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Abstract. In the article, the dynamical behaviours of the full-range cellular neural networks
(FRCNNs) with variable coefficients and time-varying delays are considered. Firstly, the improved
model of the FRCNNs is proposed, and the existence and uniqueness of the solution are studied by
means of differential inclusions and set-valued analysis. Secondly, by using the Hardy inequality,
the matrix analysis, and the Lyapunov functional method, we get some criteria for achieving the
globally exponential stability (GES). Finally, some examples are provided to verify the correctness
of the theoretical results.
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1 Introduction

Recently, the research of the cellular neural networks (CNNs) [6,7] is a hot topic because
of powerful parallel and nonlinear processing capabilities and its widespread applications,
such as edge detection, image processing, optimization problems, and so on. These ap-
plications depend largely on the stability of CNNs. But not all CNNs are globally stable,
some of them exhibit complex dynamic behaviors. And many studies have been done
to understand the dynamical behaviors of CNNs. For example, chaos phenomenon was
presented through a three-cell autonomous system in [43]. The local Hopf bifurcations of
tri-neuron neural networks were studied, and the stability of Hopf bifurcations was de-
termined by the Nyquist criterion and the graphical Hopf bifurcation theorem in [36, 37].
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Because the GES takes a key pole in characterizing the dynamic behaviors of CNNs, the
establishment of the criteria for GES is a significant problem in the study of CNNs. A
lot of results were acquired on the GES of the CNNs with or without time delays. For
instance, by the Hardy inequality, some sufficient conditions were derived to achieve GES
of the CNNs with time-varying delays and variable coefficients in [4]. By constructing
a new Lyapunov function, some criteria on the GES of the CNNs were acquired in [16,17].
Based on the new differential inequality, some conclusions were obtained for ensuring the
GES of the CNNs in [40, 41]. By utilizing a new generalized Halanay inequality, several
delay-dependent criteria for the GES of the CNNs were established in [22] in which the
boundedness of time-varying delays was no longer necessary. In [19], the GES of CNNs
with multi-proportional delays was considered. The more theoretical results on the GES
of the CNNs can be found in [1, 18, 21, 23, 33, 34, 38, 42].

Meanwhile, the GES of various generalized and improved CNNs is also widely stud-
ied, such as the switched CNNs [8], the shunting inhibitory CNNs [14], the memristor-
based CNNs [35, 39], the inertial neural networks [13, 15], the quaternion-valued CNNs
[20,30], etc. For the sake of getting the additional advantages in hardware implementation
of the CNNs, the so-called FRCNNs, the improved CNNs model, which can overcome
some disadvantages of CNNs implementation in the circuit, was introduced in [11, 27].
Practical experiments and extensive computer simulations about the stable networks show
that the FRCNNs have larger cell densities, smaller power consumption, and higher speed
than the CNNs. Furthermore, the dynamics of the FRCNNs is described via differential
inclusions, which contain an unbounded set by term called a normal cone, so the theo-
retical research of the FRCNNs is more difficulty than the Filippov systems [5, 31] and
polynomial systems [3,32], and the dynamic behaviors are more complicated than the dis-
continuous CNNs in [3,23,35,39]. Thus, it is imperative to investigate the dynamics of the
FRCNNs. In recent years, the dynamic behaviors for the FRCNNs have been concerned
by some scholars. In [10,26], the authors compared the global dynamic behaviours of the
CNNs and FRCNNs with the same parameters. The dynamics of the FRCNNs were rigor-
ously analyzed according to set-valued analysis and differential inclusions in [24,25,28].

Note that the results of GES for FRCNNs in [26, 28] are restricted in constant co-
efficients and constant delays systems. In fact, the time-varying delays are common in
the signal transmission among the neurons by reason of the finite speed of switching and
transmitting signals. In addition, due to the environmental impact, the parameters of the
FRCNNs will change during the dynamical processes. As far as we know, there are few
works on the GES of the FRCNNs with time-varying delays and variable coefficients in
the past ten years. Therefore, some novel results for the GES of the FRCNNs are eagerly
anticipated.

The main contributions of the article are three points. Firstly, the improved model
of the FRCNNs, which contains unbounded term called the normal cone, is proposed.
Moreover, on account of the introduction of the normal cone terms, the existence of the
solution for the improved FRCNNs is harder to prove than the discontinuous CNNs in
[3, 23, 35, 39], we adopt a new method to overcome the difficulty. Finally, some novel
results including the row diagonal dominant condition and the linear matrix inequality
condition are acquired to guarantee the GES of FRCNNs.
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This paper is organized as follows. Some notations, definitions, lemmas, and the
model of FRCNNs are presented in Section 2. The existence and uniqueness of the so-
lution are analyzed strictly by using differential inclusions and set-valued analysis, and
several novel sufficient conditions are established for ensuring the GES of the FRCNNs in
Section 3. An example is given to show the correctness of the results in Section 4. A short
conclusion is given in Section 5.

2 Preliminaries and model formulation

In this section, some basic notations, preliminaries are provided. At the same time, the
improved model of FRCNNs is proposed.

2.1 Notations

Throughout this paper, R+ denotes the set of positive real numbers. |·|means the absolute
value. The n-dimensional Euclidean space is Rn. ‖·‖ is the Euclidean norm. The symbol
(·)T represents the transpose. 〈x, y〉 =

∑n
i=1 xiyi is the scalar product of x and y. For

a square matrix A, let A−1, λmax(A), and λmin(A) be the inverse of A, the maximum
and minimum eigenvalues of A, respectively. For a real matrix B, B > 0 (B > 0) if B is
positive definite (semidefinite). dist(y,Ω) = infx∈Ω ‖y − x‖ means the distance from y
to Ω, where y ∈ Rn, Ω ⊂ Rn. m(Ω) represents the element in Ω with the smallest
Euclidean norm.

2.2 Tangent and normal cones

Firstly, some definitions concerning the set-valued map are given.

Definition 1. (See [2].) Let Y and Z be normed spaces.

(i) A set-valued map G : Ω ⊆ Y → Z is a map that for any y ∈ Ω, there corresponds
a nonempty set G(y) ⊆ Z.

(ii) A set-valued map G : Ω ⊆ Y → Z is called upper semicontinuous at y if for any
ε > 0, there exists η > 0 such that G(y + ηB(0, 1)) ⊆ G(y) + εB(0, 1). G is
upper semicontinuous if it is upper semicontinuous at each y ∈ Ω.

Definition 2 [Tangent cones]. (See [2, 9].) Let Ω ⊂ Rn is a nonempty closed convex
set, the tangent cone to Ω at y ∈ Ω is given by

TΩ(y) =

{
h ∈ Rn: lim inf

s→0+

dist(y + sh, Ω)

s
= 0

}
.

Definition 3 [Normal cones]. (See [2, 9].) Let Ω ⊂ Rn be a nonempty closed convex
set, the normal cone to Ω at y ∈ Ω is defined as

NΩ(y) =
{
u ∈ Rn: 〈u, h〉 6 0 ∀h ∈ TΩ(y)

}
.
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In particular, let Ω = Q, where Q is of the hypercube [−1, 1]n, it can easily obtain
that

NQ(y) =
(
N[−1,1](y1), N[−1,1](y2), . . . , N[−1,1](yn)

)T
for all y ∈ Q, where

N[−1,1](yi) =


[0,+∞), yi = 1,

0, −1 < yi < 1,

(−∞, 0], yi = −1.

Now, the lemma about the properties of normal cone is presented as follows.

Lemma 1. (See [26].) Let Ω ⊂ Rn be a nonempty closed convex set.

(i) TΩ(x) and NΩ(x) are nonempty closed convex cones in Rn.
(ii) NΩ(x) is a monotone operator. That is, for any x, y ∈ Ω, nx ∈ NΩ(x), ny ∈

NΩ(y), then
〈x− y, nx − ny〉 > 0.

(iii) If choose Ω = Q and P = diag(p1, p2, . . . , pn) > 0 for any x, y ∈ Q and
nx ∈ NQ(x), ny ∈ NQ(y), we have〈

x− y, P (nx − ny)
〉
> 0.

2.3 The solution of differential inclusions

Consider the differential inclusion

ẋ(t) ∈ F
(
t, x(t)

)
−NΩ

(
x(t)

)
, x(t0) ∈ Ω. (1)

Definition 4. (See [2].) An absolutely continuous function x(t) is called a solution of
inclusion (1) on interval [t0, t1] if for almost all t ∈ [t0, t1], x(t0) ∈ Ω and ẋ(t) ∈
F (t, x(t))−NΩ(x(t)).
Lemma 2. (See [29].) Let F : [0, T ] × Ω → Ω be a set-valued map with nonempty
compact convex values, F is measurable with respect to (t, x) and upper semicontinuous
with respect to x. Assume that there exists an integrable function u(t) over [0, T ] such
that m(F (t, x(t))) 6 u(t), then given any x(0) ∈ Ω, the differential inclusion (1) has at
least one solution x(t) for almost all t ∈ [0, T ].

2.4 Some useful inequalities

Lemma 3 [Hardy inequality]. (See [12].) There exist constants ak > 0, pk > 0, k =
1, 2, . . . ,m+ 1, such that(

m+1∏
k=1

apkk

)1/Sm+1

6

(
m+1∑
k=1

pka
r
k

)1/r

S
−1/r
m+1 , (2)

where r > 0 and Sm+1 =
∑m+1
k=1 pk.
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Especially, if let pm+1 = 1, r = Sm+1 =
∑m
k=1 pk + 1, one has

am+1

m∏
k=1

apkk 6
1

r

m∑
k=1

pka
r
k +

1

r
arm+1. (3)

2.5 System formulation

Consider the following CNN with delay:

ẋ(t) = −x(t) +AG
(
x(t)

)
+BG

(
x(t− τ)

)
+ I, (4)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T is the vector of neuron state variables. A ∈

Rn×n is the neuron interconnection matrix. τ is a constant delay.B ∈ Rn×n is the delayed
neuron interconnection matrix. I ∈ Rn is the constant input. G(x(t)) = (g(x1(t)),
g(x2(t)), . . . , g(xn(t)))

T is an active function in which

g(xi) =
1

2

(
|xi + 1| − |xi − 1|

)
=


1, xi > 1,

xi, −1 6 xi 6 1,

−1, xi < −1.

The hardware realization of the CNNs chips is required to constrain the range of input
states for original CNNs, so the following so-called signal FRCNNs is introduced:

ẋ(t) = −x(t) +AG
(
x(t)

)
+BG

(
x(t− τ)

)
+ I −mL

(
x(t)

)
, (5)

where m > 0 is a constant, and L(x) = (l(x1), l(x2), . . . , l(xn))
T is the vector function

satisfying

l(xi) =


xi − 1, xi > 1,

0, −1 6 xi 6 1,

xi + 1, xi < −1.

Remark 1. When the slope m is large enough, the role of the nonlinearity mL(x(t)) is
to prevent the state variable x of system (5) exceedingly deviating the saturated region Q.
Let m→ +∞,

lim
m→+∞

ml(xi) = N[−1,1](xi) =


[0,+∞), xi = 1,

0, −1 6 xi 6 1,

(−∞, 0], xi = −1.

The ideal hard-limiter N[−1,1](xi) constrains the state variables xi to change in the inter-
val [−1, 1].
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When m → +∞, from the analysis of Remark 1 and the definition of G(x), sys-
tem (5) can be expressed as

ẋ(t) ∈ −x(t) +Ax(t) +Bx(t− τ) + I −NQ
(
x(t)

)
, (6)

where the ideal hard-limiter NQ(x(t) constrains the state variables to evolve within the
hypercube Q = [−1, 1]n. Then system (6) displays a number of advantages in the very
large-scale integration implementation compared with system (4), including smaller power
consumption and simpler design process.

In this paper, the system of FRCNN with variable coefficients and time-varying delay
is described by the following differential inclusion:

ẋ(t) ∈ −x(t) +A(t)x(t) +B(t)x(t− τ(t)) + I −NQ
(
x(t)

)
, (7)

where A(t) = (aij(t))n×n is the neuron interconnection matrix and B(t) = (bij(t))n×n
is the delayed neuron interconnection matrix. τ(t) is a time-varying delay.

Remark 2. The continuous systems in [19, 21, 22] and the discontinuous systems in [23,
35, 39] about GES were studied, but the set-valued term NQ(x(t)) is not introduced into
their systems. In [28], the system ẋ(t) ∈ Ax(t) + I − NQ(x(t)) was proposed and
studied. It was further researched in [24]. However, they thought about the models with
constant coefficients and constant delays. In fact, if we consider the long term dynamics
of the system, it is more common for the systems with time-varying delays and variable
coefficients because of the states-changing. Hence, we consider system (7) in this paper,
which is more general than the existing ones.

Remark 3. If system (7) is written in terms of the form

dxi(t)

dt
∈ −xi(t) +

n∑
j=1

aij(t)xj(t) +

n∑
j=1

bij(t)xj
(
t− τ(t)

)
−N[−1,1]

(
xi(t)

)
,

we can replace xj(t− τ(t)) by xj(t− τij(t)), that is, time-varying delays can be related
to index i, j. In the analysis of the model, we are going to use the upper bound of τ(t).
If we replace τ(t) with τij(t), we can take the maximum of upper bound for τij(t) as the
upper bound, and the analysis process is similar.

To achieve the main results, Assumption 1 and Definition 5 are needed.

Assumption 1. The variable coefficients aij(t) and bij(t) are continuous, 0 < τ(t) 6 τ ,
inft∈R+{1− τ̇(t)} > 0, and τ̇(t) is continuous, where τ is a constant.

The initial condition of system (7) is given by x(θ) = ϕ(θ), θ ∈ [−τ, 0], where
ϕ(θ) ∈ C([−τ, 0], Q), C([−τ, 0], Q) is the Banach space of continuous function with
‖ϕ‖ = sup−τ6θ60 |φ(θ)|∞, |φ(θ)|∞ = (max16i6n |φi(θ)|r)1/r, r > 1.

Definition 5. System (7) is globally exponentially stable for any two solutions x(t), y(t)
with initial functions ϕ(θ), φ(θ) if there exist constants ε > 0 and M > 1 such that∥∥x(t)− y(t)∥∥ 6M‖ϕ− φ‖e−εt, t > 0.
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3 Main results

In this section, the existence of the solution is discussed by using set-valued map and
differential inclusions, and some globally exponentially stable conditions of system (7)
are acquired.

Theorem 1. Under Assumption 1, for any initial function ϕ(θ) of system (7), θ ∈ [−τ, 0],
there exists a unique solution x(t) defined on [0,+∞).

Proof. Firstly, we prove that there exists a solution x(t) of system (7) on a right neigh-
bourhood of zero with the initial function ϕ(θ). Denote Q̂ = Q × [−τ, 0] and Z(t) =
(zT(t), θ(t))T, where z(t) = (z1(t), z2(t), . . . , zn(t))

T ∈ Rn and θ(t) ∈ R. Consider
the following system:

Ż(t) =

(
ż(t)

θ̇(t)

)
∈
(
−z(t) +A(t)z(t) + I +B(t)ϕ(θ(t))

1− τ̇(t)

)
−
(

NQ(z(t))
N[−τ,0](θ(t))

)
.
= F

(
t, Z(t)

)
−NQ̂

(
Z(t)

)
,

Z(0) =

(
z(0)
θ(0)

)
=

(
ϕ(0)
−τ(0)

)
.

(8)

For any T > 0, F is continuous bounded on [0, T ] × Q̂ and Z(0) ∈ Q̂. From Lemma 2
there exists one solution Z(t) = (zT(t), θ(t))T of system (8) on a right neighbourhood
of zero.

Secondly, we conclude that the solution x(t) of system (7) exists on [0,+∞). In-
ductively, assume that x(t) is a solution of (7) on [−τ,Nτ ] for some integer N > 0.
Let

x(t) =

{
ϕ(t), t ∈ [−τ, 0),
z(t), t ∈ [0, Nτ ],

where x(t) is continuous and x(t) ∈ Q for t ∈ [−τ,Nτ ]. It is obvious that x(t) is
absolutely continuous on [0, Nτ ]. Moreover, by solving the inclusion

Ż(t) =

(
ż(t)

θ̇(t)

)
∈
(
−z(t) +A(t)z(t) + I +B(t)x(Nτ + θ(t))

1− τ̇(t)

)
−
(

NQ(z(t))
N[−τ,0](θ(t))

)
,

Z(0) =

(
z(0)
θ(0)

)
=

(
x(Nτ)
−τ(0)

)
,

we can extend the solution x(t) of system (7) on a right neighbourhood ofNτ . According
to x(t) ∈ Q, we conclude that there exists a solution of (7) with the initial function ϕ(θ)
for t > 0.
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Finally, the uniqueness of the solution will be proven. By contradiction, let x(t), y(t)
be any two solutions for system (7) with initial function ϕ(θ). Denote ρ(t) = ‖x(t) −
y(t)‖2/2. Then ρ(t) = 0 will be proved by mathematical induction for t > 0.

For t ∈ [−τ, 0], it is easy to get ρ(t) = 0.
Let integer m > 0, t ∈ [−τ,mτ ], suppose that ρ(t) = 0. Next, we need to prove

ρ(t) = 0 when t ∈ [−τ, (m+ 1)τ ]. From the result of second step there exist nx(t)(t) ∈
NQ(x(t)) and ny(t)(t) ∈ NQ(y(t)) such that

ẋ(t) = −x(t) +A(t)x(t) +B(t)x
(
t− τ(t)

)
+ I − nx(t)(t)

and
ẏ(t) = −y(t) +A(t)y(t) +B(t)y

(
t− τ(t)

)
+ I − ny(t)(t).

It follows that

ρ̇(t) =
〈
x(t)− y(t), ẋ(t)− ẏ(t)

〉
6
〈
x(t)− y(t), A(t)(x(t)− y(t)

〉
+
〈
x(t)− y(t), B(t)

(
x
(
t− τ(t)

)
− y
(
t− τ(t)

)〉
,

the above inequality is obtained by 〈x(t)− y(t), nx(t)(t)−ny(t)(t)〉 > 0. Due to the fact
ρ(t) = 0, t ∈ [−τ,mτ ], we get x(t − τ(t)) − y(t − τ(t)) = 0 for t ∈ [mτ, (m + 1)τ ].
Hence, we have

ρ̇(t) 6
〈
x(t)− y(t), A(t)

(
x(t)− y(t)

)〉
6 2λmax

(
A(t)

)
ρ(t).

By the Gronwall inequality and ρ(mτ) = 0 we obtain

0 6 ρ(t) 6 ρ(mτ)e2λmax(A(t))(t−mτ) = 0.

Therefore ρ(t) = 0 for t ∈ [−τ, (m+ 1)τ ]. This completes the proof.

Remark 4. The local existence of the solutions for the discontinuous systems in [23, 35,
39] was proved by using the classical existence theorem of differential inclusions. Since
the normal cone NQ(x(t)) is a set-valued map and not an upper semicontinuous, the
above method can not apply to our system. Here, we transform system (7) into the form
of differential inclusion (1). By using Lemma 2 we get the local existence of the solution
for system (7).

Theorem 2. Under Assumption 1, system (7) is globally exponentially stable if there exist
constants vk > 0, k = 1, 2, . . . ,K1, µk > 0, k = 1, 2, . . . ,K2, ωi > 0, pij , p

∗
ij , qij , q

∗
ij ,

i, j = 1, 2, . . . , n, such that

ωir −
n∑
j=1

K1∑
k=1

ωjυk
∣∣aij(t)∣∣rqij/υk − n∑

j=1

ωj
∣∣aij(t)∣∣rq∗ij

−
n∑
j=1

ωj

K2∑
k=1

µk
∣∣bij(t)∣∣rpij/µk − n∑

j=1

ωj
|bij(ψ−1(t))|rp

∗
ij

1− τ̇(ψ−1(t))
> 0, (9)

http://www.journals.vu.lt/nonlinear-analysis
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where r =
∑K1

k=1 vk+1 =
∑K2

k=1 µk+1, K1qij+ q
∗
ij = 1, K2pij+p

∗
ij = 1, and ψ−1(t)

is the inverse function of ψ(t) = t− τ(t).

Proof. Let x(t) and y(t) be any two solutions of system (7) with the initial functions
ϕ(θ), φ(θ). Denote ηi(t) = xi(t) − yi(t), i = 1, 2, . . . , n. From Theorem 1 there exist
the measurable functions nxi(t)(t) ∈ N[−1,1](xi(t)) and nyi(t)(t) ∈ N[−1,1](yi(t)) such
that

dηi(t)

dt
= −ηi(t) +

n∑
j=1

aij(t)ηj(t) +

n∑
j=1

bij(t)ηj
(
t− τ(t)

)
−
(
nxi(t)(t)− nyi(t)(t)

)
. (10)

Define ζi(t) = ηi(t)/ωi, then

d|ζi(t)|r

dt
= r
∣∣ζi(t)∣∣r−1 sign(ζi(t))dζi(t)

dt

= r
∣∣ζi(t)∣∣r−1 sign(ζi(t)) 1

ωi

dηi(t)

dt

= r
∣∣ζi(t)∣∣r−1 sign(ζi(t))
×

(
−ζi(t) +

n∑
j=1

ωj
ωi
aij(t)ζj(t) +

n∑
j=1

ωj
ωi
bij(t)ζj

(
t− τ(t)

)
− r

ωi

∣∣ζi(t)∣∣r−1 sign(ζi(t))(nxi(t)(t)− nyi(t)(t))
)
, (11)

where

sign
(
ζi(t)

)
=


1, ζi(t) > 0,

0, ζi(t) = 0,

−1, ζi(t) < 0.

From (9) choose a constant ε > 0 such that

(ε− r) +
n∑
j=1

ωj
ωi

K1∑
k=1

υk
∣∣aij(t)∣∣rqij/υk + n∑

j=1

ωj
ωi

∣∣aij(t)∣∣rq∗ij
+

n∑
j=1

ωj
ωi

K2∑
k=1

µk
∣∣bij(t)∣∣rpij/µk + eετ

n∑
j=1

ωj
ωi

|bij(ψ−1(t))|rp
∗
ij

1− τ̇(ψ−1(t))
< 0. (12)

Consider the following Lyapunov functional:

V (t) =
∣∣ζi(t)(t)∣∣reεt
+

n∑
j=1

ωj
ωi(t)

t∫
t−τ(t)

|bi(t)j(ψ−1(s))|rp
∗
i(t)j

1− τ̇(ψ−1(s))
∣∣ζj(t)∣∣reε(s+τ(ψ−1(s))) ds, (13)
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where i(t) ∈ {1, 2, . . . , n}, |ζi(t)(t)| = |ζ(t)|∞ = (max16i6n |ζi(t)|r)1/r. According
to (11) and based on the following result, which obtain by Lemma 1

r

ωi

∣∣ζi(t)∣∣r−1 sign(ζi(t))(nxi(t)(t)− nyi(t)(t))
=

r

ωi

∣∣ζi(t)∣∣r−1 ζi(t)|ζi(t)|
(
nxi(t)(t)− nyi(t)(t)

)
> 0,

we have

V̇ (t) = eεt

(
ε
∣∣ζi(t)(t)∣∣r + r

∣∣ζi(t)(t)∣∣r−1 sign(ζi(t)(t))
{

n∑
j=1

ωj
ωi(t)

ai(t)j(t)ζj(t)

+

n∑
j=1

ωj
ωi(t)

bi(t)j(t)ζj
(
t−τ(t)

)
− ζi(t)(t)

− 1

ωi(t)

(
nxi(t)(t)(t)−nyi(t)(t)(t)

)}

+ eετ(ψ
−1(t))

n∑
j=1

ωj
ωi(t)

|bi(t)j(ψ−1(t))|rp
∗
i(t)j

1− τ̇(ψ−1(t))
∣∣ζj(t)∣∣r

−
n∑
j=1

ωj
ωi(t)

∣∣bi(t)j(t)∣∣rp∗i(t)j ∣∣ζj(t− τ(t))∣∣r
)

6 eεt

(
(ε− r)

∣∣ζi(t)(t)∣∣r + r

n∑
j=1

ωj
ωi(t)

∣∣ζi(t)(t)∣∣r−1∣∣ai(t)j(t)∣∣∣∣ζj(t)∣∣
+ r

n∑
j=1

ωj
ωi(t)

∣∣ζi(t)(t)∣∣r−1∣∣bi(t)j(t)∣∣∣∣ζj(t− τ(t))∣∣
+ eετ

n∑
j=1

ωj
ωi(t)

|bi(t)j(ψ−1(t))|rp
∗
i(t)j

1− τ̇(ψ−1(t))
∣∣ζj(t)∣∣r

−
n∑
j=1

ωj
ωi(t)

∣∣bi(t)j(t)∣∣rp∗i(t)j ∣∣ζj(t− τ(t))∣∣r
)
. (14)

Moreover, by Hardy inequality (3) we have

V̇ (t) 6 eεt

(
(ε− r)

∣∣ζi(t)(t)∣∣r + n∑
j=1

ωj
ωi(t)

K1∑
k=1

υk
∣∣ai(t)j(t)∣∣rqi(t)j/υk ∣∣ζi(t)(t)∣∣r

+

n∑
j=1

ωj
ωi(t)

∣∣ai(t)j(t)∣∣rq∗i(t)j ∣∣ζj(t)∣∣r

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Nonlinear dynamics of full-range CNNs 11

+

n∑
j=1

ωj
ωi(t)

K2∑
k=1

µk
∣∣bi(t)j(t)∣∣rpi(t)j/µk ∣∣ζi(t)(t)∣∣r

+ eετ
n∑
j=1

ωj
ωi(t)

|bi(t)j(ψ−1(t))|rp
∗
i(t)j

1− τ̇(ψ−1(t))
∣∣ζj(t)∣∣r)

6 eεt

(
(ε− r) +

n∑
j=1

ωj
ωi(t)

K1∑
k=1

υk
∣∣ai(t)j(t)∣∣rqi(t)j/υk

+

n∑
j=1

ωj
ωi(t)

∣∣ai(t)j(t)∣∣rq∗i(t)j + n∑
j=1

ωj
ωi(t)

K2∑
k=1

µk
∣∣bi(t)j(t)∣∣rpi(t)j/µk

+ eετ
n∑
j=1

ωj
ωi(t)

|bi(t)j(ψ−1(t))|rp
∗
i(t)j

1− τ̇(ψ−1(t))

)∣∣ζi(t)(t)∣∣r. (15)

From (12) and (15) we have
V̇ (t) 6 0.

Thus,
V (t) 6 V (0).

Due to (13), one has
V (t) >

∣∣ζi(t)(t)∣∣reεt,
and

V (0) =
∣∣ζi(0)(0)∣∣r
+

n∑
j=1

ωj
ωi(0)

0∫
−τ(0)

|bi(0)j(ψ−1(s))|rp
∗
i(0)j

1− τ̇(ψ−1(s))
∣∣ζj(s)∣∣reε(s+τ(ψ−1(s))) ds

6

(
1 +

n∑
j=1

ωj
ωi(0)

0∫
−τ(0)

|bi(0)j(ψ−1(s))|rp
∗
i(0)j

1− τ̇(ψ−1(s))
eε(s+τ(ψ

−1(s))) ds

)

× sup
s∈[−τ,0]

∣∣ζ(s)∣∣r∞
6 (1 +M) sup

s∈[−τ,0]

∣∣ζ(s)∣∣r∞,
where

ω = min
16j6n

ωj

and

M =

n∑
j=1

ωj
ω

max
16i6n

0∫
−τ(0)

|bij(ψ−1(s))|rp
∗
ij

1− τ̇(ψ−1(s))
eε(s+τ(ψ

−1(s))) ds.
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Hence ∣∣ζi(t)∣∣r 6 ∣∣ζi(t)(t)∣∣r 6 V (0)e−εt 6 (1 +M) sup
s∈[−τ,0]

∣∣ζ(s)∣∣r∞e−εt,

i.e., ∣∣xi(t)− yi(t)| 6M0‖ϕ− φ‖e−εt/r,

where M0 > 1 is a constant. It shows that the solution of system (7) is global exponen-
tially stable.

Remark 5. When we calculate the time derivative of the Lyapunov function in the proof
of Theorem 2, system (7) contains set-valued itemNQ(x(t)), which leads to the additional
difficulty compared with the systems in [19,21–23]. We overcome this difficulty by using
the monotonicity of the normal cone and the measurable selection theorem.

When r = 1, the following condition is established by directly estimating the right-
hand side of (14), instead of employing the Hardy inequality.

Corollary 1. Under Assumption 1, system (7) is global exponentially stable if there exist
constants ωi > 0, i = 1, 2, . . . , n, such that

ωi −
n∑
j=1

ωj
∣∣aij(t)∣∣− n∑

j=1

ωj
|bij(ψ−1(t))|
1− τ̇(ψ−1(t))

> 0.

When r = 1, let

V (t) =

n∑
i=1

ωi

(∣∣ζi(t)∣∣eεt + n∑
j=1

t∫
t−τ(t)

|bij(ψ−1(s))|
1− τ̇(ψ−1(s))

∣∣ζj(t)∣∣eε(s+τ(ψ−1(s))) ds

)
.

The following column diagonal dominant condition can be derived.

Corollary 2. Under Assumption 1, system (7) is global exponentially stable if there exist
constants ωj > 0, j = 1, 2, . . . , n, such that

ωj −
n∑
i=1

ωi
∣∣aij(t)∣∣− n∑

i=1

ωi
|bij(ψ−1(t))|
1− τ̇(ψ−1(t))

> 0.

In Theorem 2, choose K1 = K2 = 1, vk = µk = r − 1, pij = qij = (r − 1)/r,
p∗ij = q∗ij = 1/r, i, j = 1, 2, . . . , n. We have the following corollary.

Corollary 3. Suppose that Assumption 1 holds. If there exist constants ωi > 0, i =
1, 2, . . . , n, and r > 1 such that

ωir − r
n∑
j=1

ωj
∣∣aij(t)∣∣− (r − 1)

n∑
j=1

ωj
∣∣bij(t)∣∣− n∑

j=1

ωj
|bij(ψ−1(t))|
1− τ̇(ψ−1(t))

> 0,

system (7) is global exponentially stable.
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Next, the delay-dependent condition is established upon linear matrix inequality.

Theorem 3. Under Assumption 1, system (7) is global exponentially stable if there exist
a positive definite diagonal matrix P > 0 and symmetric matrix Q > 0 such that

− 2P + PA(t) +AT(t)P +
1

1− τ̇(ψ−1(t))
Q+ PB(t)Q−1

(
PB(t)

)T
< 0, (16)

where ψ−1(t) is the inverse function of ψ(t) = t− τ(t).

Proof. Let x(t) and y(t) be any two solutions of (7) with the initial functions ϕ(θ) and
φ(θ) for almost all θ ∈ [−τ, 0), then there exist the measurable functions nx(t)(t) ∈
NQ(x(t)) and ny(t)(t) ∈ NQ(y(t)) such that

ẋ(t) = −x(t) +A(t)x(t) +B(t)x
(
t− τ(t)

)
+ I − nx(t)(t)

and
ẏ(t) = −y(t) +A(t)y(t) +B(t)y

(
t− τ(t)

)
+ I − ny(t)(t).

Denote ζ(t) = x(t)− y(t), it is easy to get

ζ̇(t) = −ζ(t) +A(t)ζ(t) +B(t)ζ
(
t− τ(t)

)
−
(
nx(t)(t)− ny(t)(t)

)
. (17)

According to (16), take ε > 0 such that

(ε− 2)P + PA(t) +AT(t)P +
eετ(ψ

−1(t))

1− τ̇(ψ−1(t))
Q+ PB(t)Q−1

(
PB(t)

)T
< 0. (18)

Define a Lyapunov functional as

V (t) = ζT(t)Pζ(t)eεt +

t∫
t−τ(t)

1

1− τ̇(ψ−1(s))
ζT(s)Qζ(s)eε(s+τ(ψ

−1(s))) ds.

Thus

V̇ (t) = εζT(t)Pζ(t)eεt+ 2ζT(t)P ζ̇(t)eεt +
1

1−τ̇(ψ−1(t))
ζT(t)Qζ(t)eε(t+τ(ψ

−1(t)))

− ζT
(
t− τ(t)

)
Qζ
(
t− τ(t)

)
eεt

= eεt
[
εζT(t)Pζ(t) + 2ζT(t)P ζ̇(t) +

eετ(ψ
−1(t))

1− τ̇(ψ−1(t))
ζT(t)Qζ(t)

− ζT
(
t− τ(t)

)
Qζ
(
t− τ(t)

)]
.
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From (17) we have

V̇ (t) = eεt
[
εζT(t)Pζ(t)− 2ζT(t)Pζ(t) + 2ζT(t)PA(t)ζ(t)

+ 2ζT(t)PB(t)ζ
(
t− τ(t)

)
+

eετ(ψ
−1(t))

1− τ̇(ψ−1(t))
ζT(t)Qζ(t)

− 2ζT(t)P
(
nx(t)(t)− ny(t)(t)

)
− ζT

(
t− τ(t)

)
Qζ
(
t− τ(t)

)]
.

By Lemma 1 it has ζT(t)P (nx(t)(t)− ny(t)(t)) > 0, then

V̇ (t) 6 eεt
[
ζT(t)

(
εP − 2P + PA(t) +AT(t)P +

eετ(ψ
−1(t))

1− τ̇(ψ−1(t))
Q

)
ζ(t)

+ 2ζT(t)PB(t)ζ
(
t− τ(t)

)
− ζT

(
t− τ(t)

)
Qζ
(
t− τ(t)

)]
6 eεtWT

(
(ε− 2)P + PA(t) +AT(t)P + eετ(ψ

−1(t))

1−τ̇(ψ−1(t))Q PB(t)

(PB(t))T −Q

)
W,

where W = (ζT(t), ζT(t− τ(t)))T. Based on the Schur complement lemma and condi-
tion (18), it has V̇ (t) 6 0 for all t > 0. Then,

V (0) > V (t) > ζT(t)Pζ(t)eεt > λmin(P )
∥∥ζ(t)∥∥2eεt.

Furthermore,

V (0) = ζT(0)Pζ(0) +

0∫
−τ(0)

1

1− τ̇(ψ−1(s))
ζT(s)Qζ(s)eε(s+τ(ψ

−1(s))) ds

6 λmax(P )
∥∥ζ(0)∥∥2 + λmax(Q)L

0∫
−τ(0)

∥∥ζ(s)∥∥2 ds
6
(
λmax(P ) + λmax(Q)Lτ(0)

)
sup

s∈[−τ,0]

∥∥ζ(s)∥∥2,
where

L = sup
s∈[−τ,0]

eε(s+τ(ψ
−1(s)))

1− τ̇(ψ−1(s))
.

Thus,

∥∥x(t)− y(t)∥∥ =
∥∥ζ(t)∥∥ 6

√
λmax(P ) + λmax(Q)Lτ(0)

λmin(P )
sup

s∈[−τ,0]

∥∥ζ(s)∥∥e−εt/2
6M0‖ϕ− φ‖e−εt/2,

where M0 > 1 is a constant. The proof is completed.
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4 Numerical simulation

For the sake of demonstrating the correctness of main results, a second-order FRCNN (7)
with time-varying delays is shown as follows:(

ẋ1(t)
ẋ2(t)

)
=
(
−I +A(t)

)(x1(t)
x2(t)

)
+B(t)

(
x1(t− τ(t))
x2(t− τ(t))

)
−NQ

(
x1(t)
x2(t)

)
, (19)

where

I =

(
1 0
0 1

)
and NQ

(
x1(t)
x2(t)

)
=

(
N[−1,1](x1(t))
N[−1,1](x2(t))

)
.

We take

A(t) =

( 2+cos t
16

1+sin t
16

1−sin t
13

1+cos t
13

)
, B(t) =

( 2−cos t
16

2+cos t
16

1−cos t
13

2+sin t
13

)
,

and τ(t) = 1 + cos t/2. It is easy to see that inft∈R+
{1 − τ̇(t)} > 0. Choose ωi = 1,

i = 1, 2, and r = 2, then

2− 2

2∑
j=1

∣∣a1j(t)∣∣− 2∑
j=1

∣∣b1j(t)∣∣− 2∑
j=1

|b1j(ψ−1(t))|
1− τ̇(ψ−1(t))

= 2− 5 + cos t+ sin t

8
− 1

8(1− τ̇(ψ−1(t)))
> 0

and

2− 2

2∑
j=1

∣∣a2j(t)∣∣− 2∑
j=1

∣∣b2j(t)∣∣− 2∑
j=1

|b2j(ψ−1(t))|
1− τ̇(ψ−1(t))

= 2− 7− sin t+ cos t

13
− 3− cos(ψ−1(t))− sin(ψ−1(t))

13(1− τ̇(ψ−1(t)))
> 0.

This means the condition of Theorem 2 holds. Hence, system (19) is globally exponen-
tially stable. Figure 1 shows the dynamic behaviors of second-order FRCNN (19) with
eight initial states. Figure 2 illustrates the 2-dimensional phase plots with eight initial
states. The simulation results show that system (19) exponentially converges to zero.

Remark 6. From the above analysis, the exponential stability of system (19) is guaran-
teed by using Theorem 2. In fact, if choose P = I , Q = I/2, based on Theorem 3, we
can also acquire that system (19) is global exponentially stable.

Remark 7. From the simulation results in Figs. 1 and 2 we can get that the variation
range of the input states does not exceed that of the output states. In other words, the
normal cone improves the variation range of the input states, which is consistent with our
theoretical analysis. That is, the difference between our system and the classical CNNs
system.
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Figure 1. The states of variables x1(t) and x2(t).

Figure 2. Phase plots of variable x(t).

5 Conclusion

In this paper, the improved model of the FRCNNs is proposed and researched. The
existence of the solution is proved by using set-valued analysis and differential inclusions.
Based on the Hardy inequality and the matrix analysis method, some sufficient conditions
upon the time-varying delays are obtained to achieve the GES. In this paper, the time-
varying delay is bounded and continuously differentiable. However, the time-varying
delay may be unbounded or discontinuous. Therefore, the relatively weak conditions
about the time-varying delay will be considered in the future.
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