371 research outputs found

    EEG emotion recognition using reduced channel wavelet entropy and average wavelet coefficient features with normal Mutual Information method

    Full text link
    ยฉ 2017 IEEE. Recognizing emotion from EEG signals is a complicated task that requires complex features and a substantial number of EEG channels. Simple algorithms to analyse the feature and reduce the EEG channel number will give an indispensable advantages. Therefore, this study explores a combination of wavelet entropy and average wavelet coefficient (WEAVE) as a potential EEG-emotion feature to classify valence and arousal emotions with the advantage of the ability to identify the occurrence of a pattern while at the same time identify the shape of a pattern in EEG emotion signal. The complexity of the feature was reduced using the Normalized Mutual Information (NMI) method to obtain a reduced number of channels. Classification with the WEAVE feature achieved 76.8% accuracy for valence and 74.3% for arousal emotion, respectively. The analysis with NMI shows that the WEAVE feature has linear characteristics and offers possibilities to reduce the EEG channels to a certain number. Further analysis also reveals that detection of valence emotion with reduced EEG channels has a different combination of EEG channels compared to arousal emotion

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others

    ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ ํŒจํ„ด ๋ถ„์„์„ ์œ„ํ•œ ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก 

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์žฅ๋ณ‘ํƒ.Pattern recognition within time series data became an important avenue of research in artificial intelligence following the paradigm shift of the fourth industrial revolution. A number of studies related to this have been conducted over the past few years, and research using deep learning techniques are becoming increasingly popular. Due to the nonstationary, nonlinear and noisy nature of time series data, it is essential to design an appropriate model to extract its significant features for pattern recognition. This dissertation not only discusses the study of pattern recognition using various hand-crafted feature engineering techniques using physiological time series signals, but also suggests an end-to-end deep learning design methodology without any feature engineering. Time series signal can be classified into signals having periodic and non-periodic characteristics in the time domain. This thesis proposes two end-to-end deep learning design methodologies for pattern recognition of periodic and non-periodic signals. The first proposed deep learning design methodology is Deep ECGNet. Deep ECGNet offers a design scheme for an end-to-end deep learning model using periodic characteristics of Electrocardiogram (ECG) signals. ECG, recorded from the electrophysiologic patterns of heart muscle during heartbeat, could be a promising candidate to provide a biomarker to estimate event-based stress level. Conventionally, the beat-to-beat alternations, heart rate variability (HRV), from ECG have been utilized to monitor the mental stress status as well as the mortality of cardiac patients. These HRV parameters have the disadvantage of having a 5-minute measurement period. In this thesis, human's stress states were estimated without special hand-crafted feature engineering using only 10-second interval data with the deep learning model. The design methodology of this model incorporates the periodic characteristics of the ECG signal into the model. The main parameters of 1D CNNs and RNNs reflecting the periodic characteristics of ECG were updated corresponding to the stress states. The experimental results proved that the proposed method yielded better performance than those of the existing HRV parameter extraction methods and spectrogram methods. The second proposed methodology is an automatic end-to-end deep learning design methodology using Bayesian optimization for non-periodic signals. Electroencephalogram (EEG) is elicited from the central nervous system (CNS) to yield genuine emotional states, even at the unconscious level. Due to the low signal-to-noise ratio (SNR) of EEG signals, spectral analysis in frequency domain has been conventionally applied to EEG studies. As a general methodology, EEG signals are filtered into several frequency bands using Fourier or wavelet analyses and these band features are then fed into a classifier. This thesis proposes an end-to-end deep learning automatic design method using optimization techniques without this basic feature engineering. Bayesian optimization is a popular optimization technique for machine learning to optimize model hyperparameters. It is often used in optimization problems to evaluate expensive black box functions. In this thesis, we propose a method to perform whole model hyperparameters and structural optimization by using 1D CNNs and RNNs as basic deep learning models and Bayesian optimization. In this way, this thesis proposes the Deep EEGNet model as a method to discriminate human emotional states from EEG signals. Experimental results proved that the proposed method showed better performance than that of conventional method based on the conventional band power feature method. In conclusion, this thesis has proposed several methodologies for time series pattern recognition problems from the feature engineering-based conventional methods to the end-to-end deep learning design methodologies with only raw time series signals. Experimental results showed that the proposed methodologies can be effectively applied to pattern recognition problems using time series data.์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด ์ธ์‹ ๋ฌธ์ œ๋Š” 4์ฐจ ์‚ฐ์—… ํ˜๋ช…์˜ ํŒจ๋Ÿฌ๋‹ค์ž„ ์ „ํ™˜๊ณผ ํ•จ๊ป˜ ๋งค์šฐ ์ค‘์š”ํ•œ ์ธ๊ณต ์ง€๋Šฅ์˜ ํ•œ ๋ถ„์•ผ๊ฐ€ ๋˜์—ˆ๋‹ค. ์ด์— ๋”ฐ๋ผ, ์ง€๋‚œ ๋ช‡ ๋…„๊ฐ„ ์ด์™€ ๊ด€๋ จ๋œ ๋งŽ์€ ์—ฐ๊ตฌ๋“ค์ด ์ด๋ฃจ์–ด์ ธ ์™”์œผ๋ฉฐ, ์ตœ๊ทผ์—๋Š” ์‹ฌ์ธต ํ•™์Šต๋ง (deep learning networks) ๋ชจ๋ธ์„ ์ด์šฉํ•œ ์—ฐ๊ตฌ๋“ค์ด ์ฃผ๋ฅผ ์ด๋ฃจ์–ด ์™”๋‹ค. ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋Š” ๋น„์ •์ƒ, ๋น„์„ ํ˜• ๊ทธ๋ฆฌ๊ณ  ์žก์Œ (nonstationary, nonlinear and noisy) ํŠน์„ฑ์œผ๋กœ ์ธํ•˜์—ฌ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์˜ ํŒจํ„ด ์ธ์‹ ์ˆ˜ํ–‰์„ ์œ„ํ•ด์„ , ๋ฐ์ดํ„ฐ์˜ ์ฃผ์š”ํ•œ ํŠน์ง•์ ์„ ์ถ”์ถœํ•˜๊ธฐ ์œ„ํ•œ ์ตœ์ ํ™”๋œ ๋ชจ๋ธ์˜ ์„ค๊ณ„๊ฐ€ ํ•„์ˆ˜์ ์ด๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋Œ€ํ‘œ์ ์ธ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ์ธ ์ƒ์ฒด ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ถœ ๋ฐฉ๋ฒ• (hand-crafted feature engineering methods)์„ ์ด์šฉํ•œ ํŒจํ„ด ์ธ์‹ ๊ธฐ๋ฒ•์— ๋Œ€ํ•˜์—ฌ ๋…ผํ•  ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ, ๊ถ๊ทน์ ์œผ๋กœ๋Š” ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ถœ ๊ณผ์ •์ด ์—†๋Š” ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก ์— ๋Œ€ํ•œ ์—ฐ๊ตฌ ๋‚ด์šฉ์„ ๋‹ด๊ณ  ์žˆ๋‹ค. ์‹œ๊ณ„์—ด ์‹ ํ˜ธ๋Š” ์‹œ๊ฐ„ ์ถ• ์ƒ์—์„œ ํฌ๊ฒŒ ์ฃผ๊ธฐ์  ์‹ ํ˜ธ์™€ ๋น„์ฃผ๊ธฐ์  ์‹ ํ˜ธ๋กœ ๊ตฌ๋ถ„ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ๋ณธ ์—ฐ๊ตฌ๋Š” ์ด๋Ÿฌํ•œ ๋‘ ์œ ํ˜•์˜ ์‹ ํ˜ธ๋“ค์— ๋Œ€ํ•œ ํŒจํ„ด ์ธ์‹์„ ์œ„ํ•ด ๋‘ ๊ฐ€์ง€ ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง์— ๋Œ€ํ•œ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก ์„ ์ œ์•ˆํ•œ๋‹ค. ์ฒซ ๋ฒˆ์งธ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ์ด์šฉํ•ด ์„ค๊ณ„๋œ ๋ชจ๋ธ์€ ์‹ ํ˜ธ์˜ ์ฃผ๊ธฐ์  ํŠน์„ฑ์„ ์ด์šฉํ•œ Deep ECGNet์ด๋‹ค. ์‹ฌ์žฅ ๊ทผ์œก์˜ ์ „๊ธฐ ์ƒ๋ฆฌํ•™์  ํŒจํ„ด์œผ๋กœ๋ถ€ํ„ฐ ๊ธฐ๋ก๋œ ์‹ฌ์ „๋„ (Electrocardiogram, ECG)๋Š” ์ด๋ฒคํŠธ ๊ธฐ๋ฐ˜ ์ŠคํŠธ๋ ˆ์Šค ์ˆ˜์ค€์„ ์ถ”์ •ํ•˜๊ธฐ ์œ„ํ•œ ์ฒ™๋„ (bio marker)๋ฅผ ์ œ๊ณตํ•˜๋Š” ์œ ํšจํ•œ ๋ฐ์ดํ„ฐ๊ฐ€ ๋  ์ˆ˜ ์žˆ๋‹ค. ์ „ํ†ต์ ์œผ๋กœ ์‹ฌ์ „๋„์˜ ์‹ฌ๋ฐ•์ˆ˜ ๋ณ€๋™์„ฑ (Herat Rate Variability, HRV) ๋งค๊ฐœ๋ณ€์ˆ˜ (parameter)๋Š” ์‹ฌ์žฅ ์งˆํ™˜ ํ™˜์ž์˜ ์ •์‹ ์  ์ŠคํŠธ๋ ˆ์Šค ์ƒํƒœ ๋ฐ ์‚ฌ๋ง๋ฅ ์„ ๋ชจ๋‹ˆํ„ฐ๋งํ•˜๋Š” ๋ฐ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ, ํ‘œ์ค€ ์‹ฌ๋ฐ•์ˆ˜ ๋ณ€๋™์„ฑ ๋งค๊ฐœ ๋ณ€์ˆ˜๋Š” ์ธก์ • ์ฃผ๊ธฐ๊ฐ€ 5๋ถ„ ์ด์ƒ์œผ๋กœ, ์ธก์ • ์‹œ๊ฐ„์ด ๊ธธ๋‹ค๋Š” ๋‹จ์ ์ด ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‹ฌ์ธต ํ•™์Šต๋ง ๋ชจ๋ธ์„ ์ด์šฉํ•˜์—ฌ 10์ดˆ ๊ฐ„๊ฒฉ์˜ ECG ๋ฐ์ดํ„ฐ๋งŒ์„ ์ด์šฉํ•˜์—ฌ, ์ถ”๊ฐ€์ ์ธ ํŠน์ง• ๋ฒกํ„ฐ์˜ ์ถ”์ถœ ๊ณผ์ • ์—†์ด ์ธ๊ฐ„์˜ ์ŠคํŠธ๋ ˆ์Šค ์ƒํƒœ๋ฅผ ์ธ์‹ํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์ธ๋‹ค. ์ œ์•ˆ๋œ ์„ค๊ณ„ ๊ธฐ๋ฒ•์€ ECG ์‹ ํ˜ธ์˜ ์ฃผ๊ธฐ์  ํŠน์„ฑ์„ ๋ชจ๋ธ์— ๋ฐ˜์˜ํ•˜์˜€๋Š”๋ฐ, ECG์˜ ์€๋‹‰ ํŠน์ง• ์ถ”์ถœ๊ธฐ๋กœ ์‚ฌ์šฉ๋œ 1D CNNs ๋ฐ RNNs ๋ชจ๋ธ์˜ ์ฃผ์š” ๋งค๊ฐœ ๋ณ€์ˆ˜์— ์ฃผ๊ธฐ์  ํŠน์„ฑ์„ ๋ฐ˜์˜ํ•จ์œผ๋กœ์จ, ํ•œ ์ฃผ๊ธฐ ์‹ ํ˜ธ์˜ ์ŠคํŠธ๋ ˆ์Šค ์ƒํƒœ์— ๋”ฐ๋ฅธ ์ฃผ์š” ํŠน์ง•์ ์„ ์ข…๋‹จ ํ•™์Šต๋ง ๋‚ด๋ถ€์ ์œผ๋กœ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์ด ๊ธฐ์กด ์‹ฌ๋ฐ•์ˆ˜ ๋ณ€๋™์„ฑ ๋งค๊ฐœ๋ณ€์ˆ˜์™€ spectrogram ์ถ”์ถœ ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜์˜ ํŒจํ„ด ์ธ์‹ ๋ฐฉ๋ฒ•๋ณด๋‹ค ์ข‹์€ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋‘ ๋ฒˆ์งธ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์€ ๋น„ ์ฃผ๊ธฐ์ ์ด๋ฉฐ ๋น„์ •์ƒ, ๋น„์„ ํ˜• ๊ทธ๋ฆฌ๊ณ  ์žก์Œ ํŠน์„ฑ์„ ์ง€๋‹Œ ์‹ ํ˜ธ์˜ ํŒจํ„ด์ธ์‹์„ ์œ„ํ•œ ์ตœ์  ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง ์ž๋™ ์„ค๊ณ„ ๋ฐฉ๋ฒ•๋ก ์ด๋‹ค. ๋‡ŒํŒŒ ์‹ ํ˜ธ (Electroencephalogram, EEG)๋Š” ์ค‘์ถ” ์‹ ๊ฒฝ๊ณ„ (CNS)์—์„œ ๋ฐœ์ƒ๋˜์–ด ๋ฌด์˜์‹ ์ƒํƒœ์—์„œ๋„ ๋ณธ์—ฐ์˜ ๊ฐ์ • ์ƒํƒœ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š”๋ฐ, EEG ์‹ ํ˜ธ์˜ ๋‚ฎ์€ ์‹ ํ˜ธ ๋Œ€ ์žก์Œ๋น„ (SNR)๋กœ ์ธํ•ด ๋‡ŒํŒŒ๋ฅผ ์ด์šฉํ•œ ๊ฐ์ • ์ƒํƒœ ํŒ์ •์„ ์œ„ํ•ด์„œ ์ฃผ๋กœ ์ฃผํŒŒ์ˆ˜ ์˜์—ญ์˜ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„์„์ด ๋‡ŒํŒŒ ์—ฐ๊ตฌ์— ์ ์šฉ๋˜์–ด ์™”๋‹ค. ํ†ต์ƒ์ ์œผ๋กœ ๋‡ŒํŒŒ ์‹ ํ˜ธ๋Š” ํ‘ธ๋ฆฌ์— (Fourier) ๋˜๋Š” ์›จ์ด๋ธ”๋ › (wavelet) ๋ถ„์„์„ ์‚ฌ์šฉํ•˜์—ฌ ์—ฌ๋Ÿฌ ์ฃผํŒŒ์ˆ˜ ๋Œ€์—ญ์œผ๋กœ ํ•„ํ„ฐ๋ง ๋œ๋‹ค. ์ด๋ ‡๊ฒŒ ์ถ”์ถœ๋œ ์ฃผํŒŒ์ˆ˜ ํŠน์ง• ๋ฒกํ„ฐ๋Š” ๋ณดํ†ต ์–•์€ ํ•™์Šต ๋ถ„๋ฅ˜๊ธฐ (shallow machine learning classifier)์˜ ์ž…๋ ฅ์œผ๋กœ ์‚ฌ์šฉ๋˜์–ด ํŒจํ„ด ์ธ์‹์„ ์ˆ˜ํ–‰ํ•˜๊ฒŒ ๋œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๊ธฐ๋ณธ์ ์ธ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ถœ ๊ณผ์ •์ด ์—†๋Š” ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” (Bayesian optimization) ๊ธฐ๋ฒ•์„ ์ด์šฉํ•œ ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง ์ž๋™ ์„ค๊ณ„ ๊ธฐ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์€ ์ดˆ ๋งค๊ฐœ๋ณ€์ˆ˜ (hyperparamters)๋ฅผ ์ตœ์ ํ™”ํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๊ณ„ ํ•™์Šต ๋ถ„์•ผ์˜ ๋Œ€ํ‘œ์ ์ธ ์ตœ์ ํ™” ๊ธฐ๋ฒ•์ธ๋ฐ, ์ตœ์ ํ™” ๊ณผ์ •์—์„œ ํ‰๊ฐ€ ์‹œ๊ฐ„์ด ๋งŽ์ด ์†Œ์š”๋˜๋Š” ๋ชฉ์  ํ•จ์ˆ˜ (expensive black box function)๋ฅผ ๊ฐ–๊ณ  ์žˆ๋Š” ์ตœ์ ํ™” ๋ฌธ์ œ์— ์ ํ•ฉํ•˜๋‹ค. ์ด๋Ÿฌํ•œ ๋ฒ ์ด์ง€์•ˆ ์ตœ์ ํ™”๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ธฐ๋ณธ์ ์ธ ํ•™์Šต ๋ชจ๋ธ์ธ 1D CNNs ๋ฐ RNNs์˜ ์ „์ฒด ๋ชจ๋ธ์˜ ์ดˆ ๋งค๊ฐœ๋ณ€์ˆ˜ ๋ฐ ๊ตฌ์กฐ์  ์ตœ์ ํ™”๋ฅผ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€์œผ๋ฉฐ, ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์„ ๋ฐ”ํƒ•์œผ๋กœ Deep EEGNet์ด๋ผ๋Š” ์ธ๊ฐ„์˜ ๊ฐ์ •์ƒํƒœ๋ฅผ ํŒ๋ณ„ํ•  ์ˆ˜ ์žˆ๋Š” ๋ชจ๋ธ์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์—ฌ๋Ÿฌ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ชจ๋ธ์ด ๊ธฐ์กด์˜ ์ฃผํŒŒ์ˆ˜ ํŠน์ง• ๋ฒกํ„ฐ (band power feature) ์ถ”์ถœ ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜์˜ ์ „ํ†ต์ ์ธ ๊ฐ์ • ํŒจํ„ด ์ธ์‹ ๋ฐฉ๋ฒ•๋ณด๋‹ค ์ข‹์€ ์„ฑ๋Šฅ์„ ๋‚˜ํƒ€๋‚ด๊ณ  ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๊ฒฐ๋ก ์ ์œผ๋กœ ๋ณธ ๋…ผ๋ฌธ์€ ์‹œ๊ณ„์—ด ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ ํŒจํ„ด ์ธ์‹๋ฌธ์ œ๋ฅผ ์—ฌ๋Ÿฌ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ถœ ๊ธฐ๋ฒ• ๊ธฐ๋ฐ˜์˜ ์ „ํ†ต์ ์ธ ๋ฐฉ๋ฒ•์„ ํ†ตํ•ด ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•๋ถ€ํ„ฐ, ์ถ”๊ฐ€์ ์ธ ํŠน์ง• ๋ฒกํ„ฐ ์ถ”์ถœ ๊ณผ์ • ์—†์ด ์›๋ณธ ๋ฐ์ดํ„ฐ๋งŒ์„ ์ด์šฉํ•˜์—ฌ ์ข…๋‹จ ์‹ฌ์ธต ํ•™์Šต๋ง์„ ์„ค๊ณ„ํ•˜๋Š” ๋ฐฉ๋ฒ•๊นŒ์ง€ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ, ๋‹ค์–‘ํ•œ ์‹คํ—˜์„ ํ†ตํ•ด ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•๋ก ์ด ์‹œ๊ณ„์—ด ์‹ ํ˜ธ ๋ฐ์ดํ„ฐ๋ฅผ ์ด์šฉํ•œ ํŒจํ„ด ์ธ์‹ ๋ฌธ์ œ์— ํšจ๊ณผ์ ์œผ๋กœ ์ ์šฉ๋  ์ˆ˜ ์žˆ์Œ์„ ๋ณด์˜€๋‹ค.Chapter 1 Introduction 1 1.1 Pattern Recognition in Time Series 1 1.2 Major Problems in Conventional Approaches 7 1.3 The Proposed Approach and its Contribution 8 1.4 Thesis Organization 10 Chapter 2 Related Works 12 2.1 Pattern Recognition in Time Series using Conventional Methods 12 2.1.1 Time Domain Features 12 2.1.2 Frequency Domain Features 14 2.1.3 Signal Processing based on Multi-variate Empirical Mode Decomposition (MEMD) 15 2.1.4 Statistical Time Series Model (ARIMA) 18 2.2 Fundamental Deep Learning Algorithms 20 2.2.1 Convolutional Neural Networks (CNNs) 20 2.2.2 Recurrent Neural Networks (RNNs) 22 2.3 Hyper Parameters and Structural Optimization Techniques 24 2.3.1 Grid and Random Search Algorithms 24 2.3.2 Bayesian Optimization 25 2.3.3 Neural Architecture Search 28 2.4 Research Trends related to Time Series Data 29 2.4.1 Generative Model of Raw Audio Waveform 30 Chapter 3 Preliminary Researches: Patten Recognition in Time Series using Various Feature Extraction Methods 31 3.1 Conventional Methods using Time and Frequency Features: Motor Imagery Brain Response Classification 31 3.1.1 Introduction 31 3.1.2 Methods 32 3.1.3 Ensemble Classification Method (Stacking & AdaBoost) 32 3.1.4 Sensitivity Analysis 33 3.1.5 Classification Results 36 3.2 Statistical Feature Extraction Methods: ARIMA Model Based Feature Extraction Methodology 38 3.2.1 Introduction 38 3.2.2 ARIMA Model 38 3.2.3 Signal Processing 39 3.2.4 ARIMA Model Conformance Test 40 3.2.5 Experimental Results 40 3.2.6 Summary 43 3.3 Application on Specific Time Series Data: Human Stress States Recognition using Ultra-Short-Term ECG Spectral Feature 44 3.3.1 Introduction 44 3.3.2 Experiments 45 3.3.3 Classification Methods 49 3.3.4 Experimental Results 49 3.3.5 Summary 56 Chapter 4 Master Framework for Pattern Recognition in Time Series 57 4.1 The Concept of the Proposed Framework for Pattern Recognition in Time Series 57 4.1.1 Optimal Basic Deep Learning Models for the Proposed Framework 57 4.2 Two Categories for Pattern Recognition in Time Series Data 59 4.2.1 The Proposed Deep Learning Framework for Periodic Time Series Signals 59 4.2.2 The Proposed Deep Learning Framework for Non-periodic Time Series Signals 61 4.3 Expanded Models of the Proposed Master Framework for Pattern Recogntion in Time Series 63 Chapter 5 Deep Learning Model Design Methodology for Periodic Signals using Prior Knowledge: Deep ECGNet 65 5.1 Introduction 65 5.2 Materials and Methods 67 5.2.1 Subjects and Data Acquisition 67 5.2.2 Conventional ECG Analysis Methods 72 5.2.3 The Initial Setup of the Deep Learning Architecture 75 5.2.4 The Deep ECGNet 78 5.3 Experimental Results 83 5.4 Summary 98 Chapter 6 Deep Learning Model Design Methodology for Non-periodic Time Series Signals using Optimization Techniques: Deep EEGNet 100 6.1 Introduction 100 6.2 Materials and Methods 104 6.2.1 Subjects and Data Acquisition 104 6.2.2 Conventional EEG Analysis Methods 106 6.2.3 Basic Deep Learning Units and Optimization Technique 108 6.2.4 Optimization for Deep EEGNet 109 6.2.5 Deep EEGNet Architectures using the EEG Channel Grouping Scheme 111 6.3 Experimental Results 113 6.4 Summary 124 Chapter 7 Concluding Remarks 126 7.1 Summary of Thesis and Contributions 126 7.2 Limitations of the Proposed Methods 128 7.3 Suggestions for Future Works 129 Bibliography 131 ์ดˆ ๋ก 139Docto

    Applications of non-invasive brain-computer interfaces for communication and affect recognition

    Get PDF
    Doctor of PhilosophyDepartment of Electrical and Computer EngineeringDavid E. ThompsonVarious assistive technologies are available for people with communication disorders. While these technologies are quite useful for moderate to severe movement impairments, certain progressive diseases can cause a total locked-in state (TLIS). These conditions include amyotrophic lateral sclerosis (ALS), neuromuscular disease (NMD), and several other disorders that can cause impairment between the neural pathways and the muscles. For people in a locked-in state (LIS), brain-computer interfaces (BCIs) may be the only possible solution. BCIs could help to restore communication to these people, with the help of external devices and neural recordings. The present dissertation investigates the role of latency jitter on BCIs system performance and, at the same time, the possibility of affect recognition using BCIs. BCIs that can recognize human affect are referred to as affective brain-computer interfaces (aBCIs). These aBCIs are a relatively new area of research in affective computing. Estimation of affective states can improve human-computer interaction as well as improve the care of people with severe disabilities. The present work used a publicly available dataset as well as a dataset collected at the Brain and Body Sensing Lab at K-State to assess the effectiveness of EEG recordings in recognizing affective states. This work proposed an extended classifier-based latency estimation (CBLE) method using sparse autoencoders (SAE) to investigate the role of latency jitter on BCI system performance. The recent emergence of autoencoders motivated the present work to develop an SAE based CBLE method. Here, the newly-developed SAE-based CBLE method is applied to a newly-collected dataset. Results from our data showed a significant (p < 0.001) negative correlation between BCI accuracy and estimated latency jitter. Furthermore, the SAE-based CBLE method is also able to predict BCI accuracy. In the aBCI-related investigation, this work explored the effectiveness of different features extracted from EEG to identify the affect of a user who was experiencing affective stimuli. Furthermore, this dissertation reviewed articles that used the Database for Emotion Analysis Using Physiological Signals (DEAP) (i.e., a publicly available affective database) and found that a significant number of studies did not consider the presence of the class imbalance in the dataset. Failing to consider class imbalance creates misleading results. Furthermore, ignoring class imbalance makes comparing results between studies impossible, since different datasets will have different class imbalances. Class imbalance also shifts the chance level. Hence, it is vital to consider class bias while determining if the results are above chance. This dissertation suggests the use of balanced accuracy as a performance metric and its posterior distribution for computing confidence intervals to account for the effect of class imbalance

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    Emotion Recognition with Asymmetry Features of EEG Signals

    Get PDF
    Currently the study of affective computing (AC) includes a focus on researching emotion regulation and recognition. Recent studies in this field have utilized deep learning architectures to enhance emotion recognition from EEG signals. An alternative approach to deep learning is to use feature engineering to extract relevant features to train supervised machine learning models. Current theories in the neuroscience field can guide this feature engineering process. Neuroscientists have suggested various models to clarify how emotions are processed. One of these models suggests that positive emotions are processed in the left hemisphere, while negative emotions are processed in the right hemisphere. This emotional processing model has inspired previous studies to propose asymmetrical features to predict emotions. However, none of these studies have statistically evaluated whether the inclusion of asymmetrical features could yield benefits such as increased accuracy or reduced training time. To address that direction, this research presents both statistical evaluations for emotion regulation and a comparable model for emotion recognition. The outcomes show that brain hemispheres and frequency bands participate differently in processing emotions and observed the presence of the two asymmetry emotion processing models but in different frequency ranges. Also, the results from this study imply that by using asymmetry EEG, emotion recognition approaches can use fewer features without significantly compromising performance.Master of Science in Applied Computer Scienc
    • โ€ฆ
    corecore