13 research outputs found

    Dynamics of the urban lightscape

    Get PDF
    The manifest importance of cities and the advent of novel data about them are stimulating interest in both basic and applied “urban science” (Bettencourt et al., 2007 [4]; Bettencourt, 2013 [3]). A central task in this emerging field is to document and understand the “pulse of the city” in its diverse manifestations (e.g., in mobility, energy use, communications, economics) both to define the normal state against which anomalies can be judged and to understand how macroscopic city observables emerge from the aggregate behavior of many individuals (Louail, 2013 [9]; Ferreira et al., 2013 [6]). Here we quantify the dynamics of an urban lightscape through the novel modality of persistent synoptic observations from an urban vantage point. Established astronomical techniques are applied to visible light images captured at 0.1 Hz to extract and analyze the light curves of 4147 sources in an urban scene over a period of 3 weeks. We find that both residential and commercial sources in our scene exhibit recurring aggregate patterns, while the individual sources decorrelate by an average of one hour after only one night. These highly granular, stand-off observations of aggregate human behavior – which do not require surveys, in situ monitors, or other intrusive methodologies – have a direct relationship to average and dynamic energy usage, lighting technology, and the impacts of light pollution. They may also be used indirectly to address questions in urban operations as well as behavioral and health science. Our methodology can be extended to other remote sensing modalities and, when combined with correlative data, can yield new insights into cities and their inhabitants

    Multiple Angle Observations Would Benefit Visible Band Remote Sensing Using Night Lights

    Get PDF
    The spatial and angular emission patterns of artificial and natural light emitted, scattered, and reflected from the Earth at night are far more complex than those for scattered and reflected solar radiation during daytime. In this commentary, we use examples to show that there is additional information contained in the angular distribution of emitted light. We argue that this information could be used to improve existing remote sensing retrievals based on night lights, and in some cases could make entirely new remote sensing analyses possible. This work will be challenging, so we hope this article will encourage researchers and funding agencies to pursue further study of how multi‐angle views can be analyzed or acquired

    The nature of the diffuse light near cities detected in nighttime satellite imagery

    Get PDF
    Open Access.-- This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Diffuse glow has been observed around brightly lit cities in nighttime satellite imagery since at least the first publication of large scale maps in the late 1990s. In the literature, this has often been assumed to be an error related to the sensor, and referred to as "blooming", presumably in relation to the effect that can occur when using a CCD to photograph a bright light source. Here we show that the effect seen on the DMSP/OLS, SNPP/VIIRS-DNB and ISS is not only instrumental, but in fact represents a real detection of light scattered by the atmosphere. Data from the Universidad Complutense Madrid sky brightness survey are compared to nighttime imagery from multiple sensors with differing spatial resolutions, and found to be strongly correlated. These results suggest that it should be possible for a future space-based imaging radiometer to monitor changes in the diffuse artificial skyglow of cities.© 2020, The Author(s).Tis work was supported by the EMISSI@N project (NERC grant NE/P01156X/1), COST (European Cooperation in Science and Technology) Action ES1204 LoNNe (Loss of the Night Network), the ORISON project (H2020- INFRASUPP-2015-2), the Cities at Night project, the European Union’s Horizon 2020 research and innovation programme under grant agreement no 689443 via project GEOEssential, FPU grant from the Ministerio de Ciencia y Tecnologia and F. Sánchez de Miguel. We acknowledge the support of the Spanish Network for Light Pollution Studies (MINECO AYA2011-15808-E) and also from STARS4ALL, a project funded by the European Union H2020-ICT-2015-688135. This work has been partially funded by the Spanish MICINN (AYA2016- 75808-R), and by the Madrid Regional Government through the TEC2SPACE-CM Project (P2018/NMT-4291). Te ISS images are courtesy of the Earth Science and Remote Sensing Unit, NASA Johnson Space Center. CCMK acknowledges the funding received through the European Union’s Horizon 2020 research and innovation programme ERA-PLANET, grant agreement no. 689443, via the GEOEssential project, and funding from the Helmholtz Association Initiative and Networking Fund under grant ERC-RA-0031. We thank J. Coesfeld for producing Fig. 1. We thank the organizers of the LPTMM 2013 conference for providing a stimulating forum in which we discussed the nature of the difuse light around cities in detail. Tanks to Emma R. Howard for her help in the editing of this article.Peer reviewe

    A network of magnetometers for multi-scale urban science and informatics

    Get PDF
    The magnetic signature of an urban environment is investigated using a geographically distributed network of fluxgate magnetometers deployed in and around Berkeley, California. The system hardware and software are described and initial operations of the network are reported. The sensors measure vector magnetic fields at a 3960&thinsp;Hz sample rate and are sensitive to 0.1&thinsp;nT/Hz. Data from individual stations are synchronized to ±120&thinsp;µs using global positioning system (GPS) and computer system clocks and automatically uploaded to a central server. We present the initial observations of the network and preliminary efforts to correlate sensors. A wavelet analysis is used to study observations of the urban magnetic field over a wide range of temporal scales. The Bay Area Rapid Transit (BART) is identified as the dominant signal in our observations, exhibiting aspects of both broadband noise and coherent periodic features. Significant differences are observed in both day–night and weekend–weekday signatures. A superposed epoch analysis is used to study and extract the BART signal.</p

    Commentary: Multiple Angle Observations Would Benefit Visible Band Remote Sensing using Night Lights

    Get PDF
    The spatial and angular emission patterns of artificial and natural light emitted, scattered, and reflected from the Earth at night are far more complex than those for scattered and reflected solar radiation during daytime. In this commentary, we use examples to show that there is additional information contained in the angular distribution of emitted light. We argue that this information could be used to improve existing remote sensing retrievals based on night lights, and in some cases could make entirely new remote sensing analyses possible. This work will be challenging, so we hope this article will encourage researchers and funding agencies to pursue further study of how multi-angle views can be analyzed or acquired

    The nature of the diffuse light near cities detected in nighttime satellite imagery

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordDiffuse glow has been observed around brightly lit cities in nighttime satellite imagery since at least the first publication of large scale maps in the late 1990s. In the literature, this has often been assumed to be an error related to the sensor, and referred to as ”blooming”, presumably in relation to the effect that can occur when using a CCD to photograph a bright light source. Here we show that the effect seen on the DMSP/OLS, SNPP/VIIRS-DNB and ISS is not only instrumental, but in fact represents a real detection of light scattered by the atmosphere. Data from the Universidad Complutense Madrid sky brightness survey are compared to nighttime imagery from multiple sensors with differing spatial resolutions, and found to be strongly correlated. These results suggest that it should be possible for a future space-based imaging radiometer to monitor changes in the diffuse artificial skyglow of cities.Natural Environment Research Council (NERC)COST (European Cooperation in Science and Technology)European Union Horizon 2020Ministerio de Ciencia y TecnologiaHelmholtz Association Initiative and Networking Fun

    The Nachtlichter app: a citizen science tool for documenting outdoor light sources in public space

    Get PDF
    The relationship between satellite based measurements of city radiance at night and the numbers and types of physical lights installed on the ground is not well understood. Here we present the "Nachtlichter app", which was developed to enable citizen scientists to classify and count light sources along street segments over large spatial scales. The project and app were co-designed: citizen scientists played key roles in the app development, testing, and recruitment, as well as in analysis of the data. In addition to describing the app itself and the data format, we provide a general overview of the project, including training materials, data cleaning, and the result of some basic data consistency checks
    corecore