2,804 research outputs found

    Optimising for energy or robustness? Trade-offs for VM consolidation in virtualized datacenters under uncertainty

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s11590-016-1065-xReducing the energy consumption of virtualized datacenters and the Cloud is very important in order to lower CO2 footprint and operational cost of a Cloud operator. However, there is a trade-off between energy consumption and perceived application performance. In order to save energy, Cloud operators want to consolidate as many Virtual Machines (VM) on the fewest possible physical servers, possibly involving overbooking of resources. However, that may involve SLA violations when many VMs run on peak load. Such consolidation is typically done using VM migration techniques, which stress the network. As a consequence, it is important to find the right balance between the energy consumption and the number of migrations to perform. Unfortunately, the resources that a VM requires are not precisely known in advance, which makes it very difficult to optimise the VM migration schedule. In this paper, we therefore propose a novel approach based on the theory of robust optimisation. We model the VM consolidation problem as a robust Mixed Integer Linear Program and allow to specify bounds for e.g. resource requirements of the VMs. We show that, by using our model, Cloud operators can effectively trade-off uncertainty of resource requirements with total energy consumption. Also, our model allows us to quantify the price of the robustness in terms of energy saving against resource requirement violations.Peer ReviewedPostprint (author's final draft

    REDUCING COST OF POWER CONSUMPTION USING GOAL PROGRAMMING OPTIMIZATION AND RENEWABLE ENERGY SOURCE

    Get PDF
    The demand of cloud computing grows rapidly with the rapid increase in IT infrastructure. Cloud computing now a day, are widely used by industry, organization and society to deliver IT services. This rapid growth leads to the creation of large data centers. These data centers requires enormous amount of electrical power for its operation and thus, result in high operational cost and carbon-dioxide emission. In this work the key idea is to reduce the requirement of power consumption by efficient task allocation and its cost. Datacenters are connected to conventional power grid as well as to renewable energy source. We performed this work in two phases: first used goal programming optimization for energy efficient task allocation to reduce power consumption and then analyzed the reduction in cost if we use RES for power supply. We used solar power panel as renewable energy source and analyzed the significant reduction in cost

    A survey on energy efficiency in information systems

    Get PDF
    Concerns about energy and sustainability are growing everyday involving a wide range of fields. Even Information Systems (ISs) are being influenced by the issue of reducing pollution and energy consumption and new fields are rising dealing with this topic. One of these fields is Green Information Technology (IT), which deals with energy efficiency with a focus on IT. Researchers have faced this problem according to several points of view. The purpose of this paper is to understand the trends and the future development of Green IT by analyzing the state-of-the-art and classifying existing approaches to understand which are the components that have an impact on energy efficiency in ISs and how this impact can be reduced. At first, we explore some guidelines that can help to understand the efficiency level of an organization and of an IS. Then, we discuss measurement and estimation of energy efficiency and identify which are the components that mainly contribute to energy waste and how it is possible to improve energy efficiency, both at the hardware and at the software level

    On the feasibility of collaborative green data center ecosystems

    Get PDF
    The increasing awareness of the impact of the IT sector on the environment, together with economic factors, have fueled many research efforts to reduce the energy expenditure of data centers. Recent work proposes to achieve additional energy savings by exploiting, in concert with customers, service workloads and to reduce data centers’ carbon footprints by adopting demand-response mechanisms between data centers and their energy providers. In this paper, we debate about the incentives that customers and data centers can have to adopt such measures and propose a new service type and pricing scheme that is economically attractive and technically realizable. Simulation results based on real measurements confirm that our scheme can achieve additional energy savings while preserving service performance and the interests of data centers and customers.Peer ReviewedPostprint (author's final draft

    An Analysis of Storage Virtualization

    Get PDF
    Investigating technologies and writing expansive documentation on their capabilities is like hitting a moving target. Technology is evolving, growing, and expanding what it can do each and every day. This makes it very difficult when trying to snap a line and investigate competing technologies. Storage virtualization is one of those moving targets. Large corporations develop software and hardware solutions that try to one up the competition by releasing firmware and patch updates to include their latest developments. Some of their latest innovations include differing RAID levels, virtualized storage, data compression, data deduplication, file deduplication, thin provisioning, new file system types, tiered storage, solid state disk, and software updates to coincide these technologies with their applicable hardware. Even data center environmental considerations like reusable energies, data center environmental characteristics, and geographic locations are being used by companies both small and large to reduce operating costs and limit environmental impacts. Companies are even moving to an entire cloud based setup to limit their environmental impact as it could be cost prohibited to maintain your own corporate infrastructure. The trifecta of integrating smart storage architectures to include storage virtualization technologies, reducing footprint to promote energy savings, and migrating to cloud based services will ensure a long-term sustainable storage subsystem
    • …
    corecore