388 research outputs found

    Service level agreement framework for differentiated survivability in GMPLS-based IP-over-optical networks

    Get PDF
    In the next generation optical internet, GMPLS based IP-over-optical networks, ISPs will be required to support a wide variety of applications each having their own requirements. These requirements are contracted by means of the SLA. This paper describes a recovery framework that may be included in the SLA contract between ISP and customers in order to provide the required level of survivability. A key concern with such a recovery framework is how to present the different survivability alternatives including recovery techniques, failure scenario and layered integration into a transparent manner for customers. In this paper, two issues are investigated. First, the performance of the recovery framework when applying a proposed mapping procedure as an admission control mechanism in the edge router considering a smart-edge simple-core GMPLS-based IP/WDM network is considered. The second issue pertains to the performance of a pre-allocated restoration and its ability to provide protected connections under different failure scenarios

    A Survey on the Path Computation Element (PCE) Architecture

    Get PDF
    Quality of Service-enabled applications and services rely on Traffic Engineering-based (TE) Label Switched Paths (LSP) established in core networks and controlled by the GMPLS control plane. Path computation process is crucial to achieve the desired TE objective. Its actual effectiveness depends on a number of factors. Mechanisms utilized to update topology and TE information, as well as the latency between path computation and resource reservation, which is typically distributed, may affect path computation efficiency. Moreover, TE visibility is limited in many network scenarios, such as multi-layer, multi-domain and multi-carrier networks, and it may negatively impact resource utilization. The Internet Engineering Task Force (IETF) has promoted the Path Computation Element (PCE) architecture, proposing a dedicated network entity devoted to path computation process. The PCE represents a flexible instrument to overcome visibility and distributed provisioning inefficiencies. Communications between path computation clients (PCC) and PCEs, realized through the PCE Protocol (PCEP), also enable inter-PCE communications offering an attractive way to perform TE-based path computation among cooperating PCEs in multi-layer/domain scenarios, while preserving scalability and confidentiality. This survey presents the state-of-the-art on the PCE architecture for GMPLS-controlled networks carried out by research and standardization community. In this work, packet (i.e., MPLS-TE and MPLS-TP) and wavelength/spectrum (i.e., WSON and SSON) switching capabilities are the considered technological platforms, in which the PCE is shown to achieve a number of evident benefits

    Network Virtualization Over Elastic Optical Networks: A Survey of Allocation Algorithms

    Get PDF
    Network virtualization has emerged as a paradigm for cloud computing services by providing key functionalities such as abstraction of network resources kept hidden to the cloud service user, isolation of different cloud computing applications, flexibility in terms of resources granularity, and on‐demand setup/teardown of service. In parallel, flex‐grid (also known as elastic) optical networks have become an alternative to deal with the constant traffic growth. These advances have triggered research on network virtualization over flex‐grid optical networks. Effort has been focused on the design of flexible and virtualized devices, on the definition of network architectures and on virtual network allocation algorithms. In this chapter, a survey on the virtual network allocation algorithms over flexible‐grid networks is presented. Proposals are classified according to a taxonomy made of three main categories: performance metrics, operation conditions and the type of service offered to users. Based on such classification, this work also identifies open research areas as multi‐objective optimization approaches, distributed architectures, meta‐heuristics, reconfiguration and protection mechanisms for virtual networks over elastic optical networks

    Survivability aspects of future optical backbone networks

    Get PDF
    In huidige glasvezelnetwerken kan een enkele vezel een gigantische hoeveelheid data dragen, ruwweg het equivalent van 25 miljoen gelijktijdige telefoongesprekken. Hierdoor zullen netwerkstoringen, zoals breuken van een glasvezelkabel, de communicatie van een groot aantal eindgebruikers verstoren. Netwerkoperatoren kiezen er dan ook voor om hun netwerk zo te bouwen dat zulke grote storingen automatisch opgevangen worden. Dit proefschrift spitst zich toe op twee aspecten rond de overleefbaarheid in toekomstige optische netwerken. De eerste doelstelling die beoogd wordt is het tot stand brengen vanrobuuste dataverbindingen over meerdere netwerken. Door voldoende betrouwbare verbindingen tot stand te brengen over een infrastructuur die niet door een enkele entiteit wordt beheerd kan men bv. weredwijd Internettelevisie van hoge kwaliteit aanbieden. De bestudeerde oplossing heeft niet enkel tot doel om deze zeer betrouwbare verbinding te berekenen, maar ook om dit te bewerkstelligen met een minimum aan gebruikte netwerkcapaciteit. De tweede doelstelling was om een antwoord te formuleren om de vraag hoe het toepassen van optische schakelsystemen gebaseerd op herconfigureerbare optische multiplexers een impact heeft op de overleefbaarheid van een optisch netwerk. Bij lagere volumes hebben optisch geschakelde netwerken weinig voordeel van dergelijke gesofistikeerde methoden. Elektronisch geschakelde netwerken vertonen geen afhankelijkheid van het datavolume en hebben altijd baat bij optimalisatie

    Survivable and disaster- resilient submarine optical-fiber cable deployment

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Internete olan mevcut sosyal ve ekonomik bağlılık ve servis kesintileri nedeni ile oluşan önemli miktardaki tamir masrafları ile ağ kalımlılığı günümüzde telekomünikasyon ağ dizaynının önemli bir parçası olmuştur. Ayrıca, denizaltı fiber optik kabloların depremler gibi doğal afetlere veya insan-yapımı afetlere karşı zayıf olduğu da herkesçe kabul edilmiş bir gerçektir. Afete dayanıklı bir denizaltı kablo yerleştirilmesi, bir yada daha fazla kablo afet nedeni ile koptuğunda ağ servislerini yeniden eski haline getirmek için ağ operatörünün maliyetlerini (yolculuk maliyeti, kapasite kayıp maliyeti ve hasar gören kablonun tamir maliyeti) azaltabilir. Bu çalışmada afet-farkındalı denizaltı fiber optik kabloları yerleştirme problemini araştırdık. Kablolar için bir yol/rota seçerken yaklaşımımız toplam beklenen kayıp maliyetini, denizaltı fiber kabloların afetler nedeni ile zarar görebileceğini de düşünerek, bütçe ve diğer kısıtlamalar altında minimize etmeyi hedefler. Yaklaşımımızda afetle ilişkisiz arızaların ana kablonun yanında bir de yedek kablo sağlanarak üstesinden gelindiğini varsaydık. Önce basitçe bir su kütlesi (deniz/okyanus) tarafından ayrılmış iki kara parçası üzerine yerleştirilmiş iki düğümün olduğu bir senaryoyu düşündük. Daha sonra problemi formüle edebilmek için afet bölgelerinden sakınacak şekilde eliptik kablo şeklini dikkate aldık. En nihayetinde problem için, bu durumda yaklaşımımızın potansiyel faydalarını gösteren sayısal örneklerle desteklediğimiz bir Tamsayı Lineer Programlama formülasyonu ürettik. Bununla birlikte problemi daha pratik hale getirmek için, farklı kara parçalarına yerleşmiş çoklu düğümlerin örgüsel bir ağ topolojisini, düzenli şekillere sahip olmayan kabloları, deniz altındaki ortamın topografisini de dikkate aldık. Bu problemi de ifade etmek için sayısal örneklere birlikte bir Tamsayı Lineer Programlama sunduk. Sonuç olarak, pratik durumu düşünerek bir örnek durum incelemesi üzerinde yaklaşımımızı mevcut kablolama sistemleri ile kıyaslayarak teyit ettik. İki durumda da, sonuçlar bize %2-%11 oranında bir yerleştirme maliyeti artışı karşılığında beklenen maliyeti %90-%100 arasında azaltabileceğimizi gösterdi.With the existing profoundly social and economic reliance on the Internet and the significant reparation cost associated with service interruption, network survivability is an important element in telecommunication network design nowadays. Moreover, the fact that submarine optical-fiber cables are susceptible to man-made or natural disasters such as earthquakes is well recognized. A disaster-resilient submarine cable deployment can save cost incurred by network operators such as the capacity-loss cost, the cruising cost and the repair cost of the damaged cables, in order to restore network service when cables break due to a disaster. In this study, we investigate disaster-aware submarine fiber-optic cable deployment problem. While selecting a route/path for cables, our approach aims to minimize the total expected cost, considering that submarine optical-fiber cables may break because of natural disasters, subject to deployment budget and other constraints. In our approach, we assume disaster-unrelated failures are handled by providing a backup cable along with primary cable. In the simple case we consider a scenario with two nodes located on two different lands separated by a water body (sea/ocean). We then consider an elliptic cable shape to formulate the problem, which can be extended to other cable shapes, subject to avoiding deploying cable in disaster zones. Eventuaaly, we provide an Integer Linear Programming formulation for the problem supported with illustrative numerical examples that show the potential benefit of our approach. Furthermore, in order to make the problem more practical, we consider a mesh topology network with multiple nodes located on different sea/ocean, submarine optical- fiber cables of irregular shape, and the topography of undersea environment. Eventually, we provide an Integer Linear Programming to address the problem, together with illustrative numerical examples. Finally, we validate our approach by conducting a case study wherein we consider a practical submarine optical-fiber cable system susceptible to natural disasters. In this case, we compare our approach against the existing cable system in terms of deployment cost and reduction in expected cost. In either case results show that our approach can reduce expected cost from 90% to 100% at a slight increase of 2% to 11% in deployment cost of disaster-unaware approach

    Evaluating the energy consumption and the energy savings potential in ICT backbone networks

    Get PDF

    Virtualisation and resource allocation in MECEnabled metro optical networks

    Get PDF
    The appearance of new network services and the ever-increasing network traffic and number of connected devices will push the evolution of current communication networks towards the Future Internet. In the area of optical networks, wavelength routed optical networks (WRONs) are evolving to elastic optical networks (EONs) in which, thanks to the use of OFDM or Nyquist WDM, it is possible to create super-channels with custom-size bandwidth. The basic element in these networks is the lightpath, i.e., all-optical circuits between two network nodes. The establishment of lightpaths requires the selection of the route that they will follow and the portion of the spectrum to be used in order to carry the requested traffic from the source to the destination node. That problem is known as the routing and spectrum assignment (RSA) problem, and new algorithms must be proposed to address this design problem. Some early studies on elastic optical networks studied gridless scenarios, in which a slice of spectrum of variable size is assigned to a request. However, the most common approach to the spectrum allocation is to divide the spectrum into slots of fixed width and allocate multiple, consecutive spectrum slots to each lightpath, depending on the requested bandwidth. Moreover, EONs also allow the proposal of more flexible routing and spectrum assignment techniques, like the split-spectrum approach in which the request is divided into multiple "sub-lightpaths". In this thesis, four RSA algorithms are proposed combining two different levels of flexibility with the well-known k-shortest paths and first fit heuristics. After comparing the performance of those methods, a novel spectrum assignment technique, Best Gap, is proposed to overcome the inefficiencies emerged when combining the first fit heuristic with highly flexible networks. A simulation study is presented to demonstrate that, thanks to the use of Best Gap, EONs can exploit the network flexibility and reduce the blocking ratio. On the other hand, operators must face profound architectural changes to increase the adaptability and flexibility of networks and ease their management. Thanks to the use of network function virtualisation (NFV), the necessary network functions that must be applied to offer a service can be deployed as virtual appliances hosted by commodity servers, which can be located in data centres, network nodes or even end-user premises. The appearance of new computation and networking paradigms, like multi-access edge computing (MEC), may facilitate the adaptation of communication networks to the new demands. Furthermore, the use of MEC technology will enable the possibility of installing those virtual network functions (VNFs) not only at data centres (DCs) and central offices (COs), traditional hosts of VFNs, but also at the edge nodes of the network. Since data processing is performed closer to the enduser, the latency associated to each service connection request can be reduced. MEC nodes will be usually connected between them and with the DCs and COs by optical networks. In such a scenario, deploying a network service requires completing two phases: the VNF-placement, i.e., deciding the number and location of VNFs, and the VNF-chaining, i.e., connecting the VNFs that the traffic associated to a service must transverse in order to establish the connection. In the chaining process, not only the existence of VNFs with available processing capacity, but the availability of network resources must be taken into account to avoid the rejection of the connection request. Taking into consideration that the backhaul of this scenario will be usually based on WRONs or EONs, it is necessary to design the virtual topology (i.e., the set of lightpaths established in the networks) in order to transport the tra c from one node to another. The process of designing the virtual topology includes deciding the number of connections or lightpaths, allocating them a route and spectral resources, and finally grooming the traffic into the created lightpaths. Lastly, a failure in the equipment of a node in an NFV environment can cause the disruption of the SCs traversing the node. This can cause the loss of huge amounts of data and affect thousands of end-users. In consequence, it is key to provide the network with faultmanagement techniques able to guarantee the resilience of the established connections when a node fails. For the mentioned reasons, it is necessary to design orchestration algorithms which solve the VNF-placement, chaining and network resource allocation problems in 5G networks with optical backhaul. Moreover, some versions of those algorithms must also implements protection techniques to guarantee the resilience system in case of failure. This thesis makes contribution in that line. Firstly, a genetic algorithm is proposed to solve the VNF-placement and VNF-chaining problems in a 5G network with optical backhaul based on star topology: GASM (genetic algorithm for effective service mapping). Then, we propose a modification of that algorithm in order to be applied to dynamic scenarios in which the reconfiguration of the planning is allowed. Furthermore, we enhanced the modified algorithm to include a learning step, with the objective of improving the performance of the algorithm. In this thesis, we also propose an algorithm to solve not only the VNF-placement and VNF-chaining problems but also the design of the virtual topology, considering that a WRON is deployed as the backhaul network connecting MEC nodes and CO. Moreover, a version including individual VNF protection against node failure has been also proposed and the effect of using shared/dedicated and end-to-end SC/individual VNF protection schemes are also analysed. Finally, a new algorithm that solves the VNF-placement and chaining problems and the virtual topology design implementing a new chaining technique is also proposed. Its corresponding versions implementing individual VNF protection are also presented. Furthermore, since the method works with any type of WDM mesh topologies, a technoeconomic study is presented to compare the effect of using different network topologies in both the network performance and cost.Departamento de Teoría de la Señal y Comunicaciones e Ingeniería TelemáticaDoctorado en Tecnologías de la Información y las Telecomunicacione
    corecore