although none
of them had any experience with MI. Further improvement
might be achieved with more experimental sessions. Still,
a large number of subjects, including end-users, should be
incorporated in further work to reach a stronger conclusion
[17]. In addition to visual feedback, multiple modalities of
feedback, e.g., proprioceptive or functional electrical stim-
ulation (FES) would be introduced and compared in further
work.
ACKNOWLEDGEMENT
We would like to thank Dr. Mohamed Bouri from LSRO,
EPFL, Switzerland, formodification on the gait training ex-
oskeleton. We also appreciate all subjects who participated
in the recordings.
REFERENCES
[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. P-

furtscheller, and T. M. Vaughan, Brain-computer interfaces
for communication and control, Clinical neurophysiology
113, no. 6: 767-791, 2002.

[2] J. d. R. Millán, F. Galán, D. Vanhooydonck, E. Lew, J. Philip-
s, and M. Nuttin, Asynchronous non-invasive brain-actuated
control of an intelligent wheelchair, Proc. 29th Annual Intl.
Conf, 2009.

[3] K. Lee, D. Liu, L. Perroud, R. Chavarriaga, and J. D. R. Mil-
lán, Endogenous control of powered lower-limb exoskeleton,
Wearable Robotics: Challenges and Trends, pp. 115-119,
2017.

[4] J. Meng, S. Zhang, A. Bekyo, J. Olsoe, B. Baxter, and B.
He, Noninvasive Electroencephalogram Based Control of a
Robotic Arm for Reach and Grasp Tasks, Scientific Reports
6: 38565, 2016.

[5] X. Gao, D. Xu, M. Cheng, and S. Gao, A BCI-based environ-
mental controller for the motion disabled, IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 11: 137-
140, 2003.

[6] I. Iturrate, J. M. Antelis, A. Kubler, and J. Minguez, A nonin-
vasive brain-actuated wheelchair based on a P300 neurophys-
iological protocol and automated navigation, IEEE Transac-
tions on Robotics 25, no. 3: 614-627, 2009.

[7] G. Pfurtscheller, F. L. Da Silva, Event-related EEG/MEG
synchronization and desynchronization: basic principles,
Clinical Neurophysiology, 110: 1842-1857, 1999.

[8] G. Dornhege, J. d. R. Millán, T. Hinterberger, D. McFar-
land, and K. Muller, Toward brain-computer interfacing,
MIT press, 2007.

[9] A. R. Donati, S. Shokur, E. Morya, D. S. Campos, F. L.
Brasil, Long-term training with a brain-machine interface-
based gait protocol induces partial neurological recovery in
paraplegic patients, Scientific Reports 6, 2016.

[10] K. Lee, D. Liu, L. Perroud, R. Chavarriaga, and J. D.
R. Millán, A brain-controlled exoskeleton with cascaded
event-related desynchronization classifiers, Robotics and Au-
tonomous Systems, 2016.

[11] W. Penfield and E. Boldrey, Somatic motor and sensory rep-
resentation in the cerebral cortex of man as studied by elec-
trical stimulation, Brain: A journal of neurology, 1937.

[12] T. C. Emmerling, J. Zimmermann, B. Sorger, M. A. Frost,
and R. Goebel, Decoding the direction of imagined visual
motion using 7 T ultra-high field fMRI, Neuroimage, 125,
61-73, 2016.

[13] T. C. Bulea, S. Prasad, A. Kilicarslan, and J. L. Contrerasvi-
dal, Sitting and standing intention can be decoded from s-
calp EEG recorded prior to movement execution, Frontiers
in Neuroscience, 8(6), 2014.

[14] I. K. Niazi, N. Jiang, O. Tiberghien, J. F. Nielsen, K. Drem-
strup, and D. Farina, Detection of movement intention from
single-trial movement-related cortical potentials, Journal of
neural engineering, 8(6): 066009, 2011.

[15] F. Galán, P. W. Ferrez, F. Oliva, J. Guardia, and J. d. R. Mil-
lán, Feature extraction for multi-class BCI using canonical
variates analysis, IEEE International Symposiumon on Intel-
ligent Signal Processing, pp. 1-6, 2007.

[16] M. Gernot, R. Scherer, C. Brunner, R. Leeb, and G. P-
furtscheller, Better than random: A closer look on BCI re-
sults, International Journal of Bioelectromagnetism 10, pp.
52-55, 2008.

[17] R. Leeb, S. Perdikis, L. Tonin, A. Biasiucci, M. Tavella,
M. Creatura, and J. d. R. Millán, Transferring brainCcom-
puter interfaces beyond the laboratory: successful applica-
tion control for motor-disabled users, Artificial Intelligence
in Medicine 59: 121-132, 2013.


