86,938 research outputs found

    Neural Distributed Autoassociative Memories: A Survey

    Full text link
    Introduction. Neural network models of autoassociative, distributed memory allow storage and retrieval of many items (vectors) where the number of stored items can exceed the vector dimension (the number of neurons in the network). This opens the possibility of a sublinear time search (in the number of stored items) for approximate nearest neighbors among vectors of high dimension. The purpose of this paper is to review models of autoassociative, distributed memory that can be naturally implemented by neural networks (mainly with local learning rules and iterative dynamics based on information locally available to neurons). Scope. The survey is focused mainly on the networks of Hopfield, Willshaw and Potts, that have connections between pairs of neurons and operate on sparse binary vectors. We discuss not only autoassociative memory, but also the generalization properties of these networks. We also consider neural networks with higher-order connections and networks with a bipartite graph structure for non-binary data with linear constraints. Conclusions. In conclusion we discuss the relations to similarity search, advantages and drawbacks of these techniques, and topics for further research. An interesting and still not completely resolved question is whether neural autoassociative memories can search for approximate nearest neighbors faster than other index structures for similarity search, in particular for the case of very high dimensional vectors.Comment: 31 page

    Associative memory on a small-world neural network

    Full text link
    We study a model of associative memory based on a neural network with small-world structure. The efficacy of the network to retrieve one of the stored patterns exhibits a phase transition at a finite value of the disorder. The more ordered networks are unable to recover the patterns, and are always attracted to mixture states. Besides, for a range of the number of stored patterns, the efficacy has a maximum at an intermediate value of the disorder. We also give a statistical characterization of the attractors for all values of the disorder of the network.Comment: 5 pages, 4 figures (eps

    The chronotron: a neuron that learns to fire temporally-precise spike patterns

    Get PDF
    In many cases, neurons process information carried by the precise timing of spikes. Here we show how neurons can learn to generate specific temporally-precise output spikes in response to input spike patterns, thus processing and memorizing information that is fully temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that is analytically-derived and highly efficient, and one that has a high degree of biological plausibility. We show how chronotrons can learn to classify their inputs and we study their memory capacity

    On the Inability of Markov Models to Capture Criticality in Human Mobility

    Get PDF
    We examine the non-Markovian nature of human mobility by exposing the inability of Markov models to capture criticality in human mobility. In particular, the assumed Markovian nature of mobility was used to establish a theoretical upper bound on the predictability of human mobility (expressed as a minimum error probability limit), based on temporally correlated entropy. Since its inception, this bound has been widely used and empirically validated using Markov chains. We show that recurrent-neural architectures can achieve significantly higher predictability, surpassing this widely used upper bound. In order to explain this anomaly, we shed light on several underlying assumptions in previous research works that has resulted in this bias. By evaluating the mobility predictability on real-world datasets, we show that human mobility exhibits scale-invariant long-range correlations, bearing similarity to a power-law decay. This is in contrast to the initial assumption that human mobility follows an exponential decay. This assumption of exponential decay coupled with Lempel-Ziv compression in computing Fano's inequality has led to an inaccurate estimation of the predictability upper bound. We show that this approach inflates the entropy, consequently lowering the upper bound on human mobility predictability. We finally highlight that this approach tends to overlook long-range correlations in human mobility. This explains why recurrent-neural architectures that are designed to handle long-range structural correlations surpass the previously computed upper bound on mobility predictability

    Model-free reconstruction of neuronal network connectivity from calcium imaging signals

    Get PDF
    A systematic assessment of global neural network connectivity through direct electrophysiological assays has remained technically unfeasible even in dissociated neuronal cultures. We introduce an improved algorithmic approach based on Transfer Entropy to reconstruct approximations to network structural connectivities from network activity monitored through calcium fluorescence imaging. Based on information theory, our method requires no prior assumptions on the statistics of neuronal firing and neuronal connections. The performance of our algorithm is benchmarked on surrogate time-series of calcium fluorescence generated by the simulated dynamics of a network with known ground-truth topology. We find that the effective network topology revealed by Transfer Entropy depends qualitatively on the time-dependent dynamic state of the network (e.g., bursting or non-bursting). We thus demonstrate how conditioning with respect to the global mean activity improves the performance of our method. [...] Compared to other reconstruction strategies such as cross-correlation or Granger Causality methods, our method based on improved Transfer Entropy is remarkably more accurate. In particular, it provides a good reconstruction of the network clustering coefficient, allowing to discriminate between weakly or strongly clustered topologies, whereas on the other hand an approach based on cross-correlations would invariantly detect artificially high levels of clustering. Finally, we present the applicability of our method to real recordings of in vitro cortical cultures. We demonstrate that these networks are characterized by an elevated level of clustering compared to a random graph (although not extreme) and by a markedly non-local connectivity.Comment: 54 pages, 8 figures (+9 supplementary figures), 1 table; submitted for publicatio

    Supervised Learning in Multilayer Spiking Neural Networks

    Get PDF
    The current article introduces a supervised learning algorithm for multilayer spiking neural networks. The algorithm presented here overcomes some limitations of existing learning algorithms as it can be applied to neurons firing multiple spikes and it can in principle be applied to any linearisable neuron model. The algorithm is applied successfully to various benchmarks, such as the XOR problem and the Iris data set, as well as complex classifications problems. The simulations also show the flexibility of this supervised learning algorithm which permits different encodings of the spike timing patterns, including precise spike trains encoding.Comment: 38 pages, 4 figure

    Statistical Physics and Representations in Real and Artificial Neural Networks

    Full text link
    This document presents the material of two lectures on statistical physics and neural representations, delivered by one of us (R.M.) at the Fundamental Problems in Statistical Physics XIV summer school in July 2017. In a first part, we consider the neural representations of space (maps) in the hippocampus. We introduce an extension of the Hopfield model, able to store multiple spatial maps as continuous, finite-dimensional attractors. The phase diagram and dynamical properties of the model are analyzed. We then show how spatial representations can be dynamically decoded using an effective Ising model capturing the correlation structure in the neural data, and compare applications to data obtained from hippocampal multi-electrode recordings and by (sub)sampling our attractor model. In a second part, we focus on the problem of learning data representations in machine learning, in particular with artificial neural networks. We start by introducing data representations through some illustrations. We then analyze two important algorithms, Principal Component Analysis and Restricted Boltzmann Machines, with tools from statistical physics
    • …
    corecore