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Abstract. This paper is concerned with the quasi-synchronization is-
sue of linearly coupled networks with discontinuous nonlinear functions
in each isolated node. Under the framework of Filippov systems, the ex-
istence and boundedness of solutions for such complex networks can be
guaranteed by the matrix measure approach. A design method is presented
for the synchronization controllers of coupled networks with non-identical
discontinuous systems. Numerical simulations on the coupled chaotic sys-
tems are given to demonstrate the effectiveness of the theoretical results.

Key words: Quasi-synchronization; Filippov systems; Discontinuous
functions; Non-identical nodes

1 Introduction

Over the past decades, complex networks have been studied intensively in
various fields, such as physics, mathematics, engineering, biology, and sociol-
ogy [1,2]. A complex network is a large set of interconnected nodes, which repre-
sent individuals in the system and among them, the edges, represent the connec-
tions. Each node is a fundamental unit having specific contents and exhibiting
dynamical behavior. A complex network can exhibit complicated dynamics which
may be absolutely different from those of a single node. Hence, the investigation
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of complex dynamical networks is of great importance, and many large-scale
systems in nature and human societies, such as biological neural networks, the
Internet, the WWW, electrical power grids, etc., can be described by complex
networks.

On the other hand, synchronization, a typical collective behavior in nature,
means two or more systems share a common dynamical behavior, which can be
induced by coupling or by external forces. Synchronization certainly is a ba-
sis to understand an unknown dynamical system from one or more well-known
dynamical systems [3–7]. However, it is known that dynamical systems with
discontinuous and/or unbounded nonlinear functions do frequently arise in the
real applications. For the well known neural networks, there have been extensive
results on the global stability of neural networks with discontinuous activations
in the existing literature [8–14]. In these references, the first problem to be re-
solved is giving the definition of solution for the discontinuous systems under the
framework of Filippov solution. By constructing the Filippov set-valued map, the
differential equation could be transformed into a differential inclusion, which is
also called as the Filippov regularization (the details can be founded in Defini-
tion 2). Such a notion has been utilized as a feasible approach in the field of
mathematics and control for discontinuous dynamical systems.

The behavior of a network is determined by two main features: the dynam-
ics of the isolated nodes, and the connections between the nodes. In order to
analyze the network synchronization, most works in the literature assume that
all the node dynamics are identical which mainly origins from physical connec-
tions in biology, physics and social science [15, 16]. Nowadays, the interest of
synchronization issue is shifting to networks of coupled non-identical dynamical
systems mainly due to the above assumption that the identical nodes is a highly
unlikely circumstance for technological networks in the real world. Indeed, al-
most all complex dynamical networks in engineering have different nodes [17].
In addition, the behavior of networks with non-identical nodes is much more
complicated than the identical-node case. For instance, there does not exist a
common equilibrium for all nodes even if each isolated node has an equilibrium.
Therefore, a network with non-identical nodes still show some kind of synchro-
nization behaviors which are far from being fully understood. Certain reasonable
and satisfactory boundedness [15, 18] of state motion errors between different
nodes can be taken as useful synchronization properties, which is usually called
as quasi-synchronization [19].

Motivated by the above discussions, we aim (i) to formulate a mathematical
model considering discontinuous dynamics of each isolated node for the coupled
complex networks; (ii) to use the concept of Filippov solution to describe the
solutions’ existence and boundedness of coupled networks; (iii) to utilize matrix
measure method to cope with the quasi-synchronization issue of network with
non-identical nodes.
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2 Model Formulation and Preliminaries

In this paper, we consider a complex dynamical network consisting of N lin-
early coupled identical nodes. Each node is an n-dimensional system composed
of linear and nonlinear terms. The i-th node can be described by following dif-
ferential equation:

ẋi(t) = Dxi(t) + Bf(xi(t)), i = 1, 2, · · · , N, (1)

where xi(t) = (xi1(t), xi2(t), · · · , xin(t))T ∈ Rn(i = 1, 2, · · · , N) is the state vec-
tor representing the state variables of node i at time t; D ∈ Rn×n, B ∈ Rn×n;
and f(xi(t)) = [f1(xi), f2(xi), · · · , fn(xi)]T : Rn → Rn.

Consider the dynamical behavior of the complex dynamical network de-
scribed by the following linearly coupled differential equations:

ẋi(t) = Dxi(t) + Bf(xi(t)) + c
N∑

j=1

aijΓxj(t), i = 1, 2, · · · , N, (2)

where Γ is the inner coupling positive definite matrix between two connected
nodes i and j; c is the coupling strength; aij is defined as follows: if there is
a connection from node j to node i (j → i), then aij = aji > 0; otherwise,
aij = aji = 0(j 6= i); and the diagonal elements of matrix A are defined by

aii = −
N∑

j=1,j 6=i

aij . (3)

Unlike the previous studies on synchronization of complex networks, the non-
linear function f of each isolated node in this paper does not hold the Lipschitz
condition [4, 19, 20] or QUAD condition [7] any more. Moreover, the basic con-
tinuous conditions are also removed. The marked difference between this paper
and the existing work is that the node dynamics in our model are admitted to
be discontinuous.

From the theoretical point of view, the basic and natural question is about
the solution of the discontinuous dynamical systems. The existence of solutions
for discontinuous dynamical systems is a delicate problem, as can be seen from
our previous work [11, 12]. Firstly, we need some preliminaries to introduce the
new definition for the solutions.
Definition 1. Class F of functions: we call f ∈ F , if for all i = 1, 2, · · · , n,
fi(·) satisfies: fi(·) is continuously differentiable, except on a countable set of
isolated points {ρi

k}, where the right and left limits f+
i (ρi

k) and f−i (ρi
k) exist,

k = 1, 2, · · · .
In the following, we apply the framework of Filippov [21] in discussing the

solution of each node (1) with the discontinuous function f .
Definition 2. A set-valued map is defined as

F (xi) =
⋂

δ>0

⋂

µ(N)=0

K[f(B(xi, δ) \N)], (4)
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where K(E) is the closure of the convex hull of set E, B(xi, δ) = {y : ‖y−xi‖ ≤
δ}, and µ(N) is Lebesgue measure of set N . A solution in the sense of Filippov
of equation (1) with initial condition xi(s) = θs, ∀s ∈ [−τ, 0], is an absolutely
continuous function xi(t), t ∈ [0, T ], which satisfies differential inclusion:

dxi

dt
∈ Dxi(t) + BF(xi), a.e. t ∈ [0, T ], i = 1, · · · , N. (5)

where F(xi)
M= K[f(xi)] = (K[f1(xi)], · · · ,K[fn(xi)]), and K[fj(xi)] = [min

{fj(x−i ), fj(x+
i )},max{fj(x−i ), fj(x+

i )}], i = 1, · · · , N, j = 1, · · · , n.
It is obvious that, for all f ∈ F , the set-valued map xi(t) ↪→ Dxi(t) +

BF(xi(t)) has nonempty compact convex values. Furthermore, it is upper-semi-
continuous [22] and hence it is measurable. By the measurable selection theorem
[23], if xi(t) is a solution of (1), then there exists a measurable function αi(t) ∈
K[f(xi(t))] such that for a.e. t ∈ [0,+∞), the following equations hold:

ẋi(t) = Dxi(t) + Bαi(t), for a.e. t ∈ [0, T ), i = 1, · · · , N. (6)

In [11, 12], we have considered the existence and stability (and then the
uniqueness) of such solutions for each node. In this paper, we will not repeat the
existence results, which can also be found in [9, 10, 13, 14]. We will discuss the
uniform boundedness of the complex dynamical networks (2) in the next section.

Next, we introduce the concept of matrix measure which is the main tool in
the deduction of this paper.
Definition 3. The matrix measure of a real square matrix A = (aij)n×n is as
follows:

µp(A) = lim
ε→0+

‖I + εA‖p − 1
ε

,

where ‖ · ‖p is an induced matrix norm on Rn×n, I is the identity matrix, and
p = 1, 2,∞.

3 Uniform Boundedness of Complex Networks

In this section, we establish some basic results on uniform boundedness of
solutions in the sense of Filippov for the complex networks (2) under the next
hypothesis called as the growth condition [23].

The growth condition (g.c.): for f ∈ F , there exist constants M1 and M2,
with M1 ≥ 0 such that

‖F(xi)‖p = sup
ξ∈F(xi)

‖ξ‖p ≤ M1‖xi‖p + M2, p = 1, 2,∞, i = 1, 2, · · · , N. (7)

Let A ⊗ B denote the Kronecker product of matrices A and B, D = IN ⊗
D, B = IN ⊗ B, Γ1 = A ⊗ Γ1, x(t) = (xT

1 (t), xT
2 (t), · · · , xT

N (t))T and f(x(t)) =
(fT (x1(t)), fT (x2(t)), · · · , fT (xN (t)))T . The linearly coupled dynamical system
(2) can be rewritten as

ẋ(t) = Dx(t) + Bf(x(t)) + c1Γ1x(t). (8)
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Definition 4. The complex system (8) is uniformly bounded with a bound ω > 0
if there exist δ0 > 0 and T ≥ 0 such that if ‖x(0)‖τ

p ≤ δ0 then ‖x(t)‖p ≤ ω for
all t ≥ T , where ‖x(0)‖τ

p = max
−τ≤z≤0

‖x(z)‖p.

Theorem 1. Under the growth condition (g.c.), the complex network (8) will
be uniformly bounded, if there exist σ > 0 and one matrix measure µp(·), p =
1, 2,∞ such that

µp(D + c1Γ1) + M1‖B‖p ≤ −σ < 0. (9)

Proof. The proof is omitted for simplicity due to page limit.

4 Quasi-synchronization of Coupled Networks

In the above section, model (2) is a complex dynamical network without delayed
coupling. In this section, we consider the synchronization issue of linearly delayed
coupled networks with non-identical nodes:

ẋi(t) = Dixi(t) + Bif(xi(t)) + c1

N∑

j=1

aijΓ1xj(t) + c2

N∑

j=1

aijΓ2xj(t− τ),

i = 1, 2, · · · , N, (10)

which is a general complex network model. It means that each node communi-
cates with other non-identical nodes at time t as well as at time t− τ .

Our goal is to synchronize the states of networks (10) on the manifold

ṡ(t) = Ds(t) + Bf(s(t)), (11)

by introducing a controller ui(t) ∈ Rn, i = 1, 2, · · · , N , into each individual
node, where s(t) can be any desired state, for example, an equilibrium point, a
nontrivial periodic orbit, or even a chaotic orbit. That is, by adding a suitable
designed feedback controller to complex networks (10), there exists a constant
t1 > 0 such that x1(t) = x2(t) = · · · = xN (t) = s(t), for any t ≥ t1. The
controlled complex networks (10) can be written as :

ẋi(t) = Dixi(t) + Bif(xi(t)) + c1

N∑

j=1

aijΓ1xj(t) + c2

N∑

j=1

aijΓ2xj(t− τ)

+ui(t). (12)

Subtracting (11) from (12), we obtain the following error dynamical systems:

ėi(t) = ẋi(t)− ṡ(t)

= Diei(t) + Bigi(t) + c1

N∑

j=1

aijΓ1xj(t) + c2

N∑

j=1

aijΓ2xj(t− τ) + ui(t)

+ ∆Dis(t) + ∆Bif(s(t)), (13)
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where ∆Di = Di −D, ∆Bi = Bi −B, gi(t) = f(xi(t))− f(s(t)).
Based on (3), we have

N∑

j=1

aijΓ1s(t) =
N∑

j=1

aijΓ2s(t− τ) = 0. (14)

Consider the state-feedback control law

ui(t) = kiei(t). (15)

By Kronecker product, (14) and (15), the error system (13) can be rewritten as

ė(t) = De(t) + Bg(t) + c1Γ1e(t) + c2Γ2e(t− τ) + Ke(t) + ∆DS(t)
+∆Bf(S(t)), (16)

where D = diag(D1, D2, · · · , DN ), B = diag(B1, B2, · · · , BN ), K = diag(k1, k2,
· · · , kN ), ∆D = diag(∆D1,∆D2, · · · ,∆DN ), ∆B = diag(∆B1,∆B2, · · · ,∆BN ),
Γ2 = A⊗ Γ2, S(t) = (sT (t), sT (t), · · · , sT (t))T , and g(t) = (gT

1 (t), gT
2 (t), · · · ,

gT
N (t))T .

Definition 5 [15, 18]. Complex networks (10) and (11) is quasi-synchronized,
if there exists a compact set Ω ⊂ RNn so that e(t0) ∈ Ω and there exists a
bound B and a time T (B, e(t0)), which are both independent of t0 > 0, such
that ‖e(t)‖p ≤ B, p = 1, 2,+∞, ∀ t ≥ t0 + T .

Before proceeding to the main results, we further assume that the set-valued
map F satisfies:
(L.) Suppose 0 ∈ K[f(0)] and there exist constants M̄1 and M̄2 ≥ 0 such that
for all ι(t) ∈ K[f(x(t))], κ(t) ∈ K[f(y(t))], the following holds:

‖ι(t)− κ(t)‖p ≤ M̄1‖x(t)− y(t)‖p + M̄2, p ∈ {1, 2,∞}.

Remark 1. Under the assumption (L.), the growth condition (g.c.) holds.
Hence, based on the Theorem 1, the synchronization manifold (11) will be uni-
formly bounded. In other words, for each orbit in system (11), ∀S0 ∈ RNn, there
exist a time T and a constant ω > 0 such that ‖S(t)‖p ≤ ω, ∀t ≥ T .
Theorem 2. Under the condition (L.), if there exists one matrix measure
µp(·), p = 1, 2,∞ such that (9) and (17) hold

µp(D+ c1Γ1 + K) + M1‖B‖p + c2‖Γ2‖p ≤ −σ̄ < 0, ∀ t ≥ T. (17)

Then, complex network (10) quasi-synchronizes (11). Moreover, the bounds on
synchronization error can be smaller by increasing the control gain K.
Proof. Consider another positive radially unbounded auxiliary functional for
the error system (16) as

V2(t) = ‖e(t)‖p. (18)



Quasi-synchronization of Delayed Coupled Networks 7

By the Chain Rule in [26], calculating the upper right-hand derivative of
V2(t) along the positive half trajectory of Eq. (16), we have

D+V2(t) = limh→0+
‖e(t + h)‖p − ‖e(t)‖p

h

≤ limh→0+
‖I + h(D+ c1Γ1 + K)‖p − 1

h
‖e(t)‖p + ‖Bβ(t)‖p

+ c2‖Γ2e(t− τ)‖p + ‖∆DS(t)‖p + ‖∆BF (S(t))‖p. (19)

where β(t) = (βT
1 (t), βT

2 (t), · · · , βT
N (t))T , and βi(t) ∈ K[gi(t)], i = 1, 2, · · · , N .

Based on the condition (L.) and Theorem 1, when t ≥ T , we have

D+V2(x(t))
≤ (µp(D+ c1Γ1 + K) + M̄1‖B‖p)‖e(t)‖p + c2‖Γ2‖p · max

t−τ≤z≤t
‖e(z)‖p

+ M̄2‖B‖p + ω‖∆D‖p + ωM̄1‖∆B‖p + M̄2‖∆B‖p. (20)

Then, by (17) and the generalized Halanay inequalities, one obtains

‖e(t)‖p ≤ γ̄

σ̄
+ ( sup

−∞≤z≤0
‖e(z)‖p − γ̄

σ̄
) · e−µ̄∗(t−t0), (21)

where γ̄ = M̄2(‖B‖p + ‖∆B‖p) + ω(‖∆D‖p + ‖∆B‖p) and µ̄∗ > 0.
Therefore, for the given sufficient small ε > 0, there exists T̄ ≥ 0 such that

‖e(t)‖p ≤ γ̄

σ̄
+ ε, ∀ t ≥ T̄ . (22)

This completes the proof of Theorem 2.
Remark 2. From the matrix measure and Definition 5, we can see that it can
have positive as well as negative values, whereas a norm can assume only non-
negative ones. Due to these special properties, the results obtained via matrix
measure usually are less restrictive than the one using the norm. Furthermore,
the matrix measure approach appears simple and clear, which can be verified
and applied easily.

5 Numerical Examples

Example 1. Consider the following linearly coupled network model:

ẋi(t) = Dxi(t) + Bf(xi(t)) + c1

N∑

j=1

aijΓ1xj(t) + c2

N∑

j=1

aijΓ2xj(t− τ),

i = 1, 2, 3, (23)

where xi(t) = (xi1(t), xi2(t), xi3(t))T , c1 = c2 = 1, D = diag(−1,−1,−1), τ = 1,
the discontinuousfunction
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f(xi1(t), xi2(t), xi3(t)) =




− 11

21xi1(t) + 3xi2(t) + 9
7 sign(xi1(t)),

2
3xi1(t) + 5xi2(t) + 1

3x3i(t),
− 1

3xi1(t)− 10xi2(t) + 1
3xi3(t),

B =




3 0 0
0 2 1
0 1 2


, A =



−0.2 0.1 0.1
0.1 −0.1 0
0.1 0 −0.1


, Γ1 =




1 0.5 0.4
0.8 1 0.3
0.2 0.7 0.9


, Γ2 =




0.6 0.3 0.4
0.5 1 0.3
0.2 0.5 0.9


.

Based on the detailed discussion in [24], the isolated node dynamics behavior
is chaotic (the generalized Chua circuit). From Theorem 1, the linearly coupled
network (23) is uniformly bounded, as shown by Fig. 1.

−4 −3 −2 −1 0 1 2 3 4

−1

−0.5

0

0.5

1

−6

−4

−2

0

2

4

6

x11

Boundedness

x12

x1
3

Fig. 1. Trajectories of one node in the coupled networks.

Example 2. Consider the following linearly coupled network model with non-
identical nodes:

ẋi(t) = Dixi(t) + Bif(xi(t)) + c1

N∑

j=1

aijΓ1xj(t) + c2

N∑

j=1

aijΓ2xj(t− τ),

i = 1, 2, 3, (24)

where the values of c1, c2, A, Γ1, Γ2, τ and f are same as those in Example 1,

B1 =




3.01 0 0
0 2 1.02
0 1 1.99


, B2 =




2.99 0 0
0 1.99 1.01
0 1 2


, B3 =




3 0 0
0 2 0.99
0 1.01 2.01


,

D1 = diag(−0.99,−0.97,−0.99), D2 = diag(−1.01,−1,−0.99), and D3 =
diag(−1,−0.99,−1.01). The manifold that we want to synchronize to is:

ṡ(t) = Ds(t) + Bf(s(t)), (25)

where the parameters D and B are the same as those in Example 1. Designing
the feedback controller u(t) = Ke(t) = k ∗ Ie(t), where I is the identity matrix
with proper dimensions. Based on Theorem 2, the coupled network (24) quasi-
synchronizes (25), just as shown as Figs. 2-3.
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0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

t

||e(
t)|| 2

Fig. 2. The quasi-synchronization error ‖e(t)‖2 with k = −5 in Example 2.

0 20 40 60 80 100 120 140 160 180 200
−0.5

0

0.5

1

1.5

t

||e(
t)|| 2

Fig. 3. The quasi-synchronization error ‖e(t)‖2 with k = −20 in Example 2.

0 5 10 15 20 25 30 35 40
0

0.01

0.02

0.03

0.04

0.05
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0.07
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0.09

0.1

|k|

||e(
t)|| 2

Fig. 4. The trend of quasi-synchronization error ‖e(t)‖2 with the increasing |k|.

Fig. 4 shows the trend of ‖e(t)‖2 with the decreasing gain k. However, for the
coupled complex networks with non-identical discontinuous node dynamics, the
complete synchronization (‖e(t)‖2 → 0) can’t be realized even for a given suffi-
ciently large |k|, unless |k| → ∞.

6 Conclusions

This paper has introduced a general delayed coupled complex networks
model with nonlinear functions of possessing jumping discontinuities. Based on
the concept of Filippov solution, boundedness and quasi-synchronization prob-
lems of such networks have been studied by the matrix measure approach and
the generalized Halanay inequalities. Easily testable conditions have been estab-
lished to ensure synchronization for linearly coupled networks with non-identical
nodes. These results are novel since there are few works on the synchronization
control of complex networks with discontinuous non-identical systems.

References

1. Strogatz, S.H.: Exploring Complex Networks. Nature. 410, 268–276 (2001)
2. Watts, D.J., Strogatz, S.H.: Collective Dynamics of “Small-World” Networks. Na-

ture. 393, 440–442 (1998)
3. Pecora, L.M., Carroll, T. L.: Synchronization in Chaotic Systems. Phys. Rev. Lett.

64, 821 (1990)



10 Xiaoyang Liu and Wenwu Yu

4. Liang, J., Wang, Z., Liu, Y., Liu, X.: Robust Synchronization of an Array of Coupled
Stochastic Discrete-Time Delayed Neural Networks. IEEE Trans. Neural Networks.
19, 1910–1921 (2008)

5. Luo, A.C.J.: A Theory for Synchronization of Dynamical Systems. Communications
in Nonlinear Science and Numerical Simulation. 14, 1901–1951 (2009)

6. Jost. J., Joy, M.P.: Spectral Properties and Synchronization in Coupled Map Lat-
tices. Phys. Rev. E. 65, 016201 (2001)

7. Lu, W., Chen, T.: New Approach to Synchronization Analysis of Linearly Coupled
Ordinary Differential Systems. Physica D. 213, 214–230 (2006)

8. Cortés, J.: Discontinuous Dynamical Systems. IEEE Control Systems Magazine. 28,
36–73 (2008)

9. Forti, M., Nistri, P.: Global Convergence of Neural Networks with Discontinuous
Neuron Activations. IEEE Trans. Circ. Syst. I. 50(11), 1421–1435 (2003)

10. Forti, M., Nistri, P., Papini, D.: Global Exponential Stability and Global Conver-
gence in Finite Time of Delayed Neural Networks with Infinite Gain. IEEE Trans.
Neural Networks. 16(6), 1449–1463 (2005)

11. Liu, X.Y., Cao, J.D.: Robust State Estimation for Neural Networks with Discon-
tinuous Activations. IEEE Transactions on Systems, Man, and Cybernetics: Part
B. 40(6), 1425–1437 (2010)

12. Liu, X.Y., Cao, J.D.: Complete Periodic Synchronization of Delayed Neural Net-
works with Discontinuous Activations. International Journal of Bifurcation and
chaos. 20(7), 2151–2164 (2010)

13. Lu, W., Chen, T.: Dynamical Behaviors of Cohen-Grossberg Neural Networks with
Discontinuous Activation Functions. Neural Networks. 18(3), 231–242 (2005)

14. Lu, W., Chen, T.: Almost Periodic Dynamics of a Class of Delayed Neural Networks
with Discontinuous Activations. Neural Computation. 20, 1065–1090 (2008)

15. Hill, D.J., Zhao, J.: Global Synchronization of Complex Dynamical Networks with
Non-Identical Nodes. Proc. IEEE Conference on Decision and Control. 817–822
(2008)

16. Newman, M., Barabasi, A.L., Watts, D.J.: The Structure and Dynamics of Net-
works. Princeton University Press. Princeton, (2006)

17. Hill, D.J., Chen, G.R.: Power Systems as Dynamic Networks. Proc. IEEE Interna-
tional Symposium on Circuits and Systems. 722–725 (2006)

18. Das, A., Lewis, F.L.: Distributed Adaptive Control for Synchronization of Un-
known Nonlinear Networked Systems. Automatica. 46, 2014–2021 (2010)

19. Huang, T.W., Li, C.D., Yu, W.W., Chen, G.R.: Synchronization of Delayed Chaotic
Systems with Parameter Mismatches by Using Intermittent Linear State Feedback.
Nonlinearity. 22, 569–584 (2009)

20. Lu, J., Ho, D.W.C., Wu, L.: Exponential Stabilization of Switched Stochastic Dy-
namical Networks. Nonlinearity. 22, 889–911 (2009)

21. Filippov, A.F.: Differential Equations with Discontinuous Right-Hand Side. Kluwer
Academic Publishers: Boston. (1988)

22. Aubin, J.P., Cellina, A.: Differential Inclusions, Set-Valued Functions and Viability
Theory. Springer: Berlin. (1984)

23. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhauser: Boston. (1990)
24. Danca, M.: Chaotifying Discontinuous Dynamical Systems via Time-Delay Feed-

back Algorithm. International Journal of Bifurcation and Chaos. 14(7), 2321–2339
(2004)

25. Song, Q.K., Cao, J.D.: Global Dissipativity Analysis on Uncertain Neural Networks
with Mixed Time-Varying Delays. Chaos. 18, 043126 (2008)

26. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley: New York. (1983)




