38 research outputs found

    ECG-Based Arrhythmia Classification using Recurrent Neural Networks in Embedded Systems

    Get PDF
    Cardiac arrhythmia is one of the most important cardiovascular diseases (CVDs), causing million deaths every year. Moreover it is difficult to diagnose because it occurs intermittently and as such requires the analysis of large amount of data, collected during the daily life of patients. An important tool for CVD diagnosis is the analysis of electrocardiogram (ECG), because of its non-invasive nature and simplicity of acquisition. In this work we propose a classification algorithm for arrhythmia based on recurrent neural networks (RNNs) that operate directly on ECG data, exploring the effectiveness and efficiency of several variations of the general RNN, in particular using different types of layers implementing the network memory. We use the MIT-BIH arrhythmia database and the evaluation protocol recommended by the Association for the Advancement of Medical Instrumentation (AAMI). After designing and testing the effectiveness of the different networks, we then test its porting to an embedded platform, namely the STM32 microcontroller architecture from ST, using a specific framework to port a pre-built RNN to the embedded hardware, convert it to optimized code for the platform and evaluate its performance in terms of resource usage. Both in binary and multiclass classification, the basic RNN model outperforms the other architectures in terms of memory storage (∼117 KB), number of parameters (∼5 k) and inference time (∼150 ms), while the RNN LSTM-based achieved the best accuracy (∼90%)

    Low-dimensional Denoising Embedding Transformer for ECG Classification

    Full text link
    The transformer based model (e.g., FusingTF) has been employed recently for Electrocardiogram (ECG) signal classification. However, the high-dimensional embedding obtained via 1-D convolution and positional encoding can lead to the loss of the signal's own temporal information and a large amount of training parameters. In this paper, we propose a new method for ECG classification, called low-dimensional denoising embedding transformer (LDTF), which contains two components, i.e., low-dimensional denoising embedding (LDE) and transformer learning. In the LDE component, a low-dimensional representation of the signal is obtained in the time-frequency domain while preserving its own temporal information. And with the low dimensional embedding, the transformer learning is then used to obtain a deeper and narrower structure with fewer training parameters than that of the FusingTF. Experiments conducted on the MIT-BIH dataset demonstrates the effectiveness and the superior performance of our proposed method, as compared with state-of-the-art methods.Comment: To appear at ICASSP 202

    Advanced features of ECG mapping

    Get PDF
    Cardiovascular diseases are the leading cause of death worldwide. A great number of methods have been developed to monitor the state of the heart, each of which has its own advantages and limitations. One of the most promising method is surface mapping. To improve reliability and informativity of this method, researchers of Medical Engineering Laboratory of TPU developed nanosensors with unique metrological characteristics for non-invasive measurement of ECG signals of microvolt and nanovolt levels. The results of previous studies showed that metrological characteristics of the developed nanosensors significantly exceed those of conventional electrodes. Based on this, nanosensors used for surface ECG mapping will enable qualitative improvement of data obtained and diagnostic capabilities of this method

    Condition monitoring strategy based on spectral energy estimation and linear discriminant analysis applied to electric machines

    Get PDF
    Condition-based maintenance plays an important role to ensure the working condition and to increase the availability of the machinery. The feature calculation and feature extraction are critical signal processing that allow to obtain a high-performance characterization of the available physical magnitudes related to specific working conditions of machines. Aiming to overcome this issue, this research proposes a novel condition monitoring strategy based on the spectral energy estimation and Linear Discriminant Analysis for diagnose and identify different operating conditions in an induction motor-based electromechanical system. The proposed method involves the acquisition of vibration signals from which the frequency spectrum is computed through the Fast Fourier Transform. Subsequently, such frequency spectrum is segmented to estimate a feature matrix in terms of its spectral energy. Finally, the feature matrix is subjected to a transformation into a 2-dimentional base by means of the Linear Discriminant Analysis and the final diagnosis outcome is performed by a NN-based classifier. The proposed strategy is validated under a complete experimentally dataset acquired from a laboratory electromechanical system.Peer ReviewedPostprint (published version

    TimeCaps: Learning From Time Series Data with Capsule Networks

    Full text link
    Capsule networks excel in understanding spatial relationships in 2D data for vision related tasks. Even though they are not designed to capture 1D temporal relationships, with TimeCaps we demonstrate that given the ability, capsule networks excel in understanding temporal relationships. To this end, we generate capsules along the temporal and channel dimensions creating two temporal feature detectors which learn contrasting relationships. TimeCaps surpasses the state-of-the-art results by achieving 96.21% accuracy on identifying 13 Electrocardiogram (ECG) signal beat categories, while achieving on-par results on identifying 30 classes of short audio commands. Further, the instantiation parameters inherently learnt by the capsule networks allow us to completely parameterize 1D signals which opens various possibilities in signal processing

    Abnormal ECG Classification using Empirical Mode Decomposition and Entropy

    Get PDF
    Heart disease is one of the leading causes of death in the world. Early detection followed by therapy is one of the efforts to reduce the mortality rate of this disease. One of the leading medical instruments for diagnosing heart disorders is the electrocardiogram (ECG). The shape of the ECG signal represents normal or abnormal heart conditions. Some of the most common heart defects are atrial fibrillation and left bundle branch block. Detection or classification can be difficult if performed visually. Therefore in this study, we propose a method for the automatic classification of ECG signals. This method generally consists of feature extraction and classification. The feature extraction used is based on information theory, namely Fuzzy entropy and Shannon entropy, which is calculated on the decomposed signal. The simulated ECG signals are of three types: normal sinus rhythm, atrial fibrillation, and left bundle branch block. Support vector machine and k-Nearest Neighbor algorithms were employed for the validation performance of the proposed method. From the test results obtained, the highest accuracy is 81.1%. With specificity and sensitivity of 79.4% and 89.8%, respectively. It is hoped that this proposed method can be further developed to assist clinical diagnosis

    Computer versus cardiologist: Is a machine learning algorithm able to outperform an expert in diagnosing a phospholamban p.Arg14del mutation on the electrocardiogram?

    Get PDF
    Background Phospholamban (PLN) p.Arg14del mutation carriers are known to develop dilated and/or arrhythmogenic cardiomyopathy, and typical electrocardiographic (ECG) features have been identified for diagnosis. Machine learning is a powerful tool used in ECG analysis and has shown to outperform cardiologists. Objectives We aimed to develop machine learning and deep learning models to diagnose PLN p.Arg14del cardiomyopathy using ECGs and evaluate their accuracy compared to an expert cardiologist. Methods We included 155 adult PLN mutation carriers and 155 age- and sex-matched control subjects. Twenty-one PLN mutation carriers (13.4%) were classified as symptomatic (symptoms of heart failure or malignant ventricular arrhythmias). The data set was split into training and testing sets using 4-fold cross-validation. Multiple models were developed to discriminate between PLN mutation carriers and control subjects. For comparison, expert cardiologists classified the same data set. The best performing models were validated using an external PLN p.Arg14del mutation carrier data set from Murcia, Spain (n = 50). We applied occlusion maps to visualize the most contributing ECG regions. Results In terms of specificity, expert cardiologists (0.99) outperformed all models (range 0.53–0.81). In terms of accuracy and sensitivity, experts (0.28 and 0.64) were outperformed by all models (sensitivity range 0.65–0.81). T-wave morphology was most important for classification of PLN p.Arg14del carriers. External validation showed comparable results, with the best model outperforming experts. Conclusion This study shows that machine learning can outperform experienced cardiologists in the diagnosis of PLN p.Arg14del cardiomyopathy and suggests that the shape of the T wave is of added importance to this diagnosis

    A study on stability analysis of atrial repolarization variability using ARX model in sinus rhythm and atrial tachycardia ECGs

    Get PDF
    © 2016 Elsevier Ireland Ltd Background The interaction between the PTa and PP interval dynamics from the surface ECG is seldom explained. Mathematical modeling of these intervals is of interest in finding the relationship between the heart rate and repolarization variability. Objective The goal of this paper is to assess the bounded input bounded output (BIBO) stability in PTa interval (PTaI) dynamics using autoregressive exogenous (ARX) model and to investigate the reason for causing instability in the atrial repolarization process. Methods Twenty-five male subjects in normal sinus rhythm (NSR) and ten male subjects experiencing atrial tachycardia (AT) were included in this study. Five minute long, modified limb lead (MLL) ECGs were recorded with an EDAN SE-1010 PC ECG system. The number of minute ECGs with unstable segments (N us ) and the frequency of premature activation (PA) (i.e. atrial activation) were counted for each ECG recording and compared between AT and NSR subjects. Results The instability in PTaI dynamics was quantified by measuring the numbers of unstable segments in ECG data for each subject. The unstable segments in the PTaI dynamics were associated with the frequency of PA. The presence of PA is not the only factor causing the instability in PTaI dynamics in NSR subjects, and it is found that the cause of instability is mainly due to the heart rate variability (HRV). C onclusion The ARX model showed better prediction of PTa interval dynamics in both groups. The frequency of PA is significantly higher in AT patients than NSR subjects. A more complex model is needed to better identify and characterize healthy heart dynamics

    Heartbeat type classification with optimized feature vectors

    Get PDF
    In this study, a feature vector optimization based method has been proposed for classification of the heartbeat types. Electrocardiogram (ECG) signals of five different heartbeat type were used for this aim. Firstly, wavelet transform (WT) method were applied on these ECG signals to generate all feature vectors. Optimizing these feature vectors is provided by performing particle swarm optimization (PSO), genetic search, best first, greedy stepwise and multi objective evoluationary algorithms on these vectors. These optimized feature vectors are later applied to the classifier inputs for performance evaluation. A comprehensive assessment was presented for the determination of optimized feature vectors for ECG signals and best-performing classifier for these optimized feature vectors was determined.</jats:p

    BEAT CLASSIFICATION USING HYBRID WAVELET TRANSFORM BASED FEATURES AND SUPERVISED LEARNING APPROACH

    Get PDF
    This paper describes an automatic heartbeat recognition based on QRS detection, feature extraction and classification. In this paper five different type of ECG beats of MIT BIH arrhythmia database are automatically classified. The proposed method involves QRS complex detection based on the differences and approximation derivation, inversion and threshold method. The computation of combined Discrete Wavelet Transform (DWT) and Dual Tree Complex Wavelet Transform (DTCWT) of hybrid features coefficients are obtained from the QRS segmented beat from ECG signal which are then used as a feature vector. Then the feature vectors are given to Extreme Learning Machine (ELM) and k- Nearest Neighbor (kNN) classifier for automatic classification of heartbeat. The performance of the proposed system is measured by sensitivity, specificity and accuracy measures
    corecore