401 research outputs found

    The cost of space independence in P300-BCI spellers.

    Get PDF
    Background: Though non-invasive EEG-based Brain Computer Interfaces (BCI) have been researched extensively over the last two decades, most designs require control of spatial attention and/or gaze on the part of the user. Methods: In healthy adults, we compared the offline performance of a space-independent P300-based BCI for spelling words using Rapid Serial Visual Presentation (RSVP), to the well-known space-dependent Matrix P300 speller. Results: EEG classifiability with the RSVP speller was as good as with the Matrix speller. While the Matrix speller’s performance was significantly reliant on early, gaze-dependent Visual Evoked Potentials (VEPs), the RSVP speller depended only on the space-independent P300b. However, there was a cost to true spatial independence: the RSVP speller was less efficient in terms of spelling speed. Conclusions: The advantage of space independence in the RSVP speller was concomitant with a marked reduction in spelling efficiency. Nevertheless, with key improvements to the RSVP design, truly space-independent BCIs could approach efficiencies on par with the Matrix speller. With sufficiently high letter spelling rates fused with predictive language modelling, they would be viable for potential applications with patients unable to direct overt visual gaze or covert attentional focus

    Exploring a P300 Brain-Computer Interface Based on Three Different RSVP Paradigms

    Get PDF
    A BCI Speller is a typical Brain-Computer Interface (BCI) system for communication purpose. This technology can provide users with severe motor disability with an assistive device controlled by brain activity. In the present preliminary study we investigated, in five subjects, the performance and the Information Transfer Rate (ITR) based on three different Rapid Serial Visual Presentation (RSVP) paradigms to control a BCI speller. The variants of the three paradigms were the stimuli presented: letters, images and famous faces. These preliminary results showed that performance can increase when using an RSVP paradigm based on images, and ITR can improves when using the images and the famous faces paradigms.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Application of P300 Event-Related Potential in Brain-Computer Interface

    Get PDF
    The primary purpose of this chapter is to demonstrate one of the applications of P300 event-related potential (ERP), i.e., brain-computer interface (BCI). Researchers and students will find the chapter appealing with a preliminary description of P300 ERP. This chapter also appreciates the importance and advantages of noninvasive ERP technique. In noninvasive BCI, the P300 ERPs are extracted from brain electrical activities [electroencephalogram (EEG)] as a signature of the underlying electrophysiological mechanism of brain responses to the external or internal changes and events. As the chapter proceeds, topics are covered on more relevant scholarly works about challenges and new directions in P300 BCI. Along with these, articles with the references on the advancement of this technique will be presented to ensure that the scholarly reviews are accessible to people who are new to this field. To enhance fundamental understanding, stimulation as well as signal processing methods will be discussed from some novel works with a comparison of the associated results. This chapter will meet the need for a concise and practical description of basic, as well as advanced P300 ERP techniques, which is suitable for a broad range of researchers extending from today’s novice to an experienced cognitive researcher

    Hybrid Brain-Computer Interface Systems: Approaches, Features, and Trends

    Get PDF
    Brain-computer interface (BCI) is an emerging field, and an increasing number of BCI research projects are being carried globally to interface computer with human using EEG for useful operations in both healthy and locked persons. Although several methods have been used to enhance the BCI performance in terms of signal processing, noise reduction, accuracy, information transfer rate, and user acceptability, the effective BCI system is still in the verge of development. So far, various modifications on single BCI systems as well as hybrid are done and the hybrid BCIs have shown increased but insufficient performance. Therefore, more efficient hybrid BCI models are still under the investigation by different research groups. In this review chapter, single BCI systems are briefly discussed and more detail discussions on hybrid BCIs, their modifications, operations, and performances with comparisons in terms of signal processing approaches, applications, limitations, and future scopes are presented

    State-of-the-Art in BCI Research: BCI Award 2010

    Get PDF
    • …
    corecore