886 research outputs found

    Fast numerical integration of relaxation oscillator networks based on singular limit solutions

    Get PDF

    A Survey on Reservoir Computing and its Interdisciplinary Applications Beyond Traditional Machine Learning

    Full text link
    Reservoir computing (RC), first applied to temporal signal processing, is a recurrent neural network in which neurons are randomly connected. Once initialized, the connection strengths remain unchanged. Such a simple structure turns RC into a non-linear dynamical system that maps low-dimensional inputs into a high-dimensional space. The model's rich dynamics, linear separability, and memory capacity then enable a simple linear readout to generate adequate responses for various applications. RC spans areas far beyond machine learning, since it has been shown that the complex dynamics can be realized in various physical hardware implementations and biological devices. This yields greater flexibility and shorter computation time. Moreover, the neuronal responses triggered by the model's dynamics shed light on understanding brain mechanisms that also exploit similar dynamical processes. While the literature on RC is vast and fragmented, here we conduct a unified review of RC's recent developments from machine learning to physics, biology, and neuroscience. We first review the early RC models, and then survey the state-of-the-art models and their applications. We further introduce studies on modeling the brain's mechanisms by RC. Finally, we offer new perspectives on RC development, including reservoir design, coding frameworks unification, physical RC implementations, and interaction between RC, cognitive neuroscience and evolution.Comment: 51 pages, 19 figures, IEEE Acces

    Effect of Distributed Delays in Systems of Coupled Phase Oscillators

    Get PDF
    Communication delays are common in many complex systems. It has been shown that these delays cannot be neglected when they are long enough compared to other timescales in the system. In systems of coupled phase oscillators discrete delays in the coupling give rise to effects such as multistability of steady states. However, variability in the communication times inherent to many processes suggests that the description with discrete delays maybe insufficient to capture all effects of delays. An interesting example of the effects of communication delays is found during embryonic development of vertebrates. A clock based on biochemical reactions inside cells provides the periodicity for the successive and robust formation of somites, the embryonic precursors of vertebrae, ribs and some skeletal muscle. Experiments show that these cellular clocks communicate in order to synchronize their behavior. However, in cellular systems, fluctuations and stochastic processes introduce a variability in the communication times. Here we account for such variability by considering the effects of distributed delays. Our approach takes into account entire intervals of past states, and weights them according to a delay distribution. We find that the stability of the fully synchronized steady state with zero phase lag does not depend on the shape of the delay distribution, but the dynamics when responding to small perturbations about this steady state do. Depending on the mean of the delay distribution, a change in its shape can enhance or reduce the ability of these systems to respond to small perturbations about the phase-locked steady state, as compared to a discrete delay with a value equal to this mean. For synchronized steady states with non-zero phase lag we find that the stability of the steady state can be altered by changing the shape of the delay distribution. We conclude that the response to a perturbation in systems of phase oscillators coupled with discrete delays has a sharper functional dependence on the mean delay than in systems with distributed delays in the coupling. The strong dependence of the coupling on the mean delay time is partially averaged out by distributed delays that take into account intervals of the past.:Abstract i Acknowledgement iii I. INTRODUCTION 1. Coupled Phase Oscillators Enter the Stage 5 1.1. Adjusting rhythms – synchronization . . . . . . . . . . . . . . . . . . 5 1.2. Historical remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.3. Reducing variables – phase models . . . . . . . . . . . . . . . . . . . . 9 1.4. The Kuramoto order parameter . . . . . . . . . . . . . . . . . . . . . . 10 1.5. Who talks to whom – coupling topologies . . . . . . . . . . . . . . . . 12 2. Coupled Phase Oscillators with Delay in the Coupling 15 2.1. Communication needs time – coupling delays . . . . . . . . . . . . . . 15 2.1.1. Discrete delays consider one past time . . . . . . . . . . . . . . 16 2.1.2. Distributed delays consider multiple past times . . . . . . . . 17 2.2. Coupled phase oscillators with discrete delay . . . . . . . . . . . . . . 18 2.2.1. Phase locked steady states with no phase lags . . . . . . . . . 18 2.2.2. m-twist solutions: phase-locked steady states with phase lags 21 3. The Vertebrate Segmentation Clock – What Provides the Rhythm? 25 3.1. The clock and wavefront mechanism . . . . . . . . . . . . . . . . . . . 26 3.2. Cyclic gene expression on the cellular and the tissue level . . . . . . 27 3.3. Coupling by Delta-Notch signalling . . . . . . . . . . . . . . . . . . . . 29 3.4. The Delayed Coupling Theory . . . . . . . . . . . . . . . . . . . . . . . 30 3.5. Discrete delay is an approximation – is it sufficient? . . . . . . . . . 32 4. Outline of the Thesis 33 II. DISTRIBUTED DELAYS 5. Setting the Stage for Distributed Delays 37 5.1. Model equations with distributed delays . . . . . . . . . . . . . . . . . 37 5.2. How we include distributed delays . . . . . . . . . . . . . . . . . . . . 38 5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6. The Phase-Locked Steady State Solution 41 6.1. Global frequency of phase-locked steady states . . . . . . . . . . . . . 41 6.2. Linear stability of the steady state . . . . . . . . . . . . . . . . . . . . 42 6.3. Linear dynamics of the perturbation – the characteristic equation . 43 6.4. Summary and application to the Delayed Coupling Theory . . . . . . 50 7. Dynamics Close to the Phase-Locked Steady State 53 7.1. The response to small perturbations . . . . . . . . . . . . . . . . . . . 53 7.2. Relation between order parameter and perturbation modes . . . . . 54 7.3. Perturbation dynamics in mean-field coupled systems . . . . . . . . 56 7.4. Nearest neighbour coupling with periodic boundary conditions . . . 62 7.4.1. How variance and skewness influence synchrony dynamics . 73 7.4.2. The dependence of synchrony dynamics on the number of oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.5. Synchrony dynamics in systems with arbitrary coupling topologies . 88 7.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 8. The m-twist Steady State Solution on a Ring 95 8.1. Global frequency of m-twist steady states . . . . . . . . . . . . . . . . 95 8.2. Linear stability of m-twist steady states . . . . . . . . . . . . . . . . . 97 8.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 9. Dynamics Approaching the m-twist Steady States 105 9.1. Relation between order parameter and perturbation modes . . . . . 105 9.2. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 10.Conclusions and Outlook 111 vi III. APPENDICES A. 119 A.1. Distribution composed of two adjacent boxcar functions . . . . . . . 119 A.2. The gamma distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 124 A.3. Distribution composed of two Dirac delta peaks . . . . . . . . . . . . 125 A.4. Gerschgorin’s circle theorem . . . . . . . . . . . . . . . . . . . . . . . . 127 A.5. The Lambert W function . . . . . . . . . . . . . . . . . . . . . . . . . . 127 A.6. Roots of unity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 B. Simulation methods 12

    Information processing in neural systems: oscillations, network topologies and optimal representations

    Full text link
    Tesis doctoral inédita leída en la Universidad Autónoma de Madrid. Escuela Politécnica Superior, Departamento de Ingeniería informática. Fecha de lectura: 1-07-200

    On natural attunement:Shared rhythms between the brain and the environment

    Get PDF
    Rhythms exist both in the embodied brain and the built environment. Becoming attuned to the rhythms of the environment, such as repetitive columns, can greatly affect perception. Here, we explore how the built environment affects human cognition and behavior through the concept of natural attunement, often resulting from the coordination of a person's sensory and motor systems with the rhythmic elements of the environment. We argue that the built environment should not be reduced to mere states, representations, and single variables but instead be considered a bundle of highly related continuous signals with which we can resonate. Resonance and entrainment are dynamic processes observed when intrinsic frequencies of the oscillatory brain are influenced by the oscillations of an external signal. This allows visual rhythmic stimulations of the environment to affect the brain and body through neural entrainment, cross-frequency coupling, and phase resetting. We review how real-world architectural settings can affect neural dynamics, cognitive processes, and behavior in people, suggesting the crucial role of everyday rhythms in the brain-body-environment relationship

    Mathematics and biology: a Kantian view on the history of pattern formation theory

    Get PDF
    Driesch’s statement, made around 1900, that the physics and chemistry of his day were unable to explain self-regulation during embryogenesis was correct and could be extended until the year 1972. The emergence of theories of self-organisation required progress in several areas including chemistry, physics, computing and cybernetics. Two parallel lines of development can be distinguished which both culminated in the early 1970s. Firstly, physicochemical theories of self-organisation arose from theoretical (Lotka 1910–1920) and experimental work (Bray 1920; Belousov 1951) on chemical oscillations. However, this research area gained broader acceptance only after thermodynamics was extended to systems far from equilibrium (1922–1967) and the mechanism of the prime example for a chemical oscillator, the Belousov–Zhabotinski reaction, was deciphered in the early 1970s. Secondly, biological theories of self-organisation were rooted in the intellectual environment of artificial intelligence and cybernetics. Turing wrote his The chemical basis of morphogenesis (1952) after working on the construction of one of the first electronic computers. Likewise, Gierer and Meinhardt’s theory of local activation and lateral inhibition (1972) was influenced by ideas from cybernetics. The Gierer–Meinhardt theory provided an explanation for the first time of both spontaneous formation of spatial order and of self-regulation that proved to be extremely successful in elucidating a wide range of patterning processes. With the advent of developmental genetics in the 1980s, detailed molecular and functional data became available for complex developmental processes, allowing a new generation of data-driven theoretical approaches. Three examples of such approaches will be discussed. The successes and limitations of mathematical pattern formation theory throughout its history suggest a picture of the organism, which has structural similarity to views of the organic world held by the philosopher Immanuel Kant at the end of the eighteenth century

    Cognitive-developmental learning for a humanoid robot : a caregiver's gift

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2004.Includes bibliographical references (p. 319-341).(cont.) which are then applied to developmentally acquire new object representations. The humanoid robot therefore sees the world through the caregiver's eyes. Building an artificial humanoid robot's brain, even at an infant's cognitive level, has been a long quest which still lies only in the realm of our imagination. Our efforts towards such a dimly imaginable task are developed according to two alternate and complementary views: cognitive and developmental.The goal of this work is to build a cognitive system for the humanoid robot, Cog, that exploits human caregivers as catalysts to perceive and learn about actions, objects, scenes, people, and the robot itself. This thesis addresses a broad spectrum of machine learning problems across several categorization levels. Actions by embodied agents are used to automatically generate training data for the learning mechanisms, so that the robot develops categorization autonomously. Taking inspiration from the human brain, a framework of algorithms and methodologies was implemented to emulate different cognitive capabilities on the humanoid robot Cog. This framework is effectively applied to a collection of AI, computer vision, and signal processing problems. Cognitive capabilities of the humanoid robot are developmentally created, starting from infant-like abilities for detecting, segmenting, and recognizing percepts over multiple sensing modalities. Human caregivers provide a helping hand for communicating such information to the robot. This is done by actions that create meaningful events (by changing the world in which the robot is situated) thus inducing the "compliant perception" of objects from these human-robot interactions. Self-exploration of the world extends the robot's knowledge concerning object properties. This thesis argues for enculturating humanoid robots using infant development as a metaphor for building a humanoid robot's cognitive abilities. A human caregiver redesigns a humanoid's brain by teaching the humanoid robot as she would teach a child, using children's learning aids such as books, drawing boards, or other cognitive artifacts. Multi-modal object properties are learned using these tools and inserted into several recognition schemes,by Artur Miguel Do Amaral Arsenio.Ph.D

    The Future of Humanoid Robots

    Get PDF
    This book provides state of the art scientific and engineering research findings and developments in the field of humanoid robotics and its applications. It is expected that humanoids will change the way we interact with machines, and will have the ability to blend perfectly into an environment already designed for humans. The book contains chapters that aim to discover the future abilities of humanoid robots by presenting a variety of integrated research in various scientific and engineering fields, such as locomotion, perception, adaptive behavior, human-robot interaction, neuroscience and machine learning. The book is designed to be accessible and practical, with an emphasis on useful information to those working in the fields of robotics, cognitive science, artificial intelligence, computational methods and other fields of science directly or indirectly related to the development and usage of future humanoid robots. The editor of the book has extensive R&D experience, patents, and publications in the area of humanoid robotics, and his experience is reflected in editing the content of the book
    • …
    corecore