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This paper is concerned with the finite-time stability of Caputo fractional neural networks with distributed delay. The factors of
such systems including Caputo’s fractional derivative and distributed delay are taken into account synchronously. For the Caputo
fractional neural network model, a finite-time stability criterion is established by using the theory of fractional calculus and
generalized Gronwall-Bellman inequality approach. Both the proposed criterion and an illustrative example show that the stability
performance of Caputo fractional distributed delay neural networks is dependent on the time delay and the order of Caputo’s
fractional derivative over a finite time.

1. Introduction

It is well known that the fractional calculus is a generalization
and extension of the traditional integer-order differential
and integral calculus. The fractional calculus has gained
importance in both theoretical and engineering applications
of several branches of science and technology. It draws a
great application in nonlinear oscillations of earthquakes
and many physical phenomena such as seepage flow in
porous media and in fluid dynamic traffic models. Many
practical systems in interdisciplinary fields can be described
through fractional derivative formulation. For more details
on fractional calculus theory, one can see the monographs of
Miller and Ross [1], Podlubny [2], Diethelm [3], and Kilbas
et al. [4]. In the last few years, there has been a surge in the
study of the theory of fractional dynamical systems. Some
recent works the theory of fractional differential systems can
be seen in [5–10] and references therein. In particular, for the
first time, Lazarević [7] investigated the finite-time stability
of fractional time-delay systems. In [8], Lazarević and Spasić
further introduced the Gronwall’s approach to discuss the
finite-time stability of fractional-order dynamic systems.

Compared with the classical integer-order derivatives,
fractional-order derivatives provide an excellent approach
for the description of memory and hereditary properties

of various processes. Therefore, it may be more accurate
to model by fractional-order derivatives than integer-order
ones. In [11–13], fractional operators were introduced into
artificial neural network, and the fractional-order formula-
tions of artificial neural network models were also proposed
in research works about biological neurons. Recently, there
has been an increasing interest in the investigation of the
fractional-order neural networks, and some important and
interesting results were obtained [13–19], due to their sig-
nificance in both theory and applications. In [13], Kaslik
and Sivasundaram discussed the stability and multistability,
periodic oscillation, bifurcations, and chaos of fractional-
order neural networks of Hopfield type. Arena et al. [14]
investigated the chaotic behavior in noninteger-order cellular
neural networks. Boroomand and Menhaj [15] considered
fractional-orderHopfield neural networks and analyzed their
stability by means of energy-like function. Huang et al. [16]
presented the complex dynamical behaviors of a fractional-
order four-cell cellular neural network bymeans of numerical
simulations.

On the other hand, time delay is one of the inevitable
problems in practical engineering applications, which has an
important effect on the stability and synchronization capa-
bility of dynamical systems in the real world. In recent years,
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there are many important results with respect to integer-
order network dynamical systems (see [20–26] and refer-
ences therein). In [20, 21], the finite-time synchronization
problems of various kinds of integer-order dynamical system
without delay effect have been investigated. Currently, the
dynamical behaviours of integer-order networks dynamical
systems with delay [22–26] are discussed by applying the
different methods. However, to the best of our knowledge,
there are very rare works on the problems for fractional-
order delayed neural networks [18, 19]. Zhou et al. [18]
discussed numerical simulation of chaotic synchronization of
a fractional neuron network systemwith time-varying delays,
while the theoretical result was not established. Chen et al.
[19] investigated the uniform stability for a class of fractional-
order neural networks with constant delay by the analytical
approach.

In this paper, motivated by the works of Lazarević and
Spasić [7, 8], we are devoted to establishing the finite-
time stability criterion for fractional-order neural networks
with distributed delay. Since fractional-order derivatives are
nonlocal and have weakly singular kernels, many methods
applied to the classical integer-order dynamical systems are
not suitable for fractional-order delayed neural networks.
Therefore, it is quite interesting and challenging to study
the stability problems for fractional-order distributed delay
neural networks. In this paper, we will apply the frac-
tional calculus and generalized Gronwall-Bellman inequality
(see [9]) to establish the finite-time stability criterion of
fractional-order distributed delayed neural networks. The
obtained criterion is convenient and feasible to check the
considered model’s stability over a finite time.

This paper is organized as follows. In Section 2, we will
recall some definitions concerning fractional calculus and
elaborate the Caputo fractional distributed delayed neural
networks. In Section 3, the finite-time stability criterion of
Caputo fractional neural networks with distributed delays is
established. An example is given to show the effectiveness and
applicability of the proposed result in Section 4. Finally, some
concluding remarks are drawn in Section 5.

2. Preliminaries and Model Formulation

In this section, we first recall some definitions of fractional
calculus and the well-known results. For more details, one
can see [1–4]. Next, we elaborate Caputo fractional neural
networks model with distributed delay.

Definition 1. Riemann-Liouville’s fractional integral of order
𝑞 > 0 with the lower limit zero for a function 𝑓 : R+ → R𝑛

is defined as

𝐷
−𝑞

𝑓 (𝑡) =
1

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝑓 (𝑠) 𝑑𝑠, 𝑡 > 0, (1)

that provided the right side is pointwise defined on [0, +∞),
where Γ(⋅) is the gamma function.

Definition 2. Caputo’s fractional derivative of order 𝑞 for a
function 𝑓 : R+ → R𝑛 is defined as

𝐷
𝑞

𝑓 (𝑡) =
1

Γ (𝑚 − 𝑞 + 1)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝑚−𝑞

𝑓
(𝑚+1)

(𝑠) 𝑑𝑠,

0 ≤ 𝑚 ≤ 𝑞 < 𝑚 + 1.

(2)

Definition 3. The Mittag-Leffler function in two parameters
is defined as

𝐸
𝛼,𝛽

(𝑧) =

+∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 𝛽)
, (3)

where 𝛼 > 0, 𝛽 > 0, and 𝑧 ∈ C; C denotes the complex plane.
In particular, for 𝛽 = 1,

𝐸
𝛼,1
(𝑧) = 𝐸

𝛼
(𝑧) =

+∞

∑

𝑘=0

𝑧
𝑘

Γ (𝑘𝛼 + 1)
(4)

have the interesting property

𝐷
𝛼

𝐸
𝛼
(𝜆𝑧
𝛼

) = 𝜆𝐸
𝛼
(𝜆𝑧
𝛼

) , 𝜆, 𝑧 ∈ C. (5)

From [1–4], one knows that the superiority of Caputo’s
fractional derivative is that the initial conditions for fractional
differential equations underCaputo’s sense take on the similar
form as for integer-order differential ones, which also have
well understood physical meanings. Furthermore, Caputo’s
fractional derivative of a constant is equal to zero. Therefore,
we discuss fractional-order neural networks with distributed
delay under Caputo’s sense throughout this paper.

In this paper, we are interested in the finite-time stability
of Caputo’s fractional-order neural networks with distributed
delay by the following state equations:

𝐷
𝛼

𝑦
𝑖
(𝑡) = − 𝑐

𝑖
𝑦
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

∫

𝜏

0

𝑏
𝑖𝑗
(𝑠) 𝑔
𝑗
(𝑦
𝑗
(𝑡 − 𝑠)) 𝑑𝑠 + 𝐼

𝑖
,

𝑖 = 1, 2, . . . , 𝑛, 𝑡 ≥ 0,

(6)

with the initial conditions

𝑦
𝑖
(𝜃) = 𝜑

𝑖
(𝜃) , 𝑖 = 1, 2, . . . , 𝑛, 𝜃 ∈ [−𝜏, 0] , (7)

or in the matrix-vector notation

𝐷
𝛼

𝑦 (𝑡) = − 𝐶𝑦 (𝑡) + 𝐴𝑓 (𝑦 (𝑡))

+ ∫

𝜏

0

𝐵 (𝑠) 𝑔 (𝑦 (𝑡 − 𝑠)) 𝑑𝑠 + 𝐼, 𝑡 ≥ 0,

(8)

with the initial condition

𝑦 (𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝜏, 0] , (9)
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where 𝐷𝛼𝑥 is an 𝛼 order Caputo’s fractional derivative of 𝑥;
𝛼 is a positive constant and satisfies 0 < 𝛼 < 1; 𝑛 is the
number of neurons in the indicated neural network; 𝑦(𝑡) =
(𝑦
1
(𝑡), 𝑦
2
(𝑡), . . . , 𝑦

𝑛
(𝑡))
𝑇 is the state vector of the network at

time 𝑡; the functions

𝑓 (𝑦 (𝑡)) = (𝑓
1
(𝑦(𝑡), 𝑓

2
(𝑦(𝑡), . . . , 𝑓

𝑛
(𝑦(𝑡))

𝑇

,

𝑔 (𝑦 (𝑡)) = (𝑔
1
(𝑦(𝑡), 𝑔

2
(𝑦(𝑡), . . . , 𝑔

𝑛
(𝑦(𝑡))

𝑇

(10)

are the activation functions of the neurons at time 𝑡; 𝐶 =

diag(𝑐
1
, 𝑐
2
, . . . , 𝑐

𝑛
) is a diagonal matrix with 𝑐

𝑖
> 0 for 𝑖 =

1, 2, . . . , 𝑛; 𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

is the feedback matrix; 𝜏 > 0 denotes
the maximum possible transmission delay from neuron to
another; 𝐵(𝑠) = (𝑏

𝑖𝑗
(𝑠))
𝑛×𝑛

is the delayed feedback matrix;
𝐼 = (𝐼

1
, 𝐼
2
, . . . , 𝐼

𝑛
)
𝑇 is an external bias vector.

Throughout this paper, we make the following assump-
tions.

(𝐻
1
) The neurons activation functions 𝑓

𝑗
(⋅) and 𝑔

𝑗
(⋅) are

bounded.
(𝐻
2
) The neurons activation functions 𝑓

𝑗
(⋅) and 𝑔

𝑗
(⋅) are

Lipschitz continuous. That is, there exist positive
constants𝑀

𝑗
, 𝑁
𝑗
(𝑗 = 1, 2, . . . , 𝑛) such that

󵄨󵄨󵄨󵄨󵄨
𝑓
𝑗
(𝑢) − 𝑓

𝑗
(V)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑀
𝑗
|𝑢 − V| ,

󵄨󵄨󵄨󵄨󵄨
𝑔
𝑗
(𝑢) − 𝑔

𝑗
(V)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑁
𝑗
|𝑢 − V| ,

∀𝑢, V ∈ R.

(11)

(𝐻
3
) For 𝑖, 𝑗 = 1, 2, . . . , 𝑛, the function 𝑏

𝑖𝑗
(⋅) is continuous

on [0, 𝜏].

From the assumptions above, we denote 𝑀 =

max
1≤𝑗≤𝑛

{𝑀
𝑗
},𝑁 = max

1≤𝑗≤𝑛
{𝑁
𝑗
}, and 𝐵 = sup

0≤𝑠≤𝜏
{‖𝐵(𝑠)‖}.

Note that Caputo’s fractional derivative of a constant
is equal to zero [2], and then it follows from Schauder
fixed point theorem and assumptions (𝐻

1
)–(𝐻
3
) that the

equilibrium points of system (1) exist. We can shift the
equilibrium point of system (6) to the origin. Let 𝑦∗ =

(𝑦
∗

1
, 𝑦
∗

2
, . . . , 𝑦

∗

𝑛
)
𝑇 be an equilibrium point of system (6);

𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥
2
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

= (𝑦
1
(𝑡) − 𝑦

∗

1
, 𝑦
2
(𝑡) −

𝑦
∗

2
, . . . , 𝑦

𝑛
(𝑡) − 𝑦

∗

𝑛
)
𝑇; then system (1) can be written as

𝐷
𝛼

𝑥
𝑖
(𝑡) = − 𝑐

𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑

𝑗=1

∫

𝜏

0

𝑏
𝑖𝑗
(𝑠) 𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝑠)) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛, 𝑡 ≥ 0,

(12)

with the initial conditions

𝑥
𝑖
(𝜃) = 𝜑

𝑖
(𝜃) , 𝑖 = 1, 2, . . . , 𝑛, 𝜃 ∈ [−𝜏, 0] , (13)

where 𝑓
𝑗
(𝑥
𝑗
(𝑡)) = 𝑓

𝑗
(𝑥
𝑗
(𝑡) + 𝑦

∗

𝑗
) − 𝑓

𝑗
(𝑦
∗

𝑗
), 𝑔
𝑗
(𝑥
𝑗
(𝑡)) =

𝑔
𝑗
(𝑥
𝑗
(𝑡) + 𝑦

∗

𝑗
) − 𝑔
𝑗
(𝑦
∗

𝑗
), and 𝜑

𝑖
(𝜃) = 𝑦

𝑖
(𝜃) − 𝑦

∗

𝑖
, 𝜃 ∈ [−𝜏, 0].

By using the matrix-vector notation, system (12) can be
expressed in the form

𝐷
𝛼

𝑥 (𝑡) = − 𝐶𝑥 (𝑡) + 𝐴𝐹 (𝑥 (𝑡))

+ ∫

𝜏

0

𝐵 (𝑠) 𝐺 (𝑥 (𝑡 − 𝑠)) 𝑑𝑠, 𝑡 ≥ 0,

(14)

with the initial condition

𝑥 (𝜃) = 𝜑 (𝜃) , 𝜃 ∈ [−𝜏, 0] , (15)

where 𝐹(𝑥(𝑡)) = (𝑓
1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡))
𝑇, and

𝐺(𝑥(𝑡)) = (𝑔
1
(𝑥
1
(𝑡)), 𝑔

2
(𝑥
2
(𝑡)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡))
𝑇.

From assumption (𝐻
2
), we know that the functions𝑓

𝑖
and

𝑔
𝑖
satisfy the following properties:

󵄨󵄨󵄨󵄨𝑓𝑖 (𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝑀

𝑖
|𝑢| ,

󵄨󵄨󵄨󵄨𝑔𝑖 (𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝑁
𝑖
|𝑢| ,

𝑖 = 1, 2, . . . , 𝑛, ∀𝑢 ∈ R.
(16)

Define the two new functions as follows:

𝑟
𝑖
(𝑡) =

{{

{{

{

𝑓
𝑖
(𝑥
𝑖
(𝑡))

𝑥
𝑖
(𝑡)

, 𝑥
𝑖
(𝑡) ̸= 0,

0, 𝑥
𝑖
(𝑡) = 0,

𝑘
𝑖
(𝑡) =

{{

{{

{

𝑔
𝑖
(𝑥
𝑖
(𝑡))

𝑥
𝑖
(𝑡)

, 𝑥
𝑖
(𝑡) ̸= 0,

0, 𝑥
𝑖
(𝑡) = 0.

(17)

It follows from (17) that

𝑓
𝑖
(𝑥
𝑖
(𝑡)) = 𝑟

𝑖
(𝑡) 𝑥
𝑖
(𝑡) , 𝑔

𝑖
(𝑥
𝑖
(𝑡)) = 𝑘

𝑖
(𝑡) 𝑥
𝑖
(𝑡) . (18)

Thus, system (14) can be further shifted into the following
form:

𝐷
𝛼

𝑥 (𝑡) = [−𝐶 + 𝐴𝑅 (𝑡)] 𝑥 (𝑡)

+ ∫

𝜏

0

𝐵 (𝑠)𝐾 (𝑡 − 𝑠) 𝑥 (𝑡 − 𝑠) 𝑑𝑠,

𝑡 ≥ 0, 0 < 𝛼 < 1,

(19)

where 𝑅(𝑡) = diag{𝑟
𝑖
(𝑡)}, and 𝐾(𝑡) = diag{𝑘

𝑖
(𝑡)}. Obviously,

one can get |𝑟
𝑖
(𝑡)| ≤ 𝑀

𝑖
, and |𝑘

𝑖
(𝑡)| ≤ 𝑁

𝑖
.

Let C([−𝜏, 0],R𝑛) denote the Banach space of all contin-
uous functions over a time interval of length 𝜏, mapping the
interval [𝑡−𝜏, 𝑡] intoR𝑛 with the norm defined as follows: for
every 𝜑(⋅) ∈ C([−𝜏, 0],R𝑛),

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 = sup
𝜃∈[−𝜏,0]

󵄨󵄨󵄨󵄨𝜑 (𝜃)
󵄨󵄨󵄨󵄨 . (20)

Definition 4 (see [7, 8], finite-time stability). System (19) with
the initial condition 𝑥(𝑡) = 𝜑(𝑡), −𝜏 ≤ 𝑡 ≤ 0 is finite-time
stable with respect to {𝛿, 𝜀, 𝑡

0
, 𝐽}, 𝛿 < 𝜀, if and only if

󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 < 𝛿 (21)
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implies

‖𝑥 (𝑡)‖ < 𝜀, ∀𝑡 ∈ 𝐽, (22)

where 𝛿 is a positive real number and 𝜀 > 0, 𝛿 < 𝜀, 𝑡
0
denotes

the initial time of observation of the system, and 𝐽 denotes
time interval 𝐽 = [𝑡

0
, 𝑡
0
+ 𝐻).

The following generalized Gronwall-Bellman inequality
was derived by Ye et al. [9], which is basic to establish the
finite-time stability criterion of system (19).

Lemma 5 (see [9, generalized Gronwall-Bellman inequal-
ity]). Let 𝑢(𝑡), 𝑎(𝑡) be nonnegative and local integrable on
[0,𝐻), 𝐻 ≤ +∞, and let 𝑔(𝑡) be a nonnegative, nondecreasing
continuous function defined on [0,𝐻), 𝑔(𝑡) ≤ 𝑀, and let 𝑀
be a real constant, 𝛼 > 0 with

𝑢 (𝑡) ≤ 𝑎 (𝑡) + 𝑔 (𝑡) ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑢 (𝑠) 𝑑𝑠, 𝑡 ∈ [0,𝐻) , (23)

and then

𝑢 (𝑡) ≤ 𝑎 (𝑡)

+ ∫

𝑡

0

{

+∞

∑

𝑛=1

[𝑔 (𝑡) Γ (𝛼)]
𝑛

Γ (𝑛𝛼)
(𝑡 − 𝑠)

𝑛𝛼−1

𝑎 (𝑠)} 𝑑𝑠,

𝑡 ∈ [0,𝐻) .

(24)

In addition, if 𝑎(𝑡) is a nondecreasing function [0, 𝑇), then

𝑢 (𝑡) ≤ 𝑎 (𝑡) 𝐸
𝛼
[𝑔 (𝑡) Γ (𝛼) 𝑡

𝛼

] , 𝑡 ∈ [0,𝐻) , (25)

where 𝐸
𝛼
(⋅) is the Mittag-Leffler function with one parameter

(see [1–4]).

3. Main Result

In this section, we derive the sufficient conditions for finite-
time stability of Caputo fractional neural networks with dis-
tributed delays by using the generalized Gronwall-Bellman
inequality [9].

Theorem 6. Let system (19) satisfy Assumptions (𝐻
1
)–(𝐻
3
)

with the initial condition 𝑥(𝜃) = 𝜑(𝜃), 𝜃 ∈ [−𝜏, 0], and

[1 +
𝜏𝑁𝐵

Γ (𝛼 + 1)
𝑡
𝛼

]

× 𝐸
𝛼
[(𝜇 (𝐶) +𝑀𝜇 (𝐴) + 𝜏𝑁𝐵) 𝑡

𝛼

] ≤
𝜀

𝛿
, 𝑡 ∈ 𝐽 = [0,𝐻) ,

(26)

and then system (19) is finite-time stable with respect to
{𝛿, 𝜀, 0, 𝐽}, 𝛿 < 𝜀, where 𝜇(⋅) denotes the largest singular value
of matrix (⋅) and 𝐸

𝛼
(⋅) is the Mittag-Leffler function with one

parameter.

Proof. According to the property of the fractional order 0 <
𝛼 < 1, one can obtain that system (19) is equivalent to the
following Volterra fractional integral with memory

𝑥 (𝑡) = 𝜑 (0)

+
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

× { [−𝐶 + 𝐴𝑅 (𝑠)] 𝑥 (𝑠)

+∫

𝜏

0

𝐵 (𝜃)𝐾 (𝑠 − 𝜃) 𝑥 (𝑠 − 𝜃) 𝑑𝜃} 𝑑𝑠.

(27)

Applying the appropriate properties of the norm ‖ ⋅ ‖ on (27),
it follows that

‖𝑥 (𝑡)‖ ≤
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 +

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
[−𝐶 + 𝐴𝑅 (𝑠)] 𝑥 (𝑠)

+∫

𝜏

0

𝐵 (𝜃)𝐾 (𝑠 − 𝜃) 𝑥 (𝑠 − 𝜃) 𝑑𝜃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑑𝑠.

(28)

Let 𝑢(𝑡) = sup
𝜃∈[−𝜏,0]

‖𝑥(𝑡+𝜃)‖. For 0 ≤ 𝑡 < 𝐻, it follows from
(28) that

𝑢 (𝑡) ≤
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 +

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

{ [𝜇 (𝐶) +𝑀𝜇 (𝐴)] ⋅ ‖𝑥 (𝑠)‖

+∫

𝜏

0

𝐵𝑁‖𝑥 (𝑠 − 𝜃)‖ 𝑑𝜃} 𝑑𝑠

≤
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 +

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

{ [𝜇 (𝐶) +𝑀𝜇 (𝐴)] ⋅ ‖𝑥 (𝑠)‖

+∫

𝜏

0

𝐵𝑁 [𝑢 (𝑠) +
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩] 𝑑𝜃} 𝑑𝑠

≤
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 +

1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

{ [𝜇 (𝐶) +𝑀𝜇 (𝐴)] ⋅ 𝑢 (𝑠)

+∫

𝜏

0

𝐵𝑁 [𝑢 (𝑠) +
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩] 𝑑𝜃} 𝑑𝑠
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≤
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 [1 +

𝜏𝐵𝑁

Γ (𝛼 + 1)
𝑡
𝛼

] +
1

Γ (𝛼)

× ∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

[𝜇 (𝐶) +𝑀𝜇 (𝐴) + 𝜏𝐵𝑁] 𝑢 (𝑠) 𝑑𝑠,

(29)

where 𝜇(⋅) denotes the largest singular value of matrix (⋅).
Obviously, one can introduce a nondecreasing function 𝑎(𝑡)
as

𝑎 (𝑡) =
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 [1 +

𝜏𝐵𝑁

Γ (𝛼 + 1)
𝑡
𝛼

] , 𝑡 ∈ [0,𝐻) . (30)

An application of the lemma yields that

‖𝑥 (𝑡)‖ ≤ 𝑢 (𝑡)

≤
󵄩󵄩󵄩󵄩𝜑
󵄩󵄩󵄩󵄩 [1 +

𝜏𝐵𝑁

Γ (𝛼 + 1)
𝑡
𝛼

]

× 𝐸
𝛼
[(𝜇 (𝐶) +𝑀𝜇 (𝐴) + 𝜏𝐵𝑁) 𝑡

𝛼

] , 𝑡 ∈ [0,𝐻) .

(31)

Hence, using the basic condition of the theorem, inequality
(26) yields

‖𝑥 (𝑡)‖ < 𝜀, ∀𝑡 ∈ 𝐽. (32)

This completes the proof.

Remark 7. The obtained theorem presents a finite-time sta-
bility criterion, which shows that the finite-time stability
of Caputo fractional distributed delayed neural networks
is dependent on the time delay and the order of Caputo’s
fractional derivative.

4. An Illustrative Example

In this section, we give an example to verify the validity and
applicability of the given result.

Example 1. Consider the following two-state Caputo frac-
tional neural networks model with distributed delay:

𝐷
𝛼

𝑥
1
(𝑡) = − 0.4𝑥

1
(𝑡) − 0.2𝑓

1
(𝑥
1
(𝑡)) + 0.1𝑓

2
(𝑥
2
(𝑡))

− ∫

𝜏

0

𝑠𝑓
1
(𝑥
1
(𝑡 − 𝑠)) 𝑑𝑠 + ∫

𝜏

0

𝑠
2

𝑓
2
(𝑥
2
(𝑡 − 𝑠)) 𝑑𝑠,

𝐷
𝛼

𝑥
2
(𝑡) = − 0.3𝑥

2
(𝑡) + 0.3𝑓

1
(𝑥
1
(𝑡)) + 0.2𝑓

2
(𝑥
2
(𝑡))

+ ∫

𝜏

0

𝑠
2

𝑓
1
(𝑥
1
(𝑡 − 𝑠)) 𝑑𝑠 + ∫

𝜏

0

𝑠𝑓
2
(𝑥
2
(𝑡 − 𝑠)) 𝑑𝑠,

(33)

with an associated function of the initial state

𝑥 (𝑡) = 𝜑 (𝑡) = 0, −𝜏 ≤ 𝑡 ≤ 0, (34)

where 𝛼 = 1/2, 𝜏 = 0.2, 𝑓
𝑗
(𝑥
𝑗
) = 𝑔

𝑗
(𝑥
𝑗
) = (1/2)(|𝑥

𝑗
+ 1| −

|𝑥
𝑗
− 1|), and 𝑗 = 1, 2.

Now, we apply our theorem to verify that system (33) is
finite-time stable. Take

𝑡
0
= 0, 𝐽 = [0, 2) , 𝛿 = 0.02, 𝜀 = 0.1,

𝐶 = [
−0.4 0

0 −0.3
] , 𝐴 = [

−0.2 0.1

0.3 0.2
] ,

𝐵 (𝑠) = [
−𝑠 𝑠
2

𝑠
2

𝑠
] .

(35)

Then, it follows from the initial data and system (33) that

𝑀 = 𝑁 = 1, 𝜇 (𝐶) = 0.5,

𝜇 (𝐴) = 1.2108, 𝐵 = 0.2040.

(36)

Using the condition of theorem, we can obtain

[1 +
0.0408

0.886
𝑇
0.5

𝑒
] 𝐸
1/2

[1.7516𝑇
0.5

𝑒
]

≤
0.1

0.02
󳨐⇒ 𝑇
𝑒
≈ 1.0361,

(37)

where 𝑇
𝑒
is an estimated time of the finite-time stability.

Therefore, system (33) is finite-time stable with respect to
{0.02, 0.1, 0, [0, 2)}.

5. Conclusions

In this paper, we have investigated the finite-time stability
of Caputo fractional distributed delayed neural networks
and have derived the finite-time stability criterion based
on the fractional calculus theory and generalized Gronwall-
Bellman inequality technique. The proposed criterion with
an illustrative example shows that the stability performance
of Caputo fractional neural networks with distributed delay
is dependent on the time delay and the order of Caputo’s
fractional derivative over a finite time. Also, some other
dynamical behaviors, such as synchronization and control,
of fractional-order network systems will become our future
investigative works.
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