
Abstract The spatial and angular emission patterns of artificial and natural light emitted, scattered, and 
reflected from the Earth at night are far more complex than those for scattered and reflected solar radiation 
during daytime. In this commentary, we use examples to show that there is additional information contained 
in the angular distribution of emitted light. We argue that this information could be used to improve existing 
remote sensing retrievals based on night lights, and in some cases could make entirely new remote sensing 
analyses possible. This work will be challenging, so we hope this article will encourage researchers and funding 
agencies to pursue further study of how multi-angle views can be analyzed or acquired.

Plain Language Summary When satellites take images of Earth, they usually do so from directly 
above (or as close to it as is reasonably possible). In this comment, we show that for studies that use imagery 
of Earth at night, it may be beneficial to take several images of the same area at different angles within a short 
period of time. For example, different types of lights shine in different directions (street lights usually shine 
down, while video advertisements shine sideways), and tall buildings can block the view of a street from some 
viewing angles. Additionally, since views from different directions pass through different amounts of air, 
imagery at multiple angles could be used to obtain information about Earth's atmosphere, and measure artificial 
and natural night sky brightness. The main point of the paper is to encourage researchers, funding agencies, and 
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Key Points:
•  Remote sensing using the visible band 

at night is more complex than during 
the daytime, especially due to the 
variety of artificial lights

•  Views of night lights intentionally 
taken from multiple angles provide 
several advantages over near-nadir or 
circumstantial view geometries

•  Night lights remote sensing would 
benefit from greater consideration of 
the role viewing geometry plays in the 
observed radiance
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1. Introduction
Imagery of the Earth at night in the visible band provides unique data for remote sensing, because of the intrinsic 
connection between artificial light and human activity (Levin et al., 2020). The light field associated with Earth's 
night is, however, far more complex than that for the daytime. For example, the radiance of a night lights scene 
often changes by up to five or six orders of magnitude over a distance of the few centimeters separating an emitter 
from an unlit area (Figure 1). In addition, while the physics of light propagation in the atmosphere is identical 
during day and night, the light sources are not. Instead of the (comparatively) simple angular distribution of 
reflected sunlight, the hundreds of millions to billions (Zissis et al., 2021; Zissis & Kitsinelis, 2009) of artificial 
lights of Earth that emit some or all of their light outdoors have unique angular emission distribution functions, 
each of which vary over time (Dobler et al., 2015; Meier, 2018; Li et al., 2020). While this complication presents 
a challenge for working with night lights, it also provides an opportunity: night lights imagery acquired at multi-
ple angles contains information that could potentially be extracted via remote sensing. Over the past 2 years, our 
author group has discussed these possibilities in a series of online meetings, and this commentary summarizes 
these discussions. We highlight the potential benefits of multi-angle night lights imagery to the remote sensing 
community, but do not propose a specific analysis or instrument, as further research will be necessary to make 
them possible.

Existing night lights imagery (e.g., the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB), 
Elvidge et al., 2013) have often been acquired at multiple angles. However, this has in general been a feature 
related to the acquisition, not an intentional design decision, and in the case of DNB this results in an unfortu-
nate correlation between overpass time and imaging angle (Tong et al., 2020). In this commentary, we consider 
the possibilities that intentional multi-angle views acquired over a short time period might provide. This could 
be from a future satellite instrument similar to the Multi-angle Imaging SpectroRadiometer, which views nine 
different angles during its (daytime) overpass (Diner et al., 1998). But it could just as well come from exist-
ing aerial platforms, including airplanes (Kyba et al., 2013), helicopters (Wuchterl & Reithofer, 2017), strato-
spheric balloons (Walczak et al., 2021), or drones, which are especially useful in the case of oblique and limb 
views (Bouroussis & Topalis, 2020; Li et al., 2020). We have identified three areas where multi-angle views will 
provide particular benefits: first, remote sensing of atmospheric and Earth surface properties, second, spatial 
analyses using night lights, and third, evaluations of the properties of artificial lights, and their environmental 
impacts. We present ideas of what might be accomplished with idealized multi-angle night lights sensors; turning 
these ideas into operational retrievals will certainly be challenging. We hope that our commentary will provide 
motivation and justification for acquiring new data and attempting new analyses.

2. Remote Sensing of Atmospheric and Earth Surface Properties
As a first example of how multi-angle views contain additional information that can be extracted through remote 
sensing, consider the scattering of artificial light by atmospheric aerosols (Figure 2). The figure depicts obser-
vations of an unlit space located 2 km away from a single bright artificial light, viewed from different angles. 
Provided the source is bright enough, a sensor can detect light scattered by the atmosphere above the level of 
natural background (de Miguel et al., 2020; Wang et al., 2021). However, the radiance of scattered light depends 
on the viewing path, and here is larger when the path passes through the atmosphere above the source (Figures 2a 
and 2d).

Multi-angle observations of both a light source itself and nearby unlit areas can therefore provide information 
about extinction, bulk aerosol optical depth, the scattering phase function, aerosol particle size number distri-
bution in the air column (see Supplement and Kocifaj & Bará, 2020; Kocifaj & Bará, 2022), complementing 
observations of aerosol properties during day. Future night lights satellites could also remotely sense aerosol 
properties in unlit areas using scattered moonlight, which is especially advantageous in arctic areas during polar 
night. While some preliminary work has begun in this area (Cavazzani et al., 2020; Wang et al., 2016; Zhang 
et al., 2019; Zhou et al., 2021), much more theoretical and experimental work is needed.

space agencies to think about what new possibilities could be achieved in the future with views of night lights at 
different angles.
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Reflected lunar light can also be used to estimate the bi-directional reflectance distribution function (BRDF) at 
high latitudes during polar night (Li et al., 2021). This data could help fill in gaps in daytime BRDF estimation 
in cloudy areas, but it is especially useful as a source of BRDF information at middle latitudes during winter, and 
in arctic areas during the polar night. Such data would improve snow retrievals and the discrimination of snow 
and clouds. Presently, daytime observations of BRDF are used to correct night images that include moonlight 
(Román et al., 2018). This application would be improved with multi-angle observations of reflected moonlight, 
and this would have two knock-on advantages for remote sensing using artificial light. First, improved moonlight 

Figure 1. Aerial photo taken over Berlin on 15 March 2012. The dynamic range of night scenes is extremely large, ranging 
from diffuse reflection of starlight and skyglow from unlit surfaces (which appear black here due to underexposure), to direct 
views of the radiant elements of luminaires (e.g., the overexposed bright point).

Figure 2. Schematic hypothetical views of an unlit area located 2 km from a light source. In each panel, the white arrow shows the direct light path from the emitter to 
the sensor. The top panels (a–c) are for a point source, the bottom panels (d–f) are for upward Lambertian emission. The colors indicate the weighted scattering density 
into the line of sight within the vertical plane that includes the location of the source and observer. The black histograms show the contribution to the detected radiance 
as a function of the distance along the viewing path. Model details are provided in the supplement.
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correction (Miller & Turner, 2009) would improve the stability (i.e., reduce the noise) of corrected imagery. 
Second, departures from the expected lunar signal often indicate artificial light, so the effective sensitivity for 
observing artificial light in snowy regions could be increased over what is currently possible.

A major opportunity in multi-angle satellite views is that they can exhibit parallax displacement relative to the 
reference ellipsoid. The magnitude of this displacement depends on the viewing geometry and the object's height, 
which means that it is possible to remotely sense the height of an emitting (or scattering) object. One possible use 
of this phenomenon is remotely sensing the altitude and motion (i.e., horizontal phase speed) of gravity waves, 
which play a major role in energy transfer in the atmosphere, and therefore impact weather and climate. The 
modulation of nightglow by gravity waves at elevations near the mesopause (about 87–90 km) is detectable on 
moon-free nights in night imagery (Miller et al., 2013, 2015). Near simultaneously acquired multi-angle obser-
vations of nightglow would therefore provide a great advance over the currently available single angle views in 
characterizing the phase speed and associated energy/momentum properties of these waves.

3. Spatial Analyses Using Night Lights
Information from parallax observations is also useful for light sources located closer to the Earth's surface. For 
objects located on or close to Earth's surface (e.g., illuminated streets), the combination of multi-angle views and 
an elevation database would allow more precise geolocation, resulting in less movement of permanent features 
from one observation to the next, and therefore more stable time series (see e.g., Coesfeld et al., 2018). In areas 
with considerable vertical relief, multi-angle views would provide improved position detection for bright natural 
sources like fires and lava flows. This may benefit monitoring and fighting of wildfires, which are generally less 
active at night (and best detected by or together with the visual band Elvidge et al., 2019; Wang et al., 2020).

Multi-angle night lights views can also contribute information to land use and land cover analyses. For example, 
the angular distribution of artificial light reflected from the street surface is dramatically different from that for 
light emitted from vertical surfaces (e.g., building and signs). Multi-angle views could therefore help differentiate 
commercial from residential buildings, especially at high resolution in city centers. In addition, a more consist-
ent picture of urban light emissions could be obtained with multiple views, because the strong variations in the 
angular distribution of light emissions can be directly accounted for (Elvidge et al., 2020; Li et al., 2019; Solbrig 
et al., 2020; Tan et al., 2022; Tong et al., 2020). For land cover analyses, it is helpful when BRDF information 
is obtained in a single overpass, rather than over several days of observations at different accidental angles. This 
avoids the issue of observing through different atmospheres, and under different conditions (e.g., moonlight, 
snow melting, or vegetation phenology). A day/night band instrument with multiple angle views might therefore 
be of considerable interest during the spring leaf out, when BRDF changes rapidly.

Finally, consider detection of boats (Duan et al., 2019; Elvidge et al., 2018). This application is most difficult 
on moonlit nights, especially in the area near the lunar specular reflection (Elvidge et al., 2015). Multi-angle 
views would therefore allow better detection of boats on moonlit nights, as the lunar reflection only affects some 
observing angles. In addition, in areas with frequent broken cloud cover, multi-angle views increase the chance 
that at least one of the observation angles will have a clear view of the surface (Gao et al., 2021).

4. Evaluating Impact and Properties of Artificial Lights
In some cases, researchers are interested in obtaining information about the sources of artificial lights themselves, 
or using night lights data for studying environmental impact. For example, while we know that total global 
artificial light emissions are increasing (Kyba et al., 2017), it is unclear which lighting applications are respon-
sible for the growth, as the relative fraction of light emissions from different types of sources is not well known 
(Bará et al., 2018; C. Kyba et al., 2021). Multi-angle imagery contains information about the light types, since 
different types have different upward angular radiance distributions (Figure S1 in Supporting Information S1). 
This complements multi-spectral imagery, which is also important in this context (De Meester & Storch, 2020; 
Elvidge et al., 2007; Sánchez de Miguel et al., 2019). Furthermore, since lighting practice varies at both conti-
nental (Falchi et al., 2019) and local (C. Kyba et al., 2021) scale, better understanding of lighting character based 
on multi-angle views stands to benefit all of the remote sensing applications based on night lights, such as esti-
mating population or GDP (Gibson et al., 2020). Given the varied temporal practices in lighting, interpretation 
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of multi-angle views assembled in a short time span over a single overpass is far more straightforward than is 
currently the case (i.e., via different viewing angles obtained on different dates and times).

The 3D structure of artificially lit areas has a major impact on observations of artificial lights (Figures S2–S3 
in Supporting Information S1), as objects can partially or entirely block the view of a light source or surface 
reflection from above (Coesfeld et al., 2018; Levin et al., 2020; Tan et al., 2022; Wang et al., 2021). Geographic 
variations in the urban structure (e.g., height of buildings and width of streets) mean that the blocking effect 
varies within cities and between countries and continents (Elvidge et al., 2020). Similarly, leaf area cover changes 
often result in seasonal effects in blocking (and therefore affect time series), and the presence and heights of trees 
(relative to light sources) differs on small geographic scales. Additional information such as 3D models could in 
principle be used to account for this blocking, reducing the variability in night lights imagery. Multi-angle obser-
vations would be critical for verifying that such corrections work properly.

Drones are of particular use in analyses directly related to artificial lights themselves. They can operate on cloudy 
nights, and provide multi-angle views with much higher resolution than is possible from space (including in the 
horizontal direction), which makes them ideal for quantification of the light field in 3D space (Bouroussis & 
Topalis, 2020). One example where this is likely helpful is in the study of ecological light pollution (Longcore 
& Rich, 2004). Animals generally do not view the world in nadir view, but rather look forward and to the side 
(Vandersteen et al., 2020; Van Doren et al., 2017). Information about how lights appear in the forward view is 
therefore important for understanding animal attraction. Similarly, if there are epidemiological impacts of light 
shining into bedrooms (e.g., Gabinet & Portnov, 2021), then information about horizontal emissions is more rele-
vant than emissions toward zenith. This is an area where citizen science could be of use, as people can observe 
light emission toward multiple azimuth and elevation angles directly from their homes.

Our final example of a field that would benefit from multi-angle views is the study of artificial night sky bright-
ness (skyglow, Falchi et  al.,  2016), which is a form of pollution with both cultural and ecological impacts 
(Gallaway, 2010; Torres et al., 2020). The angular distribution of light escaping above obstacles is one of the most 
critical parameters in skyglow simulation (Aubé, 2015), because the path length through the atmosphere (and 
therefore the scattering probability) vary extraordinarily with emission angle (Cinzano et al., 2000; Luginbuhl 
et al., 2009). Existing skyglow models have used estimated factors for blocking (Aubé & Simoneau, 2018), or 
inferred it indirectly from observations (Falchi et al., 2016; Kocifaj et al., 2019). However, these methods do not 
yet correctly account for the geographic variability in obstacle properties (see e.g., Espey, 2021). Direct meas-
urement of the upward light emission using multi-angle views is therefore critically important for the progress 
of this field, and cannot wait for future satellites. Due to the decrease in emissions over the course of the night, 
multi-angle views on short time scales from satellites and especially drones (e.g., Li et al., 2020) may be prefer-
able to the longer timescales of airplane-based surveys (Kyba et al., 2013). Finally, if a sensor has multi-angle 
capabilities combined with high resolution and high sensitivity, then the “light dome” of a city can be directly 
observed by viewing unlit areas with low reflectance, such as rivers and parks (as in Figure 2 and de Miguel 
et al., 2020).

5. Conclusion
The study of night lights is a fascinating multidisciplinary topic, with major societal relevance. Artificial light 
emissions are both a form of pollution and source of information, and have deep intrinsic connections to human 
activity and energy consumption. Night lights are also continuously changing with the development of new 
technologies and environmental policy (such as the city of Pittsburgh's recent adoption of a Dark-Sky ordinance 
Carter, 2021). Our examples show that intentional acquisition of multi-angle views of night lights on short time 
scales could provide new information compared to existing night lights datasets, which would benefit numerous 
fields. Developing successful retrievals based on multi-angle views will require considerably more theoretical 
and experimental work. Ideally, multi-angle observations will not be undertaken on their own, but will rather 
contribute with other observations toward a deeper understanding of Earth's radiation field at night. For example, 
remotely sensed nighttime aerosol and surface properties could be re-used to sharpen night lights imagery by 
correcting for aerosols (Bu et al., 2019) and moonlight.

We hope that this commentary encourages researchers and funding agencies to consider how multi-angle views 
from existing platforms can be analyzed (or acquired). If the benefits are found to be sufficient, this could justify 
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the development of future night lights satellites that perform intentional multi-angle acquisitions over short time 
scales.

Data Availability Statement
Figure 2 was produced using proprietary software described in Kolláth et al., 2021, which is not currently availa-
ble but is planned to be openly released in the future. The image is meant as an example schematic, not a scientific 
result, and as such could be recreated by any radiative transfer algorithm.
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