1,838 research outputs found

    Quasi-synchronization of delayed coupled networks with non-identical discontinuous nodes

    Get PDF
    This paper is concerned with the quasi-synchronization issue of linearly coupled networks with discontinuous nonlinear functions in each isolated node. Under the framework of Filippov systems, the existence and boundedness of solutions for such complex networks can be guaranteed by the matrix measure approach. A design method is presented for the synchronization controllers of coupled networks with non-identical discontinuous systems. Numerical simulations on the coupled chaotic systems are given to demonstrate the effectiveness of the theoretical results

    Nonlinear dynamics of full-range CNNs with time-varying delays and variable coefficients

    Get PDF
    In the article, the dynamical behaviours of the full-range cellular neural networks (FRCNNs) with variable coefficients and time-varying delays are considered. Firstly, the improved model of the FRCNNs is proposed, and the existence and uniqueness of the solution are studied by means of differential inclusions and set-valued analysis. Secondly, by using the Hardy inequality, the matrix analysis, and the Lyapunov functional method, we get some criteria for achieving the globally exponential stability (GES). Finally, some examples are provided to verify the correctness of the theoretical results

    Perron Theorem in the Monotone Iteration Method for Traveling Waves in Delayed Reaction-Diffusion Equations

    Get PDF
    In this paper we revisit the existence of traveling waves for delayed reaction diffusion equations by the monotone iteration method. We show that Perron Theorem on existence of bounded solution provides a rigorous and constructive framework to find traveling wave solutions of reaction diffusion systems with time delay. The method is tried out on two classical examples with delay: the predator-prey and Belousov-Zhabotinskii models.Comment: 17 pages. To appear in Journal of Differential Equation

    Magnetic Braking and Viscous Damping of Differential Rotation in Cylindrical Stars

    Full text link
    Differential rotation in stars generates toroidal magnetic fields whenever an initial seed poloidal field is present. The resulting magnetic stresses, along with viscosity, drive the star toward uniform rotation. This magnetic braking has important dynamical consequences in many astrophysical contexts. For example, merging binary neutron stars can form "hypermassive" remnants supported against collapse by differential rotation. The removal of this support by magnetic braking induces radial fluid motion, which can lead to delayed collapse of the remnant to a black hole. We explore the effects of magnetic braking and viscosity on the structure of a differentially rotating, compressible star, generalizing our earlier calculations for incompressible configurations. The star is idealized as a differentially rotating, infinite cylinder supported initially by a polytropic equation of state. The gas is assumed to be infinitely conducting and our calculations are performed in Newtonian gravitation. Though highly idealized, our model allows for the incorporation of magnetic fields, viscosity, compressibility, and shocks with minimal computational resources in a 1+1 dimensional Lagrangian MHD code. Our evolution calculations show that magnetic braking can lead to significant structural changes in a star, including quasistatic contraction of the core and ejection of matter in the outermost regions to form a wind or an ambient disk. These calculations serve as a prelude and a guide to more realistic MHD simulations in full 3+1 general relativity.Comment: 20 pages, 19 figures, 3 tables, AASTeX, accepted by Ap
    corecore