667 research outputs found

    Cognition-Based Networks: A New Perspective on Network Optimization Using Learning and Distributed Intelligence

    Get PDF
    IEEE Access Volume 3, 2015, Article number 7217798, Pages 1512-1530 Open Access Cognition-based networks: A new perspective on network optimization using learning and distributed intelligence (Article) Zorzi, M.a , Zanella, A.a, Testolin, A.b, De Filippo De Grazia, M.b, Zorzi, M.bc a Department of Information Engineering, University of Padua, Padua, Italy b Department of General Psychology, University of Padua, Padua, Italy c IRCCS San Camillo Foundation, Venice-Lido, Italy View additional affiliations View references (107) Abstract In response to the new challenges in the design and operation of communication networks, and taking inspiration from how living beings deal with complexity and scalability, in this paper we introduce an innovative system concept called COgnition-BAsed NETworkS (COBANETS). The proposed approach develops around the systematic application of advanced machine learning techniques and, in particular, unsupervised deep learning and probabilistic generative models for system-wide learning, modeling, optimization, and data representation. Moreover, in COBANETS, we propose to combine this learning architecture with the emerging network virtualization paradigms, which make it possible to actuate automatic optimization and reconfiguration strategies at the system level, thus fully unleashing the potential of the learning approach. Compared with the past and current research efforts in this area, the technical approach outlined in this paper is deeply interdisciplinary and more comprehensive, calling for the synergic combination of expertise of computer scientists, communications and networking engineers, and cognitive scientists, with the ultimate aim of breaking new ground through a profound rethinking of how the modern understanding of cognition can be used in the management and optimization of telecommunication network

    Byzantine Attack and Defense in Cognitive Radio Networks: A Survey

    Full text link
    The Byzantine attack in cooperative spectrum sensing (CSS), also known as the spectrum sensing data falsification (SSDF) attack in the literature, is one of the key adversaries to the success of cognitive radio networks (CRNs). In the past couple of years, the research on the Byzantine attack and defense strategies has gained worldwide increasing attention. In this paper, we provide a comprehensive survey and tutorial on the recent advances in the Byzantine attack and defense for CSS in CRNs. Specifically, we first briefly present the preliminaries of CSS for general readers, including signal detection techniques, hypothesis testing, and data fusion. Second, we analyze the spear and shield relation between Byzantine attack and defense from three aspects: the vulnerability of CSS to attack, the obstacles in CSS to defense, and the games between attack and defense. Then, we propose a taxonomy of the existing Byzantine attack behaviors and elaborate on the corresponding attack parameters, which determine where, who, how, and when to launch attacks. Next, from the perspectives of homogeneous or heterogeneous scenarios, we classify the existing defense algorithms, and provide an in-depth tutorial on the state-of-the-art Byzantine defense schemes, commonly known as robust or secure CSS in the literature. Furthermore, we highlight the unsolved research challenges and depict the future research directions.Comment: Accepted by IEEE Communications Surveys and Tutoiral

    Advanced photonic and electronic systems WILGA 2018

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers around 400 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2018 was the XLII edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2018 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445. WILGA 2018 works were published in Proc. SPIE vol.10808

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    AI-Aided Integrated Terrestrial and Non-Terrestrial 6G Solutions for Sustainable Maritime Networking

    Get PDF
    The maritime industry is experiencing a technological revolution that affects shipbuilding, operation of both seagoing and inland vessels, cargo management, and working practices in harbors. This ongoing transformation is driven by the ambition to make the ecosystem more sustainable and cost-efficient. Digitalization and automation help achieve these goals by transforming shipping and cruising into a much more cost- and energy-efficient and decarbonized industry segment. The key enablers in these processes are always-available connectivity and content delivery services, which can not only aid shipping companies in improving their operational efficiency and reducing carbon emissions, but also contribute to enhanced crew welfare and passenger experience. Due to recent advancements in integrating high-capacity and ultra-reliable terrestrial and non-terrestrial networking technologies, ubiquitous maritime connectivity is becoming a reality. To cope with the increased complexity of managing these integrated systems, this article advocates the use of artificial intelligence and machine-learning-based approaches to meet the service requirements and energy efficiency targets in various maritime communications scenarios.acceptedVersionPeer reviewe

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Cross-layer design for multimedia applications in cognitive radio networks.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Durban 2015.The exponential growth in wireless services and the current trend of development in wireless communication technologies have resulted into an overcrowded radio spectrum band in such a way that it can no longer meet the ever increasing requirements of wireless applications. In contrary however, literature surveys indicate that a large amount of the licensed radio spectrum bands are underutilized. This has necessitated the need for efficient ways to be implemented for spectrum sharing among different systems, applications and services in dynamic wireless environment. Cognitive radio (CR) technology emerges as a way to improve the overall efficiency of radio spectrum utilization by allowing unlicensed users (also known as secondary user) to utilize a licensed band when it is vacant. Multimedia applications are being targeted for CR networks. However, the performance and success of CR technology will be determined by the quality of service (QoS) perceived by secondary users. In order to transmit multimedia contents which have stringent QoS requirements over the CR networks, many technical challenges have to be addressed that are constrained by the layered protocol architecture. Cross-layer design has shown a promise as an approach to optimize network performance among different layers. This work is aimed at addressing the question on how to provide QoS guarantee for multimedia transmission over CR networks in terms of throughput maximization while ensuring that the interference to primary users is avoided or minimized. Spectrum sensing is a fundamental problem in cognitive radio networks for the protection of primary users and therefore the first part of this work provides a review of some low complex spectrum sensing schemes. A cooperative spectrum sensing scheme where multi-users are independently performing spectrum sensing is also developed. In order to address a hidden node problem, a cooperate relay based on amplify-and-forward technique (AF) is formulated. Usually the performance of a spectrum sensor is evaluated using receiver operating characteristic (ROC) curve which provides a trade-off between the probability of miss detection and the probability of false alarm. Due to hardware limitations, the spectrum sensor can not sense the whole range of radio spec- trum which results into partial information of the channel state. In order to model a media access control(MAC) protocol which is able to make channel access decision under partial information about the state of the system we apply a partially observable Markov decision process (POMDP) technique as a suitable tool in making decision under uncertainty. A throughput optimization MAC scheme in presence of spectrum sensing errors is then devel- oped using the concept of cross-layer design which integrates the design of spectrum sensing at physical layer (PHY) and sensing and access strategies at MAC layer in order to maximize the overall network throughput. A problem is formulated as a POMDP and the throughput performance of the scheme is evaluated using computer simulations under greedy sensing algorithm. Simulation results demonstrate an improved overall throughput performance. Further more, multiple channels with multiple secondary users having random message ar- rivals are considered during simulation and the throughput performance is evaluated under greedy sensing scheme which forms a benchmark for cross-layer MAC scheme in presence of spectrum sensing errors. By realizing that speech communication is still the most dom- inant and common service in wireless application, we develop a cross-layer MAC scheme for speech transmission in CR networks. The design is aimed at maximizing throughput of secondary users by integrating the design of spectrum sensing at PHY, quantization param- eter of speech traffic at application layer (APP), together with strategy for spectrum access at MAC layer with the main goal to improve the QoS perceived by secondary users in CR networks. Simulation results demonstrate throughput performance improvement and hence QoS is improved. One of the main features of the modern communication systems is the parameterized operation at different layers of the protocol stack. The feature aims at providing them with the capability of adapting to the rapidly changing traffic, channel and system conditions. Another interesting research problem in this thesis is the combination of individual adap- tation mechanisms into a cross-layer that can maximize their effectiveness. We propose a joint cross-layer design MAC scheme that integrates the design of spectrum sensing at PHY layer, access at MAC layer and APP information in order to improve the QoS for video transmission in CR networks. The end-to-end video distortion which is considered as an APP parameter resides in the video encoder. This is integrated in the state space and the problem is formulated as a constrained POMDP. H.264 coding algorithm which is one of the high efficient video coding standards is considered. The objective is to minimize this end-to- end video distortion while maximizes the overall network throughput for video transmission in CR networks. The end-to-end video distortion has signifficant effects to the QoS the per- ceived by the user and is viewed as the cost in the overall system design. Given the target system throughput, the packet loss ration when the system is in the state i and a composite action is taken in time slot t, the system immediate cost is evaluated. The expected total cost for overall end-to-end video distortion over the total time slots is then computed. A joint optimal policy which minimizes the expected total end-to-end distortion in total time slots is computed iteratively. The minimum expected cost (which also known as the value function) is also evaluated iteratively for the total time slots. The throughput performance of the proposed scheme is evaluated through computer simulation. In order to study the throughput performance of the proposed scheme, we considered four simulation scenarios namely simulation scenario A, simulation scenario B, simulation scenario C, and simulation scenario D. These simulation scenarios enabled us to study the throughput performance of the proposed scheme by by computer simulations. In the simulation scenario A, the av- erage throughput performance as a function of time horizon is studied. The throughput performance under channel access decision based on belief vector and that of channel access decision based on the end-to-end distortion are compared. Simulation results show that the channel access decision based on end-to-end distortion outperforms that of channel access decision based on a belief vector. In the simulation scenario B we aimed at studying the spectral efficiency as a function of prescribed collision probability. The simulation results show that, at large values of collision probability the overall spectral efficiency performs poorly. However, there is an optimal value of collision probability of which the spectral efficiency approaches that of the perfect channel access decision. In the simulation scenario C, we aimed at studying the average throughput performance and the spectral efficiency both as a function of prescribed collision probability. The simulation results show that both average throughput and the spectral efficiency are highly affected by the increase in collision probability. However, there is an optimal prescribed collision probability which achieves the maximum average throughput and maximum spectral efficiency
    corecore