35 research outputs found

    Spectral Pattern Analysis of Propofol Induced Spindle Oscillations in the Presence of Auditory Stimulations

    Get PDF
    This study’s primary objective is to analyze human EEG spindle oscillations during propofol-induced anesthesia and to address possible activation sources. Such an analysis also has a secondary role of investigating the short- term spectral patterns and their functional role

    The Effect of Task Demand and Incentive on Neurophysiological and Cardiovascular Markers of Effort

    Get PDF
    According to motivational intensity theory, effort is proportional to the level of task demand provided that success is possible and successful performance is deemed worthwhile. The current study represents a simultaneous manipulation of demand (working memory load) and success importance (financial incentive) to investigate neurophysiological (EEG) and cardiovascular measures of effort. A 2 x 2 repeated-measures study was conducted where 18 participants performed a n-back task under three conditions of demand: easy (1-back), hard (4-back) and very hard (7-back). In addition, participants performed these tasks in the presence of performance-contingent financial incentive or in a no-incentive (pilot trial) condition. Three bands of EEG activity were quantified: theta (4-7Hz), lower-alpha (7.5-10Hz) and upper-alpha (10.5-13Hz). Fronto-medial activity in the theta band and activity in the upper-alpha band at frontal, central and parietal sites were sensitive to demand and indicated greatest effort when the task was challenging and success was possible. Mean systolic blood pressure and activity in the lower-alpha band at parietal sites were also sensitive to demand but also increased in the incentive condition across all levels of task demand. The results of the study largely support the predictions of motivational intensity using neurophysiological markers of effort

    Time Frequency Analysis of Neural Oscillations in Multi-Attribute Decision-Making

    Get PDF
    In our daily lives, we often make decisions that require the use of self-control, weighing trade-offs between various attributes: for example, selecting a food based on its health rather than its taste. Previous research suggests that re-weighting attributes may rely on selective attention, associated with decreased neural oscillations over posterior brain regions in the alpha (8-12 Hz) frequency range. Here, we utilized the high temporal resolution and whole-brain coverage of electroencephalography (EEG) to test this hypothesis in data collected from hungry human subjects exercising dietary self-control. Prior analysis of this data has found time-locked neural activity associated with each food’s perceived taste and health properties from approximately 400 to 650 ms after stimulus onset (Harris et al., 2013). We conducted time-frequency analyses to examine the role of alpha-band oscillations in this attribute weighting. Specifically, we predicted that there would be decreased alpha power in posterior electrodes beginning approximately 400 ms after stimulus onset for the presentation of healthy food relative to unhealthy food, reflecting shifts in selective attention. Consistent with this hypothesis, we found a significant decrease in alpha power for presentations of healthy relative to unhealthy foods. As predicted, this effect was most pronounced at posterior occipital and parietal electrodes and was significant from approximately 450 to 700 ms post-stimulus onset. Additionally, we found significant alpha-band decreases in right temporal electrodes during these times. These results extend previous attention research to multi-attribute choice, suggesting that the re-weighting of attributes can be measured neuro-computationally

    Frontal GABA Levels Change during Working Memory

    Get PDF
    Functional neuroimaging metrics are thought to reflect changes in neurotransmitter flux, but changes in neurotransmitter levels have not been demonstrated in humans during a cognitive task, and the relationship between neurotransmitter dynamics and hemodynamic activity during cognition has not yet been established. We evaluate the concentration of the major inhibitory (GABA) and excitatory (glutamate + glutamine: Glx) neurotransmitters and the cerebral perfusion at rest and during a prolonged delayed match-to-sample working memory task. Resting GABA levels in the dorsolateral prefrontal cortex correlated positively with the resting perfusion and inversely with the change in perfusion during the task. Further, only GABA increased significantly during the first working memory run and then decreased continuously across subsequent task runs. The decrease of GABA over time was paralleled by a trend towards decreased reaction times and higher task accuracy. These results demonstrate a link between neurotransmitter dynamics and hemodynamic activity during working memory, indicating that functional neuroimaging metrics depend on the balance of excitation and inhibition required for cognitive processing

    Changes in brain network activity during working memory tasks: a magnetoencephalography study.

    Get PDF
    In this study, we elucidate the changes in neural oscillatory processes that are induced by simple working memory tasks. A group of eight subjects took part in modified versions of the N-back and Sternberg working memory paradigms. Magnetoencephalography (MEG) data were recorded, and subsequently processed using beamformer based source imaging methodology. Our study shows statistically significant increases in θ oscillations during both N-back and Sternberg tasks. These oscillations were shown to originate in the medial frontal cortex, and further to scale with memory load. We have also shown that increases in θ oscillations are accompanied by decreases in β and γ band oscillations at the same spatial coordinate. These decreases were most prominent in the 20–40 Hz frequency range, although spectral analysis showed that γ band power decrease extends up to at least 80 Hz. β/γ Power decrease also scales with memory load. Whilst θ increases were predominately observed in the medial frontal cortex, β/γ decreases were associated with other brain areas, including nodes of the default mode network (for the N-back task) and areas associated with language processing (for the Sternberg task). These observations are in agreement with intracranial EEG and fMRI studies. Finally, we have shown an intimate relationship between changes in β/γ band oscillatory power at spatially separate network nodes, implying that activity in these nodes is not reflective of uni-modal task driven changes in spatially separate brain regions, but rather represents correlated network activity. The utility of MEG as a non-invasive means to measure neural oscillatory modulation has been demonstrated and future studies employing this technology have the potential to gain a better understanding of neural oscillatory processes, their relationship to functional and effective connectivity, and their correspondence to BOLD fMRI

    Information flows from hippocampus to auditory cortex during replay of verbal working memory items

    Full text link
    The maintenance of items in working memory (WM) relies on a widespread network of cortical areas and hippocampus where synchronization between electrophysiological recordings reflects functional coupling. We investigated the direction of information flow between auditory cortex and hippocampus while participants heard and then mentally replayed strings of letters in WM by activating their phonological loop. We recorded local field potentials from the hippocampus, reconstructed beamforming sources of scalp EEG, and - additionally in four participants - recorded from subdural cortical electrodes. When analyzing Granger causality, the information flow was from auditory cortex to hippocampus with a peak in the [4 8] Hz range while participants heard the letters. This flow was subsequently reversed during maintenance while participants maintained the letters in memory. The functional interaction between hippocampus and the cortex and the reversal of information flow provide a physiological basis for the encoding of memory items and their active replay during maintenance

    What is the Functional Relevance of Prefrontal Cortex Entrainment to Hippocampal Theta Rhythms?

    Get PDF
    There has been considerable interest in the importance of oscillations in the brain and in how these oscillations relate to the firing of single neurons. Recently a number of studies have shown that the spiking of individual neurons in the medial prefrontal cortex (mPFC) become entrained to the hippocampal (HPC) theta rhythm. We recently showed that theta-entrained mPFC cells lost theta-entrainment specifically on error trials even though the firing rates of these cells did not change (Hyman et al., 2010). This implied that the level of HPC theta-entrainment of mPFC units was more predictive of trial outcome than differences in firing rates and that there is more information encoded by the mPFC on working memory tasks than can be accounted for by a simple rate code. Nevertheless, the functional meaning of mPFC entrainment to HPC theta remains a mystery. It is also unclear as to whether there are any differences in the nature of the information encoded by theta-entrained and non-entrained mPFC cells. In this review we discuss mPFC entrainment to HPC theta within the context of previous results as well as provide a more detailed analysis of the Hyman et al. (2010) data set. This re-analysis revealed that theta-entrained mPFC cells selectively encoded a variety of task-relevant behaviors and stimuli while never theta-entrained mPFC cells were most strongly attuned to errors or the lack of expected rewards. In fact, these error responsive neurons were responsible for the error representations exhibited by the entire ensemble of mPFC neurons. A theta reset was also detected in the post-error period. While it is becoming increasingly evident that mPFC neurons exhibit correlates to virtually all cues and behaviors, perhaps phase-locking directs attention to the task-relevant representations required to solve a spatially based working memory task while the loss of theta-entrainment at the start of error trials may represent a shift of attention away from these representations. The subsequent theta reset following error commission, when coupled with the robust responses of never theta-entrained cells, could produce a potent error-evoked signal used to alert the rat to changes in the relationship between task-relevant cues and reward expectations

    EEG correlates of working memory performance in females

    Get PDF
    BACKGROUND: The study investigates oscillatory brain activity during working memory (WM) tasks. The tasks employed varied in two dimensions. First, they differed in complexity from average to highly demanding. Second, we used two types of tasks, which required either only retention of stimulus set or retention and manipulation of the content. We expected to reveal EEG correlates of temporary storage and central executive components of WM and to assess their contribution to individual differences. RESULTS: Generally, as compared with the retention condition, manipulation of stimuli in WM was associated with distributed suppression of alpha1 activity and with the increase of the midline theta activity. Load and task dependent decrement of beta1 power was found during task performance. Beta2 power increased with the increasing WM load and did not significantly depend on the type of the task. At the level of individual differences, we found that the high performance (HP) group was characterized by higher alpha rhythm power. The HP group demonstrated task-related increment of theta power in the left anterior area and a gradual increase of theta power at midline area. In contrast, the low performance (LP) group exhibited a drop of theta power in the most challenging condition. HP group was also characterized by stronger desynchronization of beta1 rhythm over the left posterior area in the manipulation condition. In this condition, beta2 power increased in the HP group over anterior areas, but in the LP group over posterior areas. CONCLUSIONS: WM performance is accompanied by changes in EEG in a broad frequency range from theta to higher beta bands. The most pronounced differences in oscillatory activity between individuals with high and low WM performance can be observed in the most challenging WM task
    corecore