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Abstract
The diffusion of Internet in society both for simple users and enterprises through the rise

of applications and business models has resulted in a vast volume of traffic that needs to

be transferred across the globe in a fast, reliable and secure way. Millions of fixed and

mobile users produce and consume information, especially due to the recent increase of

smart phones and tablets technology on the one hand and the fast growth of services

like video, high definition TV and social networking on the other. Speed, reliability and

minimal delay have been some of the key requirements for service delivery across the years

of Information and Communications Technology (ICT) evolution. Current and future

services take these requirements to a new level, not only because of the huge number of

users and end-devices, but also due to the special requirements they have. To support

these, new types of infrastructures have been developed such as interconnected Data

Centers through high speed networks offering cloud-based services. Optical networks

through recent technology advancements offer a very promising solution to support not

only traditional telecommunications applications but all the new applications emerging

in the context of cloud computing, due to the huge bandwidth they offer, the long

transmission distances and several other characteristics including flexibility, cost and

energy efficiency.

Apart from the evolution of network equipment technology offering among others

improved physical layer performance across long distances, regeneration capabilities,

low energy consumption and fast recovery, significant effort is required on the track

of network design and operation. The work presented in this thesis concentrates in

optical networking in support of traditional telecommunications and more advanced

cloud computing services. More specifically it addresses some key optical network design

and provisioning problems and aims at identifying efficient solutions to mitigate them. A

core optical network able to efficiently accommodate traffic with special characteristics

and requirements is the basis of every problem we address. In this context, physical layer

impairments and their consideration in route selection, resilience against link failures,

energy efficiency and a special case of service deployment in converged optical networks

and Data Center (DC) infrastructures are the four main areas that this work focuses on

through the formulation and solution of associated problems.

Core optical networks are commonly based on mesh topologies that accommodate
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highly aggregated traffic and span ultra long-haul distances to interconnect major cities

across the globe. Optical links though suffer from transmission and switching impair-

ments that degrade the quality of the optical signal traversing the network. This can

lead either to very low quality of service or to high connection blocking rates if a lower

value of the path Bit Error Rate is considered acceptable. This effect is more prevalent

when path protection mechanisms are present to mitigate the impact of link failures.

Dedicated and shared protection paths are commonly longer than primary paths, since

the shortest paths are typically used to establish the primary paths of connection re-

quests and thus physical impairments need to be carefully considered. In this context,

part of this thesis addresses both physical impairments and link failures (single and

dual) in terms of a performance evaluation study under dynamic traffic arrivals. Physi-

cal layer impairment aware routing is compared to classical shortest path routing under

the shared backup path protection scheme and several metrics are used to evaluate the

performance of the proposed approach in the presence of dual link failures.

Path protection mechanisms in core optical networks offer 100% restorability against

single link failures and very good performance under dual-link failures. However, the

excess protection capacity requires more equipment to be used, even in the case where

sharing of backup links is an option. Part of the work presented in this thesis quantifies

through dimensioning problems the impact of dedicated and shared path protection

schemes on the total power consumption of the network equipment and investigates the

energy savings offered by the use of all-optical against Optical-Electrical-Optical (OEO)

wavelength conversion.

Cloud computing supported by interconnected Data Centers and the adoption of

infrastructure virtualization has recently widely penetrated in Information and Commu-

nication Technology (ICT). Optical networking is a very promising candidate solution

for the interconnection of Data Centers, both internally (intra-Data Center) and ex-

ternally (inter-Data Center). Focusing on inter-Data Center communication as part of

a converged optical network and Data Center Infrastructure, this thesis also examines

how the required virtual infrastructures (VIs) can be designed to facilitate sharing of

the physical infrastructure among different service providers. In particular, we formu-

late and solve network design problems that take into account both network and DC

resources. We compare two objectives, one minimizing the joint power consumption of

network and DC resources and one minimizing the network resources used. The goal of
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this comparison is to identify suitable design objectives, trade-offs and trends for realistic

VI request scenarios and a variety of traffic loading conditions. Moreover, we study the

impact of the design objectives on the resulting virtual topologies and their performance

under dynamic traffic.

Taking a more service-driven view of planning a converged optical network and DC

infrastructure, we investigate how the correlation patterns among cloud-based services

that is not usually taken into account impacts their deployment across DCs and the

network itself. A stochastic optimization approach is used to illustrate how the service

correlation consideration as a random process provides a better placement both in terms

of DC and network resources. Appropriate deterministic problems are also solved to

illustrate the impact of service correlation in the total cost when this is not taken into

account during the planning process.
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Dansk resumé
Udbredelsen af Internettet i samfundet blandt b̊ade almendelinge og mere avancerede

brugere og virksomheder har pga. antallet af applikationer og forretningsmodeller for̊arsaget

en kolossal forøgelse af trafikken, som skal føres verden rundt p̊a en hurtig, p̊alidelig og

sikker m̊ade. Millioner af faste og mobile brugere producerer og forbruger information,

især p̊a grund af stigningen indenfor smartphones og tablets, og den hurtige vækst inden-

for tjenesteydelser som f.eks. video, højopløsnings-TV, og sociale netværk. Hastighed,

p̊alidelighed og tidslighed har været nogle af de vigtigste krav indenfor udviklingen

af levering af informationsteknologiske tjenesteydelser igennem årene. Nuværende og

fremtidige tjenesteydelser øger disse krav til et nyt niveau, ikke kun pga. det store antal

brugere og apparater, men ogs̊a pga. de specielle krav der stilles. For at understøtte

disse krav har man udviklet nye typer af infrastrukturer s̊asom sammenkoblede datacen-

tre (DC) via højhastighedsnetværk, som tilbyder cloud-baserede tjenesteydelser. Optiske

netværk, som er udviklet p̊a baggrund af de nyeste teknologiske fremskidt, fremst̊ar som

en meget lovende løsning som udover traditionelle applikationer indenfor telekommu-

nikation understøtter alle nye applikationer som er dukket op ifm. cloud computing.

Dette skyldes bl.a. store b̊andbredder, lange transmissionsafstande, fleksibilitet, lav

pris, energieffektivitet og mange andre egenskaber.

Den teknologiske udviklingen indenfor netværk og udstyr betyder bl.a. forbedret

ydeevne p̊a det fysiskelag – over lange afstande – herunder mulighed for genetablering af

forbindelser ved fejl, lavt energiforbrug og hurtig fejlretning. Dog er det afgørende med

hensigtsmæssigt design og drift. Denne afhandling har fokus p̊a optiske netværks un-

derstøttelse af traditional telekommunikation s̊avel som mere avancerede cloud comput-

ing tjenester. Mere specifikt addresseres de væsentligste problemer indenfor netværks-

design og udrulgning med henblik p̊a at identificere effektive løsninger der mindsker

problemer. Et optiske core netværk, som er i stand til effektivt at understøtte al trafik

med specielle karakteristikker og krav er grundlaget for alle de problemer vi forsøger at

løse.

I den forbindelse er problemer p̊a det fysiske lag og deres indvirkning p̊a rutevalg,

robusthed ved linkfejl, energieffektivitet og et særtilfælde af serviceetablering i konverg-

erede optiske netværk og DC infrastrukturer de fire hoveomr̊ade dette arbejde fokuserer

p̊a gennem formulering af problemer og løsninger heraf.
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Core optiske netværk er som regel baseret p̊a mesh-topologier, som understøtter

store mænger akkumuleret trafik og forbinder større byer rundt i verden over meget

lange distance. Optiske forbindelser lider dog under at det optiske signal forringes under

transmission og switching, hvilket kan forringer kvaliteten af forbindelser, eller endog føre

til blokering af forbindelser hvor der stilles krav om lave bit error rates. Dette ses især n̊ar

man har mekanisker til path protection som kan mindske effekterne af fejl i forbindelsen.

Dedikeret eller delt path protection medfører sædvanligvis længere veje end de primære

veje, da man ved etablering af en forbindelse normalt vil vælge den korteste vej. Det

er derfor vigtigt at de fysiske forringelser nøje overvejes. I den sammenhæng drejer en

del af denne afhandling sig om b̊ade fysiske forringelser og linkfejl (enkelte og dobbelte),

hvor der præsenteres evalueringer af performance under dynamiske ankomster af trafik.

”Physical layer impairment aware routing” sammenlignes med klassiske shortest-path

routing under antagelse a delte backup-veje, og der anvendes adskillige metrikker for at

beskrive hvordan den foresl̊aede tilgang virker i tilfælde af dobbelte linkfejl.

Path protection mekanisker i core optiske netværk tilbyder 100% reetablering ved

enkelte link-fejl, og rigtig god ydelse ogs̊a ved dobbelte link-fejl. Men den ekstra beskyt-

telseskapacitet kræver anvendelse af mere udstyr, selv i tilfælde af at der er mulighed

for fælles backup links, selv n̊ar backup links kan deles. Denne afhandling kvantificerer

effekten af dedikere og fælles path protection metoder i forhold til netværksudstyrets

totale strømforbrug, og undersøger hvor meget energi der kan spares ved hjælp af fuldt

optiske (i modsætning til optiske-elektrisk-optisk) konvertering af bølgelængder.

Cloud Computing som understøttes af sammenkoblede DC, og indførelsen af virtu-

alisering af infrastrukturen, har de senere år opn̊aet stor udbredelse indenfor ICT. Op-

tiske netværk er en oplagt kandidat til at forbinde DC, b̊ade internt (intra-data center)

og eksternt (inter-data center). Denne afhandling fokuserer p̊a de eksterne forbindelser

som en del af konvergerede optiske netværk og DC infrastruktur, og undersøger bl.a.

hvordan de nødvendige virtuelle infrastrukturer (VI) kan designes til at facilitere deling

af den fysiske infrastruktur mellem forskellige serviceudbydere.

Vi vil især formulere og løse netværk design problemer, som tager hensyn til b̊ade

ressourcerne i b̊ade netværk og DC. Vi sammenligner to mål: Den ene minimerer det

fælles strømforbrug i netværket og DC, den anden minimerer de netværksressourcer

der bliver brugt. Målet med denne sammenligning er, at identificere egnede design-

muligheder, trade-offs og tendenser for realistiske scenarier for VI efterspørgsler og en
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række betingelser i fht trafikbelastninger. Endvidere studerer vi virkningen af de forskel-

lige design p̊a de deraf følgende virtuelle topologier og deres ydeevne under dynamisk

trafik.

Ud fra et mere service-drevet synspunkt p̊a planlægningen af et konvergeret op-

tisk netværk og DC infrastruktur, undersøger vi, hvordan sammenhængende mønstre

i cloud-baserede tjenesteydelser, som der normalt ikke tages hensyn til, p̊avirker deres

indsættelse i DC og i selve netværket. Der anvendes en stokastisk optimering for at illus-

trere hvordan service sammenhængen, som en tilfældig proces, giver en bedre placering

b̊ade ift. DC og netværksressourcer. Egnede deterministiske problemer løses ogs̊a, for

at illustrere virkningen af service sammenhængen i de totale omkostninger, n̊ar der ikke

tages hensyn hertil i planlægningsprocessen.
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Chapter 1

Introduction

Since the mid-90 ’s and until today, the Internet has evolved to a complex network

of networks that interconnects billions of users. Simple information exchange between

users has transformed to the use of applications such as video, social networking, high

definition TV, gaming and more through millions or billions of devices [1] such as laptops,

smart phones, tablets and sensors. Users both produce and consume information that is

distributed between multiple points across the globe. The estimated traffic growth that

is of the order of 50% per year [2] and the explosion of connected devices creates a tidal

wave of structured and unstructured data, also known as “big data”[3]. Apart from new

applications and business models generated, big data has led to new concepts of handling

processing, storage and provisioning of services in a fast, reliable and secure way. The

Cloud [4] paradigm is the most recent and most promising approach of such technology

that takes the challenge of data management in terms of volume, variety, velocity and

veracity [3] to a new level through advanced Data Center and virtualization technology.

This evolution generates the need for a network that can accommodate huge amounts of

traffic with very low latency across long distances and with demanding quality of service

requirements such as reliability, security, synchronization and minimum delay. Optical

networks played an important role in communication networks during the last thirty

years and have evolved as the most promising technology to support this need.
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The evolution of optical network technology is translated through radical advance-

ments in transmission capacity, signal bandwidth and transmission distance and has

been supported by three technological advancements: a) Time Division Multiplexing

(TDM), b) optical amplification and Dense Wavelength Division Multiplexing (DWDM)

and c) alternative modulation formats and coherent detection [2]. Coherent detection in

particular along with digital signal processing is a promising transport technology since

it aims to address several important issues and offer characteristics such as higher sig-

nal to noise ratio (SNR) and compensation for linear distortion and polarization-mode

dispersion in the optical path (Figure 1.1) [2]. This evolution of optical transport tech-

nology illustrates some of the most important problems and challenges that need to be

addressed such as physical layer impairments, fault tolerance and energy efficiency.

Figure 1.1 – Optical transport technology trends [2]

Core optical networks are usually mesh topologies and interconnected rings with

nodes in major cities that interconnect metro and access networks. The traffic coming

through each core node is usually destined to all other core nodes due to high aggregation,

resulting in highly connected nodes. Moreover, core networks span very long distances

to interconnect cities in a country, continent or the globe and in the case of transparent
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optical networks without intermediate technology like repeaters or regenerators. The

effect of this characteristic is two-fold: a) physical layer impairments on the fiber links

are much more prevalent due to ultra long-haul distances and b) possible failures of

node or link equipment will result in the disruption of a vast amount of traffic and will

probably take days or weeks to be repaired.

Although technology of transmission and switching equipment has lowered the power

consumption of the optical network, the current and especially the estimated traffic

growth requires multiple fibers, large scale optical cross connects and respective control

equipment to be supported. Power consumption for telecommunication networks is

estimated to increase by 27% in 2020 [5], and thus converged optical networks and

Data Center (DC) infrastructures are expected to have an important impact on power

consumption, making energy efficiency a goal not only for manufacturing but also for

the design and operation of converged network and Cloud infrastructures.

The proliferation of Cloud computing and the penetration of cloud-based services

changes the characteristics and requirements of the design and operation for the sup-

porting network and Information Technology (IT) infrastructures. Apart from joint

consideration of network and IT resources in all phases of the infrastructure planning

and service provisioning, new paradigms of cloud-based services delivery such as Vir-

tual Machines (VMs) require additional details to be taken into account. An important

characteristic of the services offered by distributed Data Centers is the inter-dependence

between them and the additional background communication that this requires. As

shown in the literature recently [6], cloud-based services demonstrate some correlation

patterns that require a pair of correlated services offered in distinct DCs to exchange

data before the client requesting one of them is served. If this is taken into account in

the way that VMs are deployed across the multiple DCs, then a significant benefit on

the network utilization and the service delivery as a whole can be achieved.

In this work we formulate and solve service provisioning and network design problems

aiming to illustrate the aforementioned problems and challenges and demonstrate effi-

cient solutions towards core optical networks that can efficiently and effectively support
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the increasing volume of traffic. We thus tackle four main areas of interest related to core

optical networking: a) physical layer impairments and resilence, b) resilience and energy

efficiency, c) energy efficiency of converged optical network and DC infrastructures and

d) deployment of correlated cloud-based services over optical networks.

1.1 Optical Network Infrastructure Technologies

Wavelength Division Multiplexing (WDM) is the key transmission technology that has

enabled the transfer of huge traffic volumes across the globe. “ With WDM, multiple

channels, each with a different signal, are transmitted at distinct wavelengths over a

single optical fiber. In this way, the capacity of a single fiber is upgraded to a multiple

of its original capacity. The capacity of an optical fiber is, thus, no longer limited to

the bit rate of a single TDM signal, but by the number of wavelengths supported by the

WDM system. ”[7]. Each signal is thus transmitted on its own dedicated bandwidth

defined by the wavelength and all signals are transmitted at the same time. Dense WDM

(DWDM) achieves closer spacing of wavelengths (frequencies) offering a greater number

of wavelengths per fiber and thus greater bandwidth [8].

With the recent technology evolution in the optical communications domain, the

WDM transport layer evolved from simple point-to-point transmission links into elab-

orate network architectures providing similar functionality to the electronic layer, with

improved features, higher manageability and lower complexity and cost [9], [10], [11].

Integrated WDM networks performing switching and routing are deployed in order to

economically support the required functionalities. In such network scenarios, high capac-

ity optical paths (lightpaths) are set in the transport layer forming connections between

discrete points of the network topology. These can be identified to be reconfigurable Op-

tical Add/Drop Multiplexers (OADMs) and Optical Cross-Connect (OXC) nodes per-

forming traffic engineering and management of the optical bandwidth [12], [13]. More

specifically they support handling of the incoming signals at the appropriate granularity
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level to enable efficient routing of the traffic demands satisfying the service level require-

ments including network survivability and security and accommodate network expansion,

traffic growth and churn. This type of nodes can offer functionalities such as dynamic

service provisioning and bandwidth on demand while advanced designs equipped with

the required hardware and software are able to also support enhanced network features

and new services. These functions are facilitated through the application of the Auto-

matically Switched Otical Network (ASON) and the Generalized Multi-Protocol Label

Switching (GMPLS) as the standardized and common control plane suite used in this

type of networks.

Lightpaths and wavelength routed networks [14] are the basic elements of wide area

network architectures that constitute the core of the global network hierarchy (Fig-

ure 1.2]) as presented in [8]. Typically, long-haul architectures consist of OXCs inter-

connected through fiber links in mesh topologies (or rings) [14] and provide connectivity

for access and metro networks through switching and routing functions.

Figure 1.2 – Network Hierarchy [8]

Optical network technologies are classified into optical transmission, switching and

control technologies depending on their role and functionality in the network. A relevant
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taxonomy diagram is illustrated in Figure 1.3

Optical Networking

Transmission ControlTransport/Switching

Packet over 
WDM SONET/SDH OTN ASON/

GMPLSWDM

Optical 
Amplifier Fiber

IP Router/
Ethernet 
Switch

OXC OADM

Figure 1.3 – Optical Network Taxonomy

The main architectures that have been proposed to date for core transport and

switching are based on switched Synchronous Optical Network (SONET)/Synchronous

Digital Hierarchy (SDH), switched Optical Transport Network (OTN) and IP over

DWDM technologies. Their main characteristics are presented below.

SONET is the current transmission and multiplexing standard for high-speed signals

within the carrier infrastructure in North America while SDH has been adopted in

Europe and Japan and for most submarine links. For SONET the basic signal rate is

51.84 Mb/s, called the synchronous transport level-1 (STS-1). Higher rate signals (STS-

N) can be obtained by interleaving the bytes from N frame aligned STS-1s. For SDH the

basic rate is 155 Mb/s and is called STM-1 (synchronous transport module-1), which is

higher than the basic SONET bit rate.

Switched OTN is an optical transport standard defined by the ITU-T G.709 stan-

dards committee that contains definitions for payload encapsulation, OAM overhead,
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FEC and multiplexing hierarchy. It includes some of the SONET/SDH benefits (re-

silience and manageability), fault detection, communication channels and multiplexing

hierarchy. It is designed to be a multi-user transport container for any type of service

(TDM, packet) and provides end-to-end optical transport transparency of customer traf-

fic. Switched OTN is widely deployed for transport within long-haul networks, mainly

because the longer distances of optical transmission enabled by the inherent forward

error correction (FEC) mechanism [15].

IP over DWDM has been proposed as an alternative to SONET/SDH for IP packet

transmission over optical fiber networks. The all-optical transport layer is more cost

efficient (simplification of the network layers) and maintains high data rates. Benefits of

this solution are related to faster path provisioning. However, several disadvantages arise

from the fact that router ports are expensive compared to switch or transmission cost.

In addition, inherent scalability issues associated with the IP router technology as well

as the very high energy consumption levels associated with this type of equipment when

compared to their optical technology counterparts, may introduce serious drawbacks

regarding their suitability for a sustainable Future Internet solution.

Gigabit and 10 Gigabit Ethernet is based on a bus architecture where all the nodes

are connected to a single bus. Gigabit Ethernet is an extension of the same standard to

1 Gb/s. It operates over both copper and fiber interfaces. Gigabit over fiber is becoming

a popular choice in metro networks to interconnect multiple enterprise networks.

The transport rates and the corresponding technology are another choice that the op-

erators have to take along with the deployment of the appropriate transport and switch-

ing technologies. The available options are 1) the continuity of 10G capacity placement

and 2) the upgrade to 40/100G. The former solution benefits from the price reduction

of 10G technology that is expected to continue and the existence of the corresponding

network standards for more than a decade. However, with traffic growth estimated to

be in the order of 50% per year and the operational complexity and inefficiency that the

placement of more 10G capacity acquires, the second option seems as a more appropri-

ate solution. 40G has already moved from early adoption to massive deployment from
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several operators around the globe including AT&T, Verizon, DT, China Telecom and

others. Moreover, 40GE and 100GE transport over 40G and 100G networks is already

fully standardized and some initial deployments of commercial 100G already exist [15].

Transparency in optical networking refers to the ability to modulate and transmit any

kind of payload on the optical channel, independent of its bit-rate and format (fram-

ing, line-coding, power level, etc). Transparency implies that a specific lightpath is

assigned between each origin and destination node pair without any optical-electronic-

optical (OEO) conversion at any intermediate node. In the general case, transparent

optical networks provide reduced operational costs associated with their inherent energy

efficiency and small footprint but suffer from the physical layer impairments associated

with the optical transmission and switching of the data channels. In addition, they

do not inherently support wavelength conversion capability and signal monitoring func-

tions. However, wavelength conversion capabilities can be introduced through the use

of transparent optical wavelength converters based on all optical technologies [16].

Opaque networks are on the other hand based on nodes equipped with OEO technolo-

gies. These can more specifically be either receiver/transmitter pairs associated with an

optical switching fabric in which case the finest granularity that the network supports is

that of the wavelength, or receiver/transmitter pairs associated with an electrical switch-

ing fabric in which case the switching granularity supported by the network could also

be sub-wavelength. Typically, these networks inherently support wavelength conversion

functionality and signal monitoring capabilities. However, they require higher energy

consumption levels for their operation and occupy larger footprint compared to their

transparent counterpart.

A practical solution that is commonly deployed with the aim to overcome the limita-

tions of both transparent and opaque optical networks are translucent optical networks.

These provide some limited level of transparency, based on what is commonly known

as transparency islands, i.e., network parts that are fully transparent interconnected

together through opaque network nodes including OEO signal conversion and therefore

the associated technologies. This way, the overall network cost and power consumption
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can be reduced but special network design considerations involving optimal equipment

placement are required [17].

The presence or absence of wavelength conversion in the network plays a significant

role in the way service provisioning is handled and the level of efficiency of the resource

utilization achieved when provisioning the services. More specifically, in case of the

absence of wavelength conversion, optical path assignment is performed by assigning

the same wavelength across all links of a path through Wavelength Assignment (WA)

algorithms. This is known as the wavelength-continuity constraint and is referred to

as the pure Wavelength Path (WP) case. On the other hand, in case that wavelength

conversion is available, the wavelength across the different links of a lightpath does not

need to be the same, but it is assigned based on the associated bandwidth availability on

a per link basis and it is referred to as the Virtual Wavelength Path (VWP) case. Several

advantages arise from the presence of wavelength converters at the network nodes, such

as lower blocking probability, lower complexity of algorithms, ease of provisioning and

management of connections, lower capacity requirements and easier and feasible network

design operations.

Through the GMPLS protocol suite, the Network Control Plane (NCP) enables the

evolution from centralized to distributed control of access, metro, regional and long-haul

networks. It operates over multiple vendor and operator environments and technologies

including IP, Ethernet and optical networks and in a simplified view it has the role to

dynamically setup connections across an optical transport network. The main benefits

of an NCP are:

• Distributed and reactive traffic engineering, allowing network resources to be dy-

namically allocated to connections.

• Usage of specific control plane protocols rather than generalised network manage-

ment protocols.

• Distributed and reactive restoration upon a network failure, taking into account

current state of the transport network.
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• Reusability of control plane protocols to handle different transport technologies

under a common control framework.

1.2 Thesis Contributions and Outline

1.2.1 Impairment Aware Routing and Resilience

Chapter 2 of the work presented in this thesis focuses on the performance evaluation of

an impairment-aware routing (IAR) scheme [18] in the presence of single and dual link

failures. Impairment aware routing is adopted to identify both primary and backup paths

and is compared with the case of applying impairment aware routing in the primary and

conventional min-hop routing in the backup path computation. Protection against link

failures is provided through a shared backup path protection scheme [19] enhanced with

a reinforced sharing mechanism to take advantage of the increased resource utilization

it offers. The novelty of this work lies in the presentation of a detailed study that

systematically illustrates the effect of single and dual link failures in optical networks

designed to offer single link failure resilience while taking into consideration the physical

layer characteristics in the routing of both primary and protection paths.

1.2.2 Resilient Optical Networks and Energy Efficiency

Motivated by the increasing interest in energy-efficient networks, in Chapter 3 we com-

pare the power consumption of two different WDM optical network architectures that

both employ wavelength conversion at every intermediate node but use different tech-

nologies for carrying out the conversion. Conventional optical-electrical-optical (OEO)

[20] and all-optical based on Semiconductor Optical Amplifiers (SOA) [21] are the two

wavelength conversion technologies used. On top of these two architectures, we evalu-

ate the impact of two path protection mechanisms in terms of their excess power con-

sumption requirements compared to the unprotected case and also evaluate the savings

that all-optical wavelength conversion technology offers. This is done by dimensioning

the network through minimum-cost optimization [22] problems and post-calculating the
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power consumption. The results have been produced assuming 10Gb/s and 40Gb/s per

wavelength channel data rates and indicate that the use of all-optical wavelength con-

version significantly assists in decreasing the overall network power consumption. In

addition, we identify the SBPP (Shared Backup Path Protection) scheme as the most

energy–efficient survivability solution.

1.2.3 Optical Network and Data Center Infrastructure Planning

Chapter 4 focuses on the design of Virtual Infrastructures (VIs) over a Physical Infras-

tructure (PI) taking into consideration jointly the network and DC resources. The VIs

are slices of the PI comprising subsets of the optical WDM network and DC resources

enabling sharing of the available physical resources among several virtual network op-

erators and services [23]. The novelty of this work lies in the more realistic assumption

of no global knowledge for the requests for all the VIs. We thus perform the planning

of each VI in sequence according to the arrival order of the VI requests over the un-

derlying PI that is already supporting previously established VIs. Through the design

process, both the topology and required virtual resources are identified and mapped

to the physical resources and the associated operating parameters. In this context, we

compare two objectives, one minimizing the joint power consumption of network and

DC resources and one minimizing the network resources used. The goal of this compar-

ison is to identify suitable design objectives, tradeoffs and trends for realistic VI request

scenarios and a variety of traffic loading conditions. Moreover, we study the impact of

the design objectives on the resulting virtual topologies and their performance under

dynamic traffic.

The planning problems are formulated with the objectives MinJointPower (MJP)

and MinNetRes (MNR). Both objectives are evaluated over two network architectures:

Virtual Wavelength Path (VWP), where full wavelength conversion is available across all

network nodes and Wavelength Path (WP) [24], where wavelength continuity is a strict

constraint. Finally, the respective VIs generated solving these planning problems are

evaluated through online traffic provisioning simulations. The results demonstrate that
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although the MJP objective achieves lower power consumption compared to the MNP

as expected, the benefit decreases as the number of established VIs and the volume of

demands supported increases. The performance comparison of the different planned VIs

shows that the gain in the power consumption offered by the MNR objective introduces

a penalty in the blocking performance. The presence of wavelength conversion in the

network increases the overall power consumption but improves the blocking performance.

1.2.4 Optimal VM Deployment for Correlated Cloud-based Services

Motivated by the proliferation of cloud-based services and the need for optical net-

works to support the interconnection of geographically dispersed Data Centers (DCs),

we present in the Chapter 5 of this thesis a novel piece of work in the context of optimal

service deployment and network resource utilization. The unique characteristic of this

work is the modeling of service cross-correlation as a stochastic process, based on the

latest literature that captures the traffic characteristics for client-to-DC and DC-to-DC

communication. We use the Sample Average Approximation method [25] to formu-

late the stochastic problems and compare them with appropriate deterministic problems

that provide lower and upper bounds on the total DC and network infrastructure cost.

The results identify the impact of correlation when it is deterministically considered on

the one hand and the benefits of more accurately capturing this impact in a stochastic

optimization [25] context.
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Chapter 2

Impairment-Aware Routing

Under Single and Dual Link

Failures

Fault tolerance i.e., the resilience of the network to a wide range of failures is an aspect

of major importance in WDM networks. Particularly link failures have been extensively

studied, as optical fibers carry a large number of wavelength channels, each modulated

at very high data rates exceeding 10, 40 or even 160 Gb/s. Optical networks are usu-

ally designed to offer survivability against single link failures with minimum additional

capacity, while survivability in case of dual link failures has also been studied. Shared

risk link groups (SRLGs) [26] and network maintenance [27] are two common reasons

that may lead to a dual link failure. In this context, the impact of dual failures in the

overall network performance has to be studied, as it can be of particular importance

for networks requiring high degree of availability (e.g. carrier grade networks requiring

higher than 99.999% availability). Therefore, several researchers have targeted this prob-

lem [28], [29], [30], [31], [32], [33] examining the effects that take place and proposing

different solutions for WDM and IP-over-WDM networks.

Numerous classification schemes of link failures recovery mechanisms have been iden-

tified throughout the literature [26]. 1+1, 1:1 and M:N are well-known protection
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schemes applied to point-to-point systems, whereas ring-based protection mechanisms

apply to both ring and mesh topologies. Protection mechanisms can be classified ac-

cording to the part of the network that the protection mechanism operates on, e.g. a

link/span, a path or a segment. Although resilience is the general term under which all

these schemes fall under, protection is a very common term used across schemes that

should not though create confusion on the characteristics of each solution. For this rea-

son, a usual classification deals with whether the protection path is computed a priori

or in real time and usually (but not always) the respective terms used are protection

and restoration. Specifically for mesh networks, the restoration schemes can be further

classified as centralized and distributed. Furthermore, the sharing or not of protection

capacity defines the recovery schemes as shared or dedicated, respectively [34]. Finally,

single and multi-layer mechanisms have also been identified.

Regarding lightpath identification in optical networks, conventional routing and

wavelength assignment (RWA) algorithms base the lightpath discovery only on network

level considerations such as bandwidth availability, shortest distance etc, without any

detailed physical layer consideration. However, optical networks suffer from transmis-

sion and switching impairments that degrade the quality of the optical signal traversing

the network and for this reason several works address the consideration of physical

layer impairments in the path computation process [35], [36], [37], [38], also referred

to as Impairment Aware Routing (IAR) throughout this work. Typical physical layer

impairments include power losses, chromatic dispersion (CD), polarization mode disper-

sion (PMD), polarization dependent loss (PDL) , amplifier spontaneous emission noise

(ASE) and crosstalk (CT) regarding linear effects, and self-phase modulation (SFM),

cross-phase modulation (XPM), four wave mixing (FWM) and stimulated Raman scat-

tering (SRS) regarding non-linear effects [36]. Previous work has shown that the effect of

optical network impairments on the signal quality is more profound in survivable WDM

networks due to protection paths that are typically much longer than working paths [19],

thus being highly susceptible to physical layer impairments.

In this chapter, we present a performance evaluation study of impairment-aware
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routing under single and dual link failures for mesh optical WDM networks. Simulation

results indicate that applying the impairment-aware routing scheme in the backup path

computation provides significantly reduced blocking probability in the network compared

to conventional minimum hop routing. The average connection loss rate is calculated in

case of dual failures, illustrating the effect of dual failures on established and active con-

nections in a network designed to handle single failures. In all scenarios under study the

average connection loss rate remains below 2% for COST239 [39] and 3.5% for NSFNET

[40] network topologies of the overall number of established connections. In addition to

the protection scheme applied during the path provisioning phase, a restoration scheme

that is activated in case of dual failures is also evaluated and its recovery capabilities

are identified. Our simulation results show that a minimum of 60% restorability of the

connections affected due to dual failures can be achieved for the COST239 network and

70% for the NSFNET. The results also demonstrate that the vulnerability of the net-

work due to double link failures is not affected by the use of the IAR scheme for both

topologies examined.

2.1 Related Work

2.1.1 Dual Link Failures

The general topic of resilience in optical networks has been extensively addressed in the

literature to date. References [26] and [34] provide a detailed description of resilience in

optical networks and the relevant issues. In [41] Clouqueur et al. focus on the availability

of paths in span-restorable mesh networks that are designed to provide full single link

failure restorability, under dual link failures, using span restoration. They provide a

thorough theoretical analysis regarding end-to-end path availability, link unavailability

and network average dual failure restorability. Moreover, they provide experimental re-

sults for dual failure restorability over several network topologies designed for full single

failure restorability. In [42] the authors develop a theoretical analysis of the probability

of multiple failures in the network, illustrating that all well-known resilience schemes are
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vulnerable to multiple failures. In [43] Lumetta et al. present a classification of dual-link

failures in WDM mesh networks depending on how they occur and identify the types of

recovery mechanisms that each failure class affects. Their results illustrate that reconfig-

uration significantly increases the dual failure restorability, while shared path protection

with reconfiguration achieves similar results compared to dedicated path protection and

dedicated and shared link protection algorithms. The authors in [28] formulate an ILP

problem that optimizes the network capacity for a path-based, dual-link failure recovery

scheme, also identifying the scenarios where the sharing of wavelengths between backup

paths does not violate full restorability. By comparing shared protection with dedi-

cated protection, they demonstrate that the former utilizes 22%-38% less capacity than

the latter, whereas the average capacity used for protection paths is 14% higher in the

shared scheme. In [29] the authors present a new rule for sharing backup path resources

in a shared path protection scheme in order to save redundant resources and also a new

routing approach in order to find feasible solutions with three link-disjoint paths. As-

suming full wavelength conversion capability across the network, they compare shared

link protection, shared-path protection and the proposed enhanced shared backup path

protection. Their results indicate significant resource savings and blocking probability

performance improvement. In [30], SBPP is extensively studied and the authors produce

a minimum capacity design for a given demand matrix, resulting in 70-80% dual failure

restorability. Moreover, these results are extended by differentiating the sharing limit

and conclude that a limit of 3 or less has to be used in order to achieve some real benefit

in the trade-off between utilization and dual failure restorability. In [44], the impact

of resource sharability on double link failure restorability is studied. They demonstrate

that limiting the sharing degree (or sharing index) also limits the number of connections

that need to be re-provisioned after a first link failure in order to be protected by a

possible second failure. However, lower sharing also impacts the availability of resources

for re-provisioning, thus an important trade-off is identified. In [45], Schupke et al. study

the “working and protection capacity efficiency and the dual failure restorability for pro-

tected WDM networks with full wavelength conversion”. The protection schemes studied
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are dedicated path protection, shared path protection and path rerouting. The problems

addressed are formulated as mixed integer linear programs that maximize dual failure

restorability and optimize capacity in a second step, whereas they also present heuristics

for path rerouting and larger problems. Their results illustrate that connectivity is more

important than the total capacity for restorability and that rerouting outperforms both

dedicated and shared path protection by 10-15% in terms of restorability.

2.1.2 Optical Physical Layer Impairments and Routing

In [46], Mukherjee et al. introduce the notions of opaque, translucent and transparent

networks. Focusing on all-optical transparent networks, the authors differentiate the

blocking of a lightpath establishment to what is referred to as physical layer blocking

and to the well-known network layer blocking. The former occurs due to very high bit

error rate (BER) of the lightpath caused by the accumulation of physical layer impair-

ments across the multiple optical links that the lightpath traverses. The latter occurs due

to unavailability of resources i.e., fiber bandwidth or wavelength. After referring to the

most common linear and non-linear physical layer impairments and how these are con-

nected to the increasing data rates, the authors provide a basic classification of routing

approaches based on physical layer impairments. Finally, they demonstrate a blocking

benefit of 30% for an impairment-aware RWA algorithm compared to a traditional ap-

proach. In [47] the authors provide the motivation for working on impairment aware

routing algorithms and refer to the challenge of modeling the heterogeneous aspects of

networking and physical layer considerations. Extending previous work on the subject,

they present a new approach that takes into account both linear and non linear effects

through the use of the Q-factor penalty assigned to each link. Their results demon-

strate significant blocking performance improvement for an impairment aware shortest

path approach compared to a conventional shortest path algorithm. [48] presents an

“online constraint-based routing algorithm”that also takes into account both linear and

non-linear effects of the optical layer. Both offline and online versions of the algorithm
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are presented. The results demonstrate reduced blocking probability compared to typ-

ical shortest path routing with a trade-off in computational complexity. [19] presents

the consideration of physical layer impairments in the process of performing RWA for

a survivable optical WDM network. In more detail, the authors present an impairment

aware routing and wavelength assignment approach applied on top of a backup multi-

plexing recovery mechanisms that is designed to provide full protection against single

link failures. First, they examine the performance of three different wavelength assign-

ment algorithms for the backup path, namely First Fit, Last Fit and Random Fit, while

First Fit is always used for the primary path. The results demonstrate that Last Fit

outperforms Random Fit and provides better blocking results even compared to First

Fit for higher loading conditions. Moreover, comparing IAR and shortest path for the

primary path in terms of blocking probability as a function of dispersion mapping, wide

regions of optimal performance are identified when the impairment aware approach is

used.

2.2 Simulation Model

The simulation model used in the framework of this chapter solves the online RWA/resilience

problem, where traffic requests arrive and get served sequentially, without knowledge of

future incoming requests. Since wavelength conversion is not considered available in any

network node, the wavelength continuity constraint applies across the network. Incoming

requests adhere to a Poisson arrival process with exponentially distributed time dura-

tion. Origin and destination nodes are randomly selected among the network nodes with

a uniform distribution. 100% single link failure recovery is provided through a Shared

Backup Path Protection (SBPP) recovery scheme that is already shown to demonstrate

excellent utilization performance. In that sense, each connection request is established

only after a primary and a link-disjoint backup path are identified from the RWA scheme

applied.

The physical bandwidth of each link l is divided into the following three parts: Al, Bl
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and Rl [19], as illustrated in Figure 2.1. Al represents the total bandwidth dedicated to

primary paths carried by link l and is not allowed to be shared. Bl is the total bandwidth

occupied by backup paths on link l and sharing by backup paths whose corresponding

primary paths are link-disjoint is allowed. The residual bandwidth Rl is the difference

between the total bandwidth of link l and the bandwidth consumed by primary and

backup paths on that link (Al +Bl). No restriction regarding the percentage of primary

and protection capacity on each link applies.

primary lightpaths A_l

residual lightpaths R_l

backup lightpaths B_l

λ1
.
.
.
λ8

Figure 2.1 – Example fiber link with total capacity of 8 wavelengths

The system model in Figure 2.2 represents visually all the main functions and how

these are implemented for each connection request to be assigned a lightpath. In the

following sub-sections, we describe each module. Moreover, we provide the model for

dual link failures and the metrics used for the performance evaluation.

2.2.1 RWA Problem

The network is represented by a graph G = (V,L) where V is the set of nodes represented

by optical cross connects (OXCs) and L is the set of links interconnecting the nodes. Each

link is a directed edge from source to destination node and for that reason we assume

a pair of such links between each interconnected pair of nodes, in opposite directions.

Moreover, each link is assumed to be a single fiber with a capacity of 40 wavelengths.

The routing and wavelength assignment problem is solved in two separate steps. Routing

for both primary and backup path of each demand is based on Dijkstra’s algorithm with
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Figure 2.2 – System Model

appropriate link weight assignment: for minimum hop routing, unity weight, whereas

for the impairment-aware scheme, the inverse of the analytically computed Q factor [18]

of the link. The k-shortest path routing principle is applied in order to increase the
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probability to find a feasible path, either in terms of capacity or in terms of a common

wavelength across its links. A value of 2 is used for k in this context, thus for each path

assignment we compute two candidate paths, applied both for primary and protection

paths. The second candidate path is computed after the first is removed from the graph,

so the two candidate paths are link-disjoint. The selection of k=2 might seem small for a

common graph, but it is considered valid for core network topologies assuming that the

candidate paths have no common links, since their connectivity does not usually permit

for a much larger number of alternative paths and in the same time the complexity of

the algorithm is kept in reasonable levels. After the routing step has identified enough

capacity for a lightpath to be established, a wavelength assignment algorithm is applied

to select a common -if available- wavelength across each candidate path. Each candidate

path computed by the routing algorithm is checked in order of increasing weight for an

available common wavelength across all its links. The lightpath is established after the

successful completion of both routing and wavelength assignment algorithms, otherwise

the connection is blocked.

Physical Layer Impairments Model

The model of physical layer impairments used in this work has been previously presented

in [18]. Based on this, a dispersion management scheme and Erbium-Doped Fiber Am-

plifiers (EDFAs) are used to achieve an acceptable signal quality across the multiple

links of a path. The signal is getting distorted in various ways as it propagates through

nodes (OXCs and OADMs) and links (fibers employing EDFAs). The degrading phe-

nomena that are taken into account in the present model are: Chromatic Dispersion,

Optical Filtering , Amplifier Spontaneous Emission (ASE) noise and crosstalk and WDM

non-linearities such as Four-Wave Mixing (FWM), Self-Phase Modulation (SPM) and

Cross-Phase Modulation (XPM). A Q-factor metric has been incorporated in order to

integrate all the aforementioned types of degradation in a single performance metric.

The analytical calculation of the Q-factor is based on the formula presented in Eq. (2.1)
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[18].

Qk =
penkP√

σ2ASE,k + σ2crosstalk,k,k + σ2XPM,k + σ2FWM,k

(2.1)

where penk is the relative eye closure attributed to optical filtering and SPM/GVD and

σ2XPM,k, σ2FWM,k, σ2ASE,k and σ2crosstalk,k are the electrical variances of the degradations

induced by XPM, FWM, ASE and crosstalk, respectively.

Primary Path RWA

The primary path of each request is computed according to the IAR scheme by taking

into consideration both the available bandwidth and the quality of the paths based on

their bit error rate (BER) [18]. The BER of the paths is calculated through the quality

factor Q and compared against a predefined BER threshold (Bthres = 10−15) to decide

whether their quality is acceptable. This mechanism enables us to assign link weights

that correspond to the physical performance of the links and provide these as input to the

routing algorithm, giving this way preference to links that offer higher signal quality. In

terms of wavelength assignment the First Fit (FF) algorithm is applied for the primary

path.

Backup Path RWA

In the backup path computation phase, the IAR scheme already described is used and

compared to the traditional minimum hop routing. The paths computed applying both

schemes are compared to the predefined BER threshold and only these with acceptable

quality are used; otherwise, blocking due to unacceptable signal quality occurs. Regard-

ing wavelength assignment, we use the Last Fit [19] algorithm that has been proved

to maximize the backup path link reuse. However, we have modified the algorithm

(Weighted Last Fit) to perform on the possible alternative paths in order of increasing

cost. A request is not established unless both a primary and a backup lightpath meeting

the signal quality requirements are discovered.
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2.2.2 Reinforced Backup Sharing

As already mentioned, our model implements the backup path sharing technique [19]

by allowing sharing of the backup link-wavelengths. This way, the backup path of a

connection request can use link-wavelengths that are already assigned to backup paths

of established requests as long as their primary paths are link-disjoint. In the presence

of single link failures, this model provides 100% survivability, as a single link failure

will never affect two primary paths that have no common links, requiring the use of a

single backup link for the protection of two distinct connections. Figure 2.3 provides

a schematic representation of how SBPP works. Paths p1 and p2 are two link disjoint

primary paths assigned to two different connections. Assuming one wavelength per link

being the connection demand volume, the SBPP scheme enables the utilization of a

single common wavelength for the two backup paths b1 and b2 on link 3-4. If sharing

was not permitted, we should have utilized two wavelengths on this link, and in case

only one was available, another backup path (probably of higher cost) should have been

utlized for one of the two connections’ backup path.

1

2

3 4

5

6

p1 on λ1

p2 on λ2

b1 and b2 on 
λ2

Figure 2.3 – How SBPP works

It is clear that the backup path protection scheme offers a significant gain in terms of
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resource utilization efficiency compared to alternative dedicated path protection schemes

[28]. In order to further increase this gain, we apply a reinforced sharing mechanism

that gives higher preference to links already in use by backup paths during the backup

computation phase. This is performed through appropriate assignment of link weights

in both impairment-aware and min-hop routing schemes, aiming at higher sharability

degrees. Figure 2.4 provides an example of how this works. We assume that primary

and backup paths for connection with id 1 from node 1 to node 5 are already assigned

as p1 and b1 respectively and these are the only active paths present on the topology of

the figure. Assuming then another connection request with id 2 from node 2 to node 6,

the algorithm works as follows: among the two alternative paths for the primary path of

connection 1, p1 is assigned to be the direct link connecting the source and destination

nodes; among the two alternative paths for the protection of p2, represented as choice 1

and choice 2 in the figure and even if choice 2 provides a path with lower cost than the

one of choice 1 in the common case, the assignment of lower cost on link 3-4 because

of backup path b1 already using it will result in a lower cost for choice 1. This way,

paths that contain links used as protection paths for already established connections

are given higher preference during the backup path computation process. Applying this

scheme, we aim to further investigate the efficiency of the backup path sharing recovery

mechanism and realize possible limits and trade-offs.

2.2.3 Dual Failure Model

Although dual link failures are not as frequent as single failures, they can occur due to

different, not uncommon reasons such as shared risk link groups and single failures dur-

ing link maintenance operations. Considering the huge number of wavelength channels

operating in a single fiber link, dual link failures can cause severe loss of connectivity

that is projected in serious potential SLA (Service Level Agreement) violation from the

operators’ side and loss of income. Two link failures that both affect the network at the

same time period - in a way that they cannot be treated separately - can occur either

concurrently or sequentially overlapping in time. Concurrent failures occur at the same
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Figure 2.4 – How reinforced sharing works

point in time, thus both find the network in the same state. No further state change

occurs between them and the subsequent network state faces the result of both failures.

On the other hand, in case of sequential double failures overlapping in time, a failure can

arise after a previous failure has already occurred, but before the first failure is repaired.

The network may and will probably have changed its state several times between the

two failures, but the response to the second failure has to take into consideration the

existence of the first failure.

This work focuses on concurrent dual link failures and quantifies their impact on a

single failure-resilient network for various routing/sharing scenarios. At each iteration

step of the simulation, a link pair is randomly selected and removed from the graph,

modeling this way the dual-link failure. After the dual failure realization, a restoration
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mechanism takes action and tries to recover the affected connections by computing al-

ternative paths that utilize the spare resources of the network. In the case of sequential

overlapping cases, the same metrics would be applicable, but a different implementation

should take place that would take into account the state change of the network between

the two failures.

2.2.4 Metrics

This work provides a detailed performance evaluation of four different scenarios de-

scribed below in Section 2.3.1. To ensure the validity of the results the simulation setup

includes several repetitions of the same experiment for each connection arrival rate. Ran-

dom number generators are appropriately initialized to ensure the randomness of each

experiment. An initial transient removal mechanism is applied, so that steady state

results are ensured, whereas a sufficient number of repetitions is executed so that the

80% confidence interval becomes less than 20% of the sample mean blocking probability.

The total blocking probability in the presence of single link failures is a result of

blocking due to unavailable bandwidth on either primary or backup paths and blocking

due to physically impaired (compared to the threshold) primary or backup paths.

Utilization is a metric used to illustrate the performance of the different schemes in

terms of resource utilization efficiency. Following the notation described in Table 2.1, we

subsequently specify two performance metrics used throughout our performance evalu-

ation, namely Sharing Ratio and Utilization.

For each link i, the number of link-wavelengths used is equal to the number of link-

wavelengths used for working paths the number of link-wavelengths used for protection

paths, both shared and not shared.

lwusedi =
∑

(lwwi + lwpi) (2.2)
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Table 2.1 – Symbols Notation

Symbol Description

ltot Total number of links in the network
W Total number of wavelengths per link
lwtot Total number of link-wavelengths in the network
lww Link-wavelengths used for primary(working) paths
lwp Link-wavelengths used for protection paths
lwps Shared link-wavelengths used by protection paths
lwpns Not shared link-wavelengths used by protection paths
lwused

Total number of link-wavelengths used in the network (working and protection)

Also, for each link i, the total number of protection link-wavelengths is equal to the

number of shared link-wavelengths plus the number of not shared link-wavelengths.

lwpi =
∑

(lwpsi + lwpnsi) (2.3)

For the entire network, the total number of available link-wavelengths is equal to the

total number of links times the number of wavelengths per link:

lwtotal = ltot ×W (2.4)

For a whole network instance, utilization is defined as the total number of used

link-wavelengths over the total number of link-wavelengths available in the network:

U =

∑ltot
i=1 lwusedi

lwtotal
(2.5)

Connection loss rate due to double link failures is used in the context of this work to

reflect the extent to which the network is affected by concurrent dual link failures. It is

computed as the number of affected connections over the number of active connections

in the network, after the removal of the failed link pair. This metric illustrates the

vulnerability of the network to dual link failures.

A restoration mechanism is additionally applied in an effort to find an alternative

path to reroute connections that were affected by the double failure, using the spare
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resources of the network. The fraction of failed connections that are restored is reported

as the dual failure restorability. Special attention has to be paid to the way that a dual

link failure may affect the established connections. The first and most obvious case is

when the link failures affect the primary and the backup path of a single connection. The

second case is associated with the fact that backup path sharing is in place. Consider

two established connections whose backup paths share some link-wavelengths. If the

dual-link failure affects both of these primary paths, the result is that both connections

attempt to use the same backup capacity at the same time. One solution could be that

we arbitrarily choose one of them to assign the backup capacity and allow the other to

be the only connection affected. In this work, we consider both connections failed if such

a condition occurs, so that both have to be recovered.

2.3 Results and Discussion

2.3.1 Scenarios

Following the description of the system model and the algorithms used, a detailed pre-

sentation of the evaluation scenarios is provided together with the relevant simulation

results.

The four scenarios defined for this study are: Sc1 with IAR for primary and backup

path computation and reinforced sharing enabled. Sc2 with IAR for both primary and

backup paths and conventional sharing. Sc3 with IAR for primary path, min-hop for

backup path and reinforced backup sharing enabled. Sc4 with IAR for primary path

computation, min-hop for backup and conventional backup sharing. These scenarios are

summarized in Table 2.2.

The purpose of these four scenarios is to study the impact of the routing scheme

applied for backup path computation on the overall network performance, in combination

with the impact of the reinforced sharing mechanism. The resilience of the network in
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Table 2.2 – Simulation Scenarios

Scenario Backup Path Routing Algorithm Reinforced Backup Sharing

Sc1 IAR Yes
Sc2 IAR No
Sc3 min hop Yes
Sc4 min hop No

the presence of dual link failures is examined both for networks designed to handle single

link failures as well as for networks that incorporate mechanisms addressing dual link

failures. More specifically the latter network type is based on shared protection for the

case of single failures and activation of a restoration mechanism in the occurrence of

dual failures. The two cases are compared and the relevant merits of the two approaches

are discussed.

The results presented in this section are generated based on two network topologies,

namely the 11-node and 26-link COST 239 [39] and the 16-node and 24-link NSFNET

networks, shown in Figure 2.5 and Figure 2.6 [40] respectively.

Particular to the NSFNET topology, regenerators were placed along each link every

600km to avoid unacceptable signal degradation due to physical layer impairments. This

is a reasonable assumption to avoid turning entire links unusable due to unacceptably

high BER rates.

2.3.2 Blocking Probability

Blocking probability can occur either due to unavailability of bandwidth or due to unac-

ceptably high BER either for the primary or the backup path. Figure 2.7 and Figure 2.8

show all the blocking contributions and their sum (total blocking) for a representative

scenario (Sc1) and for both tested networks to demonstrate the above finding. (No-

tations ‘BwPrim’and ‘ImpBkp’denote blocking due to bandwidth unavailability on the

primary path and blocking due to physical impairments on the backup path, respec-

tively). The contributions not shown in both Figure 2.7 and Figure 2.8 (e.g. blocking

due to bandwidth unavailability on the backup path) were found to be zero.
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Figure 2.7 – Blocking Contributions - COST 239
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Figure 2.8 – Blocking Contributions - NSFnet

Figure 2.9 and Figure 2.10 illustrate average total blocking probability for a network

that is fully resilient in case of single link failures – i.e. without considering the effects

of dual failures - for all four scenarios and for both COST 239 and NSFNET topologies

respectively. We observe that when IAR was applied for the backup path computation,

the total blocking probability for the COST239 topology was much lower compared to

the min-hop; for all loading conditions the blocking probability is reduced by more than

50%.

Comparing the scenarios in pairs that follow the same routing principle in the backup

path computation phase and aiming at identifying the impact of reinforced backup shar-

ing on the blocking probability of the network (still considering only single link failures),
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Figure 2.10 – Blocking Probability - NSFnet

we observe the following: Scenarios 1 and 2 that apply IAR in both primary and backup

path computations behave in a very similar fashion in terms of blocking when their only

difference lies in the application of the reinforced sharing scheme and for both tested net-

works. This means that the route selection of the backup paths based on physical layer

impairments leaves no space on the reinforced sharing scheme to improve the resource

utilization. However, the ability of the reinforced sharing scheme to improve network

utilization is clearly apparent when the backup path routing scheme is based on the

common minimum hop algorithm. Scenarios 3 and 4 result in very different blocking

probabilities across the whole load range, with the reinforced sharing scheme demon-

strating an important benefit. The result set as presented in this work does not directly
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illustrate the resource utilization benefit since the network capacity is considered as given

and for all scenarios we try to accommodate the maximum number of connections. If

however we demonstrated results with the same blocking, the benefit of the reinforced

sharing scheme would be apparent on the resource utilization.

In the NSFNET topology, the IAR also demonstrated reduction in blocking proba-

bility, but to a smaller extent, particularly for increased traffic load. This was mainly

due to the lower average nodal degree observed in the NSFNET network topology case

that implies the existence of a lower number of alternative (link-disjoint) paths for each

source-destination pair. The results regarding the efficiency of the reinforced sharing

scheme also follow a similar trend to COST 239 topology, again with a smaller difference

between scenarios 3 and 4, due to the lack of alternative paths.

2.3.3 Utilization

In addition to blocking, the average usage of resources achieved by each of the four

scenarios is studied. Figure 2.11 shows average utilization of the network for all four

scenarios and for the COST 239 topology.

Before considering the reinforced sharing mechanism (scenarios 1 and 3), we observe

that the min-hop routing in the backup path computation leads to lower bandwidth

utilization compared to the IAR scheme. This implies that the IAR scheme utilizes

resources more efficiently compared to min-hop routing. This counter-intuitive result

can be explained by the fact that the difference in the blocking probability values are

attributed to the impaired backup paths as well as bandwidth unavailability.

The main purpose of the evaluation of this metric was aiming at illustrating the trade-

offs in the network performance induced by different combinations of routing/sharing

schemes, in terms of resource utilization. The reinforced backup path sharing mechanism

was applied to investigate the potential gain in terms of resource utilization and sharing.

However, as it can be observed (Figure 2.9, Figure 2.10), the consideration of the BER

quality during the routing of connections determines the overall network performance

and dominates any other effect such as bandwidth availability and resource sharing
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capability.

In the case of the scenarios with min-hop backup path routing, the main source of

blocking probability is again the high number of impaired backup paths. This is the

leading effect, causing different numbers of established connections for the two scenarios

and thus higher utilization for the reinforced sharing scheme.
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Figure 2.12 – Utilization - NSFnet

In the case where IAR was applied for the computation of the backup paths, the

two schemes have similar performance in terms of utilization. This is again due to the

dominance of the effect of impaired backup paths. The results corresponding to the
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NSFNET topology shown in Figure 2.12 follow a similar trend, without any differen-

tiation in terms of utilization. Again, the utilization results are not considered highly

informative in this case, if they are not examined along with the blocking results, since

as mentioned above the blocking of connections determines how many connections are

established and since this is not the same intentionally for the compared scenarios, the

utilization results cannot be directly interpreted.

2.3.4 Dual Failure Connection Loss Rate and Restorability

The results presented so far have clearly identified impairment-aware routing for both

primary and backup paths in combination with backup path sharing as the routing

scheme that provides the best performance for the scenarios under study and consid-

ering single link failures. The investigation is further extended to study the network

performance of these scenarios in the presence of dual link failures.

In the context of dual link failure network performance, the most common metric

used in the literature is the dual failure restorability. In addition to this, we introduce

the connection loss rate, as defined in Section 2.2.4.

Figure 2.13 shows the results for average connection loss rate due to double failures

for the COST239 topology. Evidently, all four schemes exhibited similar performance,

with connection loss rates in the range of 1 to 1.5%. Particularly, this translates to

1-1.5% of the established and active connections being disrupted by a double link fail-

ure, if no additional restoration mechanism is in place. The ability of the network to

restore the affected traffic is depicted in Figure 2.14 by the dual failure restorability

that yielded results in the range of 60-80%. We observe that the scenarios exhibited

performance deviation in high loading conditions, where the existence of the reinforced

sharing mechanism resulted in scenarios 2 and 4 worse performance.

In the case of min-hop routing in the backup path, no fair comparison can be made

since the two schemes resulted in different blocking probabilities, thus in a different num-

ber of established and active connections in the network for the same load. However, in
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the case of the IAR scheme in the backup path computation we observe that the rein-

forced sharing scheme slightly degrades the dual failure restorability performance. The

comparison is now possible because of the same blocking of the two scenarios (scenario 1

& scenario 2). We observe that the reinforced sharing scheme degrades the dual failure

restorability performance in higher loading conditions. At this point, we have to identify

a tradeoff that takes place. Higher resource sharing means that a dual link failure will

probably affect more active connections (protected by the same backup links) but on the

other hand more capacity will be available in the restoration process. Clearly, the first

phenomenon is stronger than the second, resulting in around 10% better dual failure

restorability of the conventional sharing scheme.
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Figure 2.14 – Dual Failure Restorability - COST 239
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Figure 2.15 and Figure 2.16 show the same set of results for the NSFNET topology,

with average connection loss rate in the range of 3-3.5% and restorability in the range

of 20-60%, respectively. The difference in the dual failure restorability compared to the

COST239 network relates to the lower nodal degree of the NSFNET that limits the num-

ber of possible alternative paths between each source-destination node pair. Both the

impairment-aware and the min-hop routing schemes demonstrate similar performance in

terms of connection loss rate due to dual failures, whereas the dual failure restorability

results are also of the same levels. Schemes 1 and 2 performed better in high loading

conditions in these terms for NSFNET, as was the case in COST239.

0	  

0.01	  

0.02	  

0.03	  

0.04	  

30	   60	   90	   120	   150	   180	   210	   240	  

Av
er
ag
e	  
Co

nn
ec
6o

n	  
Lo
ss
	  

Ra
te
	  

Load	  (Erlangs)	  

IAR_IAR_reinf
SharingON	  

IAR_IAR_reinf
SharingOFF	  

IAR_MH_reinf
SharingON	  

IAR_MH_reinf
SharingOFF	  

Figure 2.15 – Average Connection Loss Rate - NSFnet

0	  

0.1	  

0.2	  

0.3	  

0.4	  

0.5	  

0.6	  

0.7	  

0.8	  

0.9	  

1	  

30	   60	   90	   120	   150	   180	   210	   240	  

Du
al
	  F
ai
lu
re
	  R
Es
to
ra
bi
lit
y	  

Load	  (Erlangs)	  

IAR_IAR_reinf
SharingON	  

IAR_IAR_reinf
SharingOFF	  

IAR_MH_reinf
SharingON	  

IAR_MH_reinf
SharingOFF	  

Figure 2.16 – Dual Failure Restorability - NSFnet

The study presented in this work has led into two main findings. The first associates
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network performance in terms of blocking and capacity utilization with the physical

performance of the network links and the second evaluates the network performance of

the different combinations (routing/sharing) in the presence of dual link failures.

An overall evaluation of the results leads to the conclusion that the consideration

of impairments in the routing algorithm for both the primary and the backup path

provides a reduced network blocking probability and thus an improved overall solution

in the presence of single and dual link failures.

2.4 Conclusions

The study presented in this chapter has led to two main findings. The first associates

network performance in terms of blocking and capacity utilization with the physical per-

formance of the network links and the second evaluates the network performance of the

different combinations (routing/sharing) in the presence of dual-link failures. When the

quality of the formed paths is taken into account in the process of routing, the physical

performance of the selected paths is shown to be better, compared to the traditional

routing schemes that consider only bandwidth availability. Thus the impairment-aware

routing scheme, although it does not always identify the shortest path, it provides bet-

ter performance under single and dual-link failures. The finding is driven by the almost

invariant blocking probability of all schemes for a wide loading range. The main contrib-

utor to this blocking is the dominant effect of physical impairments in the backup paths

for the different simulated scenarios. The results show a relatively constant response of

the network (both COST 239 and NSFNET) to incoming requests for the whole load-

ing range. Regarding the dual-link failures, although the absolute values of the average

connection loss rate imply high tolerance of single-link failure-resilient networks in the

presence of dual failures, spare capacity placement or restoration schemes against dual

failures have to be seriously considered, since the obtained results are sufficient to vio-

late the required 99.999% availability of carrier-grade networks. An overall evaluation
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of the results leads to the conclusion that the consideration of impairments in the rout-

ing algorithm for both primary and backup paths provides a reduced network blocking

probability and thus an improved overall solution in the presence of single- and dual-link

failures.
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Chapter 3

The Impact of Optical

Wavelength Conversion on the

Energy Efficiency of Resilient

WDM Optical Networks

As the on-going growth of bandwidth demands has been leading the expansion of the

Internet in size and complexity, 4% of the primary energy worldwide has been identified

as the percentage of ICT power consumption worldwide contributions [49]. This growth

brings along increased energy consumption by the network, alerting the interest of the

community in energy efficient networking and altering the main focus of energy-efficiency

from access to core networks [50]. In this context, engineering communication networks

in a power-aware manner seems to be instrumental for a more energy-efficient Internet.

Although optical networking is an energy efficient technology itself, the need for power-

awareness in core optical network design and protocol implementation in addition to the

requirement for energy efficient system design has been demonstrated in the literature

[51] along with the benefits of equipment selective equipment switching off [21], [52].

Fault tolerance is a major aspect in optical WDM networks whose fiber link capacity

reaches 40 and 100 wavelengths to date and link and/or node failures can disrupt a huge
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part of established communications if not mitigated. For this reason and as presented

in Chapter 2 and the relevant literature, different protection mechanisms that either

protectively or dynamically allocate dedicated (1+1,1:1) or shared (Shared Backup Path

Protection-SBPP) excess network capacity have been developed to provide resilience

against failures. The various developed mechanisms provide different trade-offs between

the level of protection offered and the amount of excess capacity needed. It is obvious

that this extra capacity has to have some impact on the additional equipment needed

to support it and thus the power consumption of the network infrastructure. This is

not described by a linear relationship, since for example the same optical amplifier can

support different dimensions of fibers in terms of the number of wavelengths, while being

fully operating and consuming the same power. However, excess capacity may result in

more fibers per link which means that more amplifiers will be needed for the connection

of two nodes, whereas the optical node size may require significant extensions to support

the additional fibers.

In this context, the work of this chapter aims to address the impact of protection

in WDM optical mesh networks on the total power consumption and quantify the sav-

ings offered by the use of all-optical wavelength conversion technology instead of the

traditional optical-electrical-optical converters. By dimensioning the network through

minimum-cost optimization problems for unprotected, dedicated and shared path pro-

tection schemes, we evaluate the impact of the use of optoelectronic and all-optical wave-

length converters on the total network power consumption. Relevant power consumption

results have been produced assuming 10Gb/s and 40Gb/s per wavelength channel data

rates. These results indicate that the use of all-optical wavelength conversion signif-

icantly assists in decreasing the overall network power consumption and identify the

SBPP scheme as the most energy–efficient survivability solution.
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3.1 Related Work

In [49], the authors present the results of a survey regarding the main contributors to

the power consumption in Information and Communication Technology (ICT), identify-

ing mainly the power consumption of the relevant equipment during use and the power

consumption for manufacturing this equipment. All contributions are estimated to ac-

count for about 4% of the primary energy consumption globally. An estimation for ICT

equipment consumption is also presented, forecasting a percentage of more than 14% in

the year 2020. Finally, research challenges are identified regarding hardware power opti-

mization as well as software-related issues including intelligent power management and

energy efficient network design and operation. In [51], after identifying system design,

network design and protocols as the main areas for power-awareness, a generic router

power consumption model is presented. Based on this, the authors provide network

design models that aim to obtain results regarding the associated power needs of the

network based on specific topologies and demands. Using these results, they propose

re-routing rules that enable the network-wide minimization of the power consumption

and provide an important space for power savings. In [52], Chiaraviglio et al. present

optimization problems that aim to minimize the power consumption of wide-area net-

works by exploiting over-provisioning of resources and switching off of equipment. By

selectively switching off nodes and links, they demonstrate power savings in the order

of 50% and 30% respectively. The authors of [20] formulate and solve appropriate opti-

mization problems that aim to minimize the energy consumption of an IP over WDM

network by exploiting lightpath bypass in the optical domain. Significant savings in the

order of 25% to 45% are demonstrated due to lightpath bypass, whereas IP routers are

illustrated to account for 90% of the total network power consumed.
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3.2 Problem Formulation

3.2.1 Capacity Placement Network Design

The network is modeled as a graph G = (N,L) comprising a set of nodes N(n = 1, ..., N)

and a set of links L(l = 1, .., L) interconnecting the nodes. The nodes are Optical

Cross-Connects (OCXs) based on 3D MEMS [53] switching technology, as illustrated in

Figure 3.1, employing OEO regenerators (transponders) at every output port supporting

also 100% wavelength conversion capability. The set of nodes are interconnected by a

set of unidirectional links L, whose length is also given as an input.

Figure 3.1 – Optical Cross Connect Architecture

A traffic matrix (TM) represents the traffic demands between the nodes of the net-

work. Each value of the TM is an integer number, since it is assumed that all demands

are integer multiples of wavelengths. The node pair is in the form (Origin O, Destination

D) and each request is directional. In the context of the work presented in this chapter,

a “link” is considered to be the set of fibers installed between two interconnected nodes
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whereas a fiber-link is a specific fiber on that link. The capacity of each link is not given,

since this is the result of the capacity placement problem. Thus, the problem solution

defines the number of fibers needed to be installed on each link. However, the maximum

fiber capacity is given as an input, as the maximum number of wavelengths W per fiber

link. The cost values of the different network equipment are also given. This involves

mainly the cost of the fiber links and the OXC equipment.

Working on a regime of 70 to 280 average number of lightpath requests per source-

destination pair that follow a uniform distribution, we form a set of traffic volume in-

stances, aiming at addressing worst-case growing traffic between the network nodes. We

formulate and solve three problems dealing with : a) an Unprotected network where

each demand is assigned a lightpath from the source to the destination node, b) a Ded-

icated Protection scheme where each demand is assigned a primary and a dedicated

link-disjoint backup lightpath and c) a Shared Backup Path Protection scheme where

each demand is assigned a primary path and a link-disjoint backup path whose capacity

can be shared with other backup lightpaths, assuming that the corresponding primary

paths are link-disjoint. Length-based shortest path routing is employed to populate the

candidate path lists for both primary and backup paths. Each wavelength demand is

assumed to be of 10Gb/s granularity and two scenarios are considered, one supporting

10Gb/s and one supporting 40Gb/s per wavelength channel data rates. For both pro-

tection schemes, the primary path is assigned to be the first shortest path, while for

protection, k=2-shortest path routing is used to populate the set of candidate backup

paths.

The geographical location of the nodes and the trenching cost for the fiber links are

not considered, assuming that the physical links interconnecting the nodes are already

in place. We further assume that sharing of add/drop ports between the primary and

backup lighpath of each demand is taken into account. The output of the network dimen-

sioning process provides the optimal number of fibers per link and wavelengths per fiber

needed to serve the input traffic matrix at minimum cost. From this output, the optimal

dimensions of optical switches required are also calculated. In the subsections following
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Table 3.1 – Problem Variables

Variable Domain Description

CAPl Z+ Number of wavelengths established on link l
wk
l 0,1 =1 if link l is used on the primary path of demand k

fl Z+ Number of fibers installed on link l

Table 3.2 – Problem Parameters

Parameter Description

ω(n) set of links incident to node n
ω+(n) set of links leaving node n
ω−(n) set of links arriving at node n
O(d) Origin node of demand d
D(d) Destination node of demand d
W Fiber link maximum capacity (wavelengths)
hd Demand d volume

we present the exact Integer Linear Programming (ILP) formulations for unprotected,

dedicated and shared path protected networks.

Objective Function

The objective of all problems in this chapter is to minimize the total number of fibers

installed in the network to accommodate the traffic requests. This is illustrated in the

objective function as depicted in Eq. (3.1). Table 3.1 and Table 3.2 illustrate the basic

set of variables and parameters respectively used in the formulation of all subsequent

problems. We assume single wavelength volume (hd=1) for each demand d. Additional

variables are used when needed.

minimize
∑
l∈L

fl (3.1)

71



Unprotected Scheme

The formulation for the unprotected case is presented here in the form of a node-link

capacity placement problem. The problem consists of three basic constraints sets, the

flow conservation constraints (Eq. (3.2)) ensure that the flow required to accommodate

the connection demand is conserved across the nodes of the lightpath. The constraints

presented in Eq. (3.3) assign the required number of wavelengths on each link inter-

connecting a node pair. Thus the total number of fibers needed to be installed between

two interconnected nodes is depicted on the variable CAPl and this drives the correct

assignment of the variable depicting the number of fibers to be installed between these

nodes, that is fl in Eq. (3.4).

Flow Conservation Constraints

∑
l∈ω+(n)

wk
l −

∑
l∈ω−(n)

wk
l =


−1, if n = O(d)

+1, if n = D(d)

0, otherwise

n = 1, ..., N, d = 1, ..., D (3.2)

Link Capacity Constraints - Wavelengths

∑
d∈D

wk
l hd ≤ CAPl, l = 1, ..., L (3.3)

Link Capacity Constraints - Fibers

fl ≥
CAPl

W
(3.4)

Dedicated Path Protection

The formulation for dedicated 1:1 path protection follows the same principles as the

one presented above for the unprotected case with a set of variables and constraints

added. Table 3.3 presents the additional variables and the additional and/or modified

constraints. This way, constraints Eq. (3.5) ensure flow conservation also for the backup

capacity of the dedicated path protection scheme. Link capacity for the backup part of
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Table 3.3 – Additional Problem Variables - Dedicated Path Protection

Variable Domain Description

BCAPl Z+ Number of wavelength established on link l as backup capacity
bkl 0,1 =1 if link l is used on the backup path of demand k

each link is also assigned according to Eq. (3.6) constraints, whereas Eq. (3.7) ensures

the mutual exclusion of primary and protection paths in the sense that the primary

and the backup path that serve a single connection have to be link-disjoint, as a basic

principle of the recovery scheme aiming 100% protection against single link failures.

The number of fibers to be installed on each link is now driven from both working and

protection capacity requirements as Eq. (3.8) depicts.

Flow Conservation Constraints - Backup Path

∑
l∈ω+(n)

bkl −
∑

l∈ω−(n)

bkl =


−1, if n = O(d)

+1, if n = D(d)

0, otherwise

n = 1, ..., N, d = 1, ..., D (3.5)

Link Capacity Constraints - Wavelengths - Backup Path

∑
d∈D

bkl hd ≤ BCAPl, l = 1, ..., L (3.6)

Mutual Exclusion Between Primary and Backup Flow Variables

wk
l + bkl ≤ 1 (3.7)

Link Capacity Constraints - Fibers - Primary and Backup Path

fl =
CAPl +BCAPl

W
(3.8)
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Table 3.4 – Additional Problem Variables - Shared Path Protection

Variable Domain Description

vbd,p 0,1 additional binary variable used for

linearization of backup capacity constraints

Shared Path Protection

Following the exact same node-link formulation principles of the dedicated path protec-

tion presented above, the formulation of the shared path protection scheme needs the

insertion of one additional variable, as presented in Table 3.4. The reason for that is

that the original formulation requires the multiplication of two binary variables in the

constraint set that assigns wavelengths for backup capacity resulting in non-linear con-

straints. The additional variable vkd,p along with the additional constraints in Eq. (3.10)

enable us to transform the problem to linear and solve it with traditional ILP solvers.

Link Capacity - Backup Flows -Wavelength

∑
d∈D

vbd,phd ≤ BCAPl, l = 1, ..., L (3.9)

Linearization

wk
l + b′kl ≤ 1 + vbd,p, d = 1, ..., D, l = 1, ..., L, l′ = 1, ..., L, l 6= l′ (3.10)

3.2.2 Power Consumption Model

After deriving the optimal network dimensions for the considered input traffic, we com-

pute the total power consumption for each node n as a function of four factors: (a) the

switch fabric (Pn
SF ), the transponders for (b) transmission ( Pn

Transm) and (c) wavelength

conversion ( Pn
Conv) and (d) the optical amplifiers (Pn

Ampl ). The power consumption val-

ues of the power-dissipating network elements presented in Table 3.5 are obtained from
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related literature [21] and vendors’ data sheets. Eq. (3.11) - Eq. (3.14) illustrate the

network power consumption computation for each network node n, whereas Eq. (3.15)

presents the respective calculation for each fiber link l connecting two nodes. For each

fiber, a span length of 80 km (span length) is assumed. fnin denotes the number of fibers

arriving at node n and fnout the number of fibers leaving node n.

Switching Fabric

Pn
SF = portstotal × Pport pair = (portsth + portsa/d)× Pport pair (3.11)

Transmission

Pn
Transm = portsa/d × PtranspX ,where X=10G or 40G (3.12)

Wavelength Conversion

Pn
Conv = portsth × PY , where Y=transpX (X=10G or 40G) or SOA (3.13)

Optical Amplification

Pn
Ampl = (fnin + fnout)× Pedfa (3.14)

Fiber Link

Pl = b length(l)

span length
c × Pedfa (3.15)

The total network power consumption PNetwork is then calculated as in Eq. (3.16).

PNetwork =
∑
n

Pn +
∑
l

Pl (3.16)

Pn = Pn
SF +Pn

Transm +Pn
Conv +Pn

Ampl is the total power consumption for node n and Pl

is the power consumption for link l.
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Table 3.5 – Power Consumption of Active WDM Network Components

Symbol Description Power Consumption

P port pair Input/Output port pair of 3D MEMS switch fabric 0.107 mW
P transp10G OEO Line-side WDM Transponder (10G - 80km) 6 W
P transp40G OEO Line-side WDM Transponder (40G - 80km) 18 W
P SOA SOA-based all-optical wavelength converter 3.5 W
P edfa EDFA Optical Amplifier 13 W

3.3 Results and Discussion

Without imposing any bound on the number of fibers to be installed per link, we compute

the optimal network dimensions for each scheme and at a post-processing stage we

calculate the total network power consumption based on these dimensions. As a reference

topology the Pan-European COST 239 (Figure 2.5) network topology has been used,

comprising 11 nodes and 52 unidirectional links, whereas the fibre link capacity is 40

wavelengths.

The results in Figure 3.2 and Figure 3.3 clearly show that the use of optical wave-

length conversion provides significant energy savings in the network for all different

resilience schemes considered and the two data rates examined i.e. 10Gb/s and 40Gb/s.

Moreover, the SBPP scheme outperforms the 1:1 path protection scheme for both 10Gb/s

and 40 Gb/s as expected. At 40 Gb/s the performance of the SBPP scheme is close to

the unprotected case, thus providing a solution that is both energy-efficient and resilient

against single link failures. In more detail, for 10Gb/s the energy savings remain always

above 25% for the unprotected case and this percentage increases with the volume of

traffic that is supported by the network. When examining the SBPP and 1:1 protec-

tion schemes, this percentage always exceeds 28% and again increases further for higher

traffic volumes. At 40Gb/s the effect follows a similar trend, but it is more profound as

in this case the savings always exceed 33% and reach a maximum of 58% for networks

supporting high volumes of traffic and offering 1:1 protection.

To offer some detailed insight on the various equipment contributions to the total

network power consumption, Figure 3.4 - Figure 3.9 provide a relevant breakdown for all
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Figure 3.2 – Total Power Consumption - 10G - OEO vs SOA
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Figure 3.6 – Power Consumption - Breakdown by Element - 1:1 OEO Conversion
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sion

three cases of unportected, dedicated and shared protection, as well as for both OEO and

SOA-based wavelength conversion. The results clearly indicate that the use of optical

wavelength conversion facilitates the overall energy savings observed. These figures also

give a map of the various optical components energy footprint, from a network perspec-

tive, identifying that depending on the traffic volumes supported by the network, optical

components that have a significant contribution to the overall energy consumption are

optical amplifiers and transmitter/receiver pairs. Finally, they illustrate the change in

the percentage of the total power consumption that the different network elements are

assigned to, identifying a raise for the optical amplifiers and the transmission equipment
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after the adoption of all-optical wavelength conversion.

3.4 Conclusions

The work presented in this chapter evaluated the impact of all-optical wavelength con-

version technology on the overall power consumption of resilient WDM optical net-

works. After considering the cases of no protection, 1:1 dedicated path protection and

shared backup path protection schemes, we demonstrated that the shared path pro-

tection scheme achieves increased efficiency in the utilization of network resources. In

combination with the energy-efficient technology of all-optical wavelength conversion,

we illustrated how this scheme provides resilience to single link failures at the expense

of minimal increase in the total power consumption of the network compared to the

unprotected case.
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Chapter 4

Converged Optical Network and

Data Center Infrastructure

Planning

Cloud-based services are increasingly deployed taking advantage of the continuous ad-

vancements of data centers (DCs), while large-scale service providers like Amazon and

Google increasingly deploy geographically dispersed DCs [54] to satisfy the requirements

of the offered services. These services include storage, processing, e-mail, web-services

and gaming, whereas private enterprise DCs are also used for data-intensive tasks like

Web page indexing and large data-sets analysis [55], [56], [57]. On demand self-service,

location independence, rapid elasticity, reliability and disaster recovery are some key-

requirements [58] that the cloud infrastructure needs to satisfy. It is true to say that

cloud infrastructures have emerged as an evolution step from computing grid infras-

tructures, adopting some of the main technologies and approaches used to serve these

requirements. These include the most promising optical networking architectures in

terms of technology, as well as advanced routing, virtualization, control [57] and joint

consideration of network and computing resources [59].

In this context, the concept of virtualization applied to an infrastructure comprising

DCs interconnected through a WDM optical network supporting cloud services, can offer
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performance advantages [60] and facilitate sharing of physical resources. This enables the

introduction of new business models [61] that suit well the nature and characteristics of

the Future Internet and enable new exploitation opportunities for the underlying physical

infrastructures (PIs). In this environment service providers are able to establish their

own virtual infrastructures (VIs) over the underlying physical infrastructure.

In the converged infrastructure described above there are two types of resources:

a) network resources including fiber links and nodes, and b) DC resources comprising

storage, processing cores and memory. The infrastructure planning process is usually

formulated as an optimization problem with common objectives dealing with resource

utilization. Efficient resource sharing, minimum resource allocation and load balancing

are variants of this objective class. Previous work, [56], [59] mainly addressing grid

computing solutions has already identified the joint consideration of these two types of

resources as the most effective way towards efficient utilization of the infrastructure.

However in cloud computing, fault management and load-balancing usually require all

available DCs to be active and the optimization related to resource utilization to take

place internally within the DCs.

As Information and Communication Technology (ICT) is estimated to be responsible

for more than 4% of the primary energy worldwide, a percentage expected to significantly

increase by 2020 [62], a lot of attention has been recently paid on the energy efficiency

of such converged infrastructures [56], [61]. Optical networking is an energy-efficient

technology that can be further optimized with regards to energy consumption through

power-aware network design and protocol implementations [63]. However, the opera-

tion of DC resources requires very high levels of power and their conventional operating

window is commonly not optimized for energy efficiency. Allocating Information Tech-

nology (IT) processing jobs in an energy-aware manner through a relatively low energy-

consuming optical network and switching-off unused IT resources can offer significant

energy savings.

This chapter focuses on the design of virtual infrastructures (VIs) over a physical

infrastructure (PI) taking into consideration jointly the network and DC resources. The

82



novelty of this work lies in a more realistic assumption that there is no global knowledge

of the requests for all the VIs, thus performing the planning of each VI in sequence

according to the arrival order of the VI requests over the underlying PI that is already

supporting previously established VIs. Through the design process, both the topology

and required virtual resources are identified and mapped to the physical resources and

the associated operating parameters. We compare two objectives, one minimizing the

joint power consumption of network and DC resources (MJP) and one minimizing the

network resources used (MNR). The goal of this comparison is to identify suitable de-

sign objectives, tradeoffs and trends for realistic VI request scenarios and a variety of

traffic loading conditions. Moreover, we study the impact of the design objectives on

the resulting virtual topologies and their performance under dynamic traffic. Our re-

sults demonstrate that although the MJP objective achieves lower power consumption

compared to the MNR as expected, the benefit decreases as the number of established

VIs and the volume of demands supported increases. The performance comparison of

the different planned VIs shows that the gain in the power consumption offered by the

MNR objective introduces a penalty in the blocking performance.

4.1 Background and Related Work

4.1.1 Energy Efficiency and Optical Networks

In [64] the authors present a breakdown of energy consumption in cloud computing

spanning from network-related switching and transmission to data center-related data

processing and storage. Transport-related energy consumption is identified as an impor-

tant contributor to the total cloud energy consumption. In [56] the authors provide a

comprehensive study of the major approaches to achieve energy efficiency in telecom-

munications networks by describing the main elements in each of the three network

domains (core, metro and access) and their energy consumption. They provide a break-

down of the main components that consume energy (core routers, optical cross connects
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and optical amplifiers) and identify optical switching as the most energy-efficient so-

lution. Regarding core networks, they present the main approaches to achieve energy

efficiency, such as selective turning off of network equipment, energy-efficient network

design and green routing. Finally, the authors focus on data centers and respective

applications where power control of high-speed network intra-connection and optimal

load-distribution schemes across data centers are referenced as proposed solutions for

intra- and inter-data center communications. In [65] the authors demonstrate the effi-

ciency of joint network and IT consideration in terms of power consumption over the

physical infrastructure and demonstrate a benefit of 3-55%. This benefit depends on

the ability of a data center to switch on/off servers and is compared to the case where

only network power consumption is minimized. In [61], a model describing the concept

of planning virtual infrastructures over of a converged network and IT infrastructure

is presented and an energy-aware VI planning problem is formulated and compared to

approach that allocates the IT services to the server located closest to the source node,

providing savings of the order of 30% for a single VI establishment. Moreover, energy

aware offline service provisioning for the VWP case on top of the planned VI is presented

and compared to three other approaches, achieving minimum overall power consumption.

Finally, in [66] the authors propose multiple VI energy-aware planning, assuming global

knowledge of the VI requests and provide the optimal solution for the establishment of

all VIs concurrently.

4.1.2 Optical Networking in Grid and Cloud Computing

In [67] the authors demonstrate a joint computational and network resource scheduling

system based on an experimental network (TONICE) that supports distributed scientific

applications, proposing two scheduling approaches. The first proposed scheme is overlay

scheduling, where network and computational resources are considered separately and

computational resources are the basis of scheduling, whereas the second scheme, that is

integrated scheduling jointly considers computational and network resources aiming at

better performance and resource utilization. The experimental results demonstrate that
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the integrated approach out-performs the overlay solution in terms of average schedule

length, computational resource utilization and optical network resource requirements. In

the grid networking context where a set of geographically distributed computing nodes

are interconnected through a WDM network and logical partitions (tasks) of application

instances (jobs) have to be transferred and executed within a time deadline, the authors

of [59] deal with the problems of task scheduling and lightpath establishment jointly, for-

mulating and solving a joint optimization problem referred to as the “Task Scheduling

and Lightpath Establishment”problem. They propose two algorithms, one that mini-

mizes the job completion time and one that minimizes the cost subject to a deadline

constraint. Their results demonstrate better performance in the former case against tra-

ditional list scheduling. In [57] the authors start with a presentation of the applications

that drive the evolution from grid to cloud computing. These mainly involve scientific

applications (scientific and data-centric computing), business applications (transactional

systems, multimedia, data mining) and consumer applications (gaming, interactive TV,

augmented reality). They continue with the main requirements for optical grids/cloud

arising from the aforementioned applications, identifying mainly on-demand setup, re-

sponse time, latency, scalability and elasticity among others. Moreover, they present the

migration from grid to cloud, based on the need to distribute not only scientific but also

consumer applications and provide the main cloud paradigms (Software as a Service,

Platform as a Service and Infrastructure as a Service). Finally, they present the tech-

nologies that enable the realization of the services fulfilling the identified requirements

in terms of optical technology, routing, virtualization and control and management.

4.2 System Model

4.2.1 Network Model

The network is modeled as a graph, comprising a set of nodes N interconnected by a

set of unidirectional links L. The nodes are Optical Cross-Connects (OXCs) based on

a photonic switching matrix that is realized by 3D Micro-Electro-Mechanical Systems
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Figure 4.1 – Fiber Link Model

(MEMS) as in Figure 3.1.

Each node supports M input and M output fibers, each employing a maximum

number of wavelengths W . Apart from the passive elements, namely the Multiplexers

(MUX) and de-multiplexers (DEMUX), Figure 3.1 illustrates the active elements of the

OXC: the switch matrix, one Erbium-Doped Fiber Amplifier (EDFA) per input/output

fiber port, one Optical-Electrical-Optical (OEO) transponder per output wavelength

port and one transmitter (Tx) - receiver (Rx) pair per lightpath. The OEO transponders

are used to support the wavelength conversion functionality in the case of the VWP

network. The number of through (express) ports is calculated as the number of input

fibers M times the fiber wavelength capacity W . It is further assumed that the add/drop

capability of the node is 50% of the through traffic. No OEO converters are included in

the WP network architecture.

Figure 4.1 illustrates the link architecture [17] employed for the interconnection of

the OXCs. It is modeled as a sequence of alternating Single Mode Fiber (SMF) and

Dispersion Compensation Fiber (DCF) spans, to address fiber dispersion effects includ-

ing Pre- and Post-compensation DCF spans at the beginning and the end of each link

respectively. To compensate for the insertion loss of the fiber spans optical amplifiers

based on Erbium Doped Fiber Amplifier (EDFA) technology are allocated at the end of

each transmission span.

4.2.2 Data Center Model

The main building block of the data center model is based on [68]. It is a full rack imple-

mentation of a hardware platform that is used in real DCs and its main characteristics

are summarized in Table 4.1. For the data center throughput, we have assumed it to be
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equal to four times the 75 GB/s per rack uncompressed I/O bandwidth reported in [69].

Table 4.1 – Data Center Building Block Characteristics

Resource Type Capacity

CPU 30 servers/360 cores 2.93 GHz Intel Xeon 6-core processor
Storage - 40 TB
Tdc - 2.4 Tbps
Memory 1333 MHz 2.9 TB

4.2.3 Power Consumption Models

Network

The total network power consumption is determined by the power consumption of OXCs

and fiber links. Figure 3.1 illustrates the OXC architecture and its power-dissipating

elements with grey color. The node power consumption (POXC) depends on four factors:

(a) the switch fabric (PSF ), the transponders for (b) transmission ( PTransm) and (c)

wavelength conversion ( PConv) and (d) the optical amplifiers (PAmpl ). Eq. (4.1) to

Eq. (4.4) demonstrate the computation of these power consumption values, whereas

Table 4.2 provides a short description and typical power consumption values for the

required equipment [70],[71].

PSF = portstotal × Pportpair = (portsth + portsa/d)× Pportpair (4.1)

PTransm = portsa/d × PTx/Rx (4.2)

PConv = portsth × PTransponder (4.3)

PAmpl = (fin + fout)× PEdfa (4.4)
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In our case, we assume a symmetric switch MxM whereas M is not identical across

the OXCs, but computed after the planning process based on the traffic volume sup-

ported.

Table 4.2 – Network Equipment Power Consumption Figures

Symbol Description Power (Watts)

P portpair Input/Output port pair of the switch fabric 0.10710−3

P transponder O/E/O Line-side WDM Transponder 6
P Tx/Rx E/O,O/E Transmitter or Receiver 3.5
P edfa EDFA 13

The only power consuming elements included within the optical network links (Fig-

ure 4.1) are the optical amplifiers installed per span. The amplifier span length is

assumed to be 80km. Thus the power consumption of a fiber link is length-dependent

and is calculated as depicted in Eq. (4.5):

Pl = b length(l)

span
c × PEdfa (4.5)

The total network power consumption of the physical infrastructure is computed by

Eq. (4.6):

PNet =
∑
n∈N

POCX +
∑
l∈L

Pl (4.6)

Data Center

The power consumption of the data center is based on typical power consumption values

taken from [68]and on the simple linear model illustrated in Eq. (4.7).

PDC = Pidle(Pbusy − Pidle)× us (4.7)

Pidle is the power consumption of the DC in idle state, that is when no server is used.
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Its value is considered to be the 50% of the DC power consumption under full utilization,

Pbusy. In our model, this value is assumed to be the maximum power consumption value

from [68], as shown in Table 4.2. Finally, us represents the utilization of a data center s

that is defined as the sum of lightpath requests currently served by the data center over

the DC throughput expressed in wavelengths. Eq. (4.8) illustrates the computation of

the DC utilization.

us =
number of lightpaths arriving at s

TDC
(4.8)

Table 4.3 summarizes the power consumption values used for each DC, assuming

the same configuration and capacity for all data centers employed in the converged

infrastructure.

Table 4.3 – Data Center Power Consumption Figures

Symbol Description Value (KW)

P busy Power Consumption under full utilization 17.5
P idle Power Consumption under idle state 8.75

4.3 Problem Formulation

4.3.1 Virtual Infrastructure Planning

The virtual infrastructure planning problem is formulated as an integer linear program

(ILP) and is based on the well-studied Routing and Wavelength Assignment (RWA) [24]

problem. As also defined in the introduction section the term PI refers to the Physical

Infrastructure, that is the set of DCs and WDM nodes and links that interconnect them.

The term VI refers to the Virtual Infrastructure that is a slice of the PI comprising a set

of DC and network resources in terms of DC throughput and wavelengths respectively.

In this work we concentrate on optimal planning of virtual infrastructures with respect

to specific objectives, while further virtualization implementation details are not taken
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into account. More specifically we provide two sets of formulations using path and flow

variables, one for the virtual wavelength path and one for the wavelength path case.

Virtual Wavelength Path

Let G = (N,L) be the directed graph that represents the network topology, where N is

the set of network nodes (OXCs) and L is the set of directed links interconnecting the

nodes. Let also S be the subset of N that represents the nodes where data centers are

attached and D be the set of requests for each virtual infrastructure. Multiple sets, each

one corresponding to a VI request, are treated sequentially in the order of arrival of the

VI requests without any prior knowledge of the VI requests. We solve one optimization

problem for each virtual infrastructure that needs to be formed and established over the

converged physical infrastructure. The solution of each problem updates the network

and DC capacity and gives a new instance of the infrastructure as an input to the

next problem. The solution of the problem provides an optimal mapping of the virtual

infrastructure to the physical infrastructure, both in terms of network topology and

infrastructure resources, according to the objective function.

The planning problem considered in this work is treated as a capacitated problem.

We start with a given DC capacity offered over the entire infrastructure and a relative

network capacity that is sufficient to accommodate the traffic requests aiming to utilize

the DC resources. The definition of the demand volume needs to include the amount

of resources requested, both in terms of network and data center. The characteristics

that enable the definition of an exact relationship between these two types of resources

are the DC throughput and the wavelength bit rate. Eq. (4.9) gives the number of

wavelengths that are needed to satisfy the DC throughput.

k =
TDC

RW
(4.9)

Each demand d of the set D is described by the source node and by the constant

hd that is the demand volume assuming wavelength level granularity. For each virtual
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infrastructure problem, the demand sources are randomly selected between all the net-

work nodes apart from the ones that are directly connected to DCs. Each problem is

solved for a set of total lightpath requests that span from 30 to 150, whereas for each

such value the reported results correspond to averages over a number of 50 repetitions.

We refer to physical topology links (or physical links) by the index l (l = 1, ..., L

) and to virtual topology links (or virtual links) by the index e ( e = 1, ..., E ). The

physical link set L is straightforward to obtain since it represents all the directed links

of the graph G. The virtual link set E is assumed to be the set of links in a full mesh

graph with the same set of nodes N . Moreover, network nodes are indexed by n over

the set N (n = 1, ..., N ) and data centers are indexed by s s = 1, ..., S. Finally, physical

and virtual candidate path lists are indexed by q (q = 1, ..., Q ) and p (p = 1, ..., Pd )

respectively.

Apart from the demand volume hD, we use two more constants in the problem for-

mulation. As already mentioned, the destination is not part of the demand description,

since all data centers with available capacity are candidate destinations for every re-

quest. Thus for every demand and every candidate destination, a candidate path list is

generated based on k-shortest path routing. We refer to this as the virtual candidate

path list and use parameter δedp in Eq. (4.10) to represent the use of candidate virtual

path p in the realization of virtual link e for demand d.

δedp =


1, if candidate virtual path p of demand d

is used to realize virtual link e

0, otherwise

(4.10)

γleq =


1, if physical link l is part of candidate

physical path q of the virtual link e

0, otherwise

(4.11)
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Since we need to map the virtual to the physical network resources, we use one more

constant to illustrate the realization of virtual link by the corresponding physical path

q, illustrated in Eq. (4.11).

For both candidate path lists, we use a length-based Yen’s k-shortest path algorithm

[72] and retrieve the two shortest paths from every source to all candidate destinations.

Table 4.4 summarizes the variables whose optimal values form the solution of the ILP and

represent the resource assignment that accommodates the requested traffic and provides

the mapping between physical and virtual resources.

Table 4.4 – Problem Variables

Variable Domain Description

xdsp Z+ Flow realizing demand d towards DC s
on candidate virtual path p (number of lightpaths)

zeq Z+ Flow realizing virtual link e on candidate physical path q
we Z+ Number of wavelengths utilized on virtual link e
yl Z+ Number of wavelengths utilized on physical link l

zeq Z+

 1, if DC s is used

0, otherwise

Two different optimization problems are formulated by using two objective functions,

namely “NetRes” in Eq. (4.12) and “JointPower” in Eq. (4.13). As the names indi-

cate, the objectives minimize the total number of wavelengths (representing the network

resources) used and the total power consumption of both network and DC resources

respectively. Based on the problem variables and the power consumption models, the

two objectives are:

NetRes =
∑
l

wl × length(l) (4.12)
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JointPower =
∑
s

[(1− fs)Pidle + (Pbusy − Pidle)us] (4.13)

+
∑
n

∑
l∈ω−(n)

[
(1− αl)Plink + αlPlink

(
wl∑
l Λl

+ 1

)]

where

Plink =
∑
n

∑
l∈ω−(n)

1

Wl

(
b length(l)

span
c+ 2

)
PEdfa (4.14)

and

fs =

 1, if DC s is already used by another VI

0, otherwise
(4.15)

and

al =

 1, if link l is already used by another VI

0, otherwise
(4.16)

The indices ω+(n) and ω−(n) represent the outgoing and incoming links of node n

respectively. Λl is the number of already established wavelengths on link l by previous

VIs. As indicated by Eq. (4.13), the power consumption of the optical links is calculated

as follows: when a VI is the first to utilize a link, the total power consumption of the link

is assigned to this VI. When more than one VIs use the same link, each VI is assigned

proportionally a power consumption level reflecting the utilization of the corresponding

link resources (wavelengths).

The constraints that follow complete the ILP formulation and ensure that network

and DC resources are optimally assigned, following flow conservation and capacity rules.
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The constraint in Eq. (4.17) ensures that all demands d are served:

∑
s

∑
p

xdsp = hd, d = 1, ..., D (4.17)

The next three constraints in Eq. (4.18))-(Eq. (4.20) deal with capacity bounds and

require that the virtual and physical links capacities we and yl respectively, are enough

to accommodate all lightpaths noting that these two variables are upper bounded by the

fiber capacity; based on commercially available WDM products, the latter is assumed to

be 96 wavelengths. Moreover, they provide the mapping between physical and virtual

links. The mapping is performed through constraints in Eq. (4.18) and Eq. (4.19) that

map the virtual links capacities to the physical links capacities through the flow variable.

∑
d

∑
s

∑
p

δedpxdsp ≤ we, e = 1, ..., E (4.18)

∑
q

zeq ≤ we, e = 1, ..., E (4.19)

∑
e

∑
q

γleqzeq ≤ yl, l = 1, ..., L (4.20)

Finally, two more constraints ensure the correct assignment of the binary variable fs

that represents whether a data center is used or not.

fs ≤ us, s = 1, ..., S (4.21)

fsTDC ≥ us, s = 1, ..., S (4.22)

The utilization of the DC us is defined as:

us =
∑
d

∑
p

xdsp, s = 1, ..., S (4.23)
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Wavelength Path

The path formulation for the WP case follows the same principles and notation with the

VWP case described above with the addition of the index c that represents the distinct

wavelengths of a fiber link. The integer flow variable of the problem that indicates the

number of lightpaths using the virtual path p to support demand d that will be serviced

by the corresponding DC s is now updated to xdspc and indicates the assignment of a

specific wavelength c across the path. Accordingly, the flow variable zeq is updated to

zeqc. The rest of the variables, indices and constants remain the same.

The constraints of the problem are updated to ensure the correct assignment of

capacity across the paths for the establishment of all the demands: Eq. (4.24) ensures

the establishment of all the demands, whereas constraints in Eq. (4.25))-(Eq. (4.27)

assign to virtual and physical links the required capacity to accommodate the traffic

flows.

∑
s

∑
p

∑
c

xdspc = hd, d = 1, ..., D (4.24)

∑
d

∑
s

∑
p

∑
c

δedpxdspc ≤ we, e = 1, ..., E (4.25)

∑
q

∑
c

zeqc ≤ we, e = 1, ..., E (4.26)

∑
e

∑
q

∑
c

γleqzeqc ≤ yl, l = 1, ..., L (4.27)

Eq. (4.28) ensures that each distinct wavelength on a physical path q realizing a

virtual link e is assigned only to one flow.

∑
e

∑
q

∑
c

γleqzeqc ≤ yl, l = 1, ..., L (4.28)

Eq. (4.21) and Eq. (4.22) of the VWP formulation remain the same. Finally, the
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data center utilization in Eq. (4.29) is expressed as the sum of lightpaths arriving at DC

s:

∑
e

∑
q

∑
c

γleqzeqc ≤ yl, l = 1, ..., L (4.29)

The optimization objectives remain as defined for the VWP case.

The problem formulations used for the planning of the infrastructure without consid-

ering the formation of VIs are referred to as PI planning problems and are subsets of the

formulation presented above. Therefore, they do not include variables and constraints

related to the virtual links and paths.

4.3.2 Online Traffic Provisioning

The virtual infrastructures planned through the integer programs based on the two

objective functions presented previously are further evaluated under an online traffic

provisioning scenario. The simulations are based on a custom Matlab tool [73] and

traffic is modeled as a Poisson arrival process with exponential service time distribu-

tion. Requests are randomly generated from all sources, apart from the nodes directly

connected to data centers. The traffic load spans from 30 to 80 Erlangs.

The goal of these simulations is to evaluate the performance of the different VIs in

terms of request blocking. The request destination is a decision based on the closest-DC

scheme, where for every request we choose as destination the DC that can be reached

through a length-based shortest path with available capacity. The granularity of the

requests is one wavelength. The performance evaluation takes place for virtual infras-

tructures that correspond to both VWP and WP planning problems solutions and both

optimization objectives. For the WP case, the First Fit wavelength assignment algorithm

is used.
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4.4 Results and Discussion

To evaluate the different VI planning approaches described above, we assume the inte-

grated network and DC infrastructure presented in Figure 4.2. The reference network

topology used is based on the COST 239 pan-European network [39] interconnecting four

data centers. One fiber link per direction ensures bi-directional communication with fiber

capacity of 96 wavelengths. The data center throughput in terms of wavelengths is 240

wavelengths. The mapping of the data center and network resources requires that the

four data centers’ total capacity is 240*4=960 lightpaths and our traffic demands reach

the level of 150 lightpath requests per VI, thus 600 lightpaths for the case where all 4

VIs are present. We assume four virtual infrastructure request sets, each one supporting

a total number of lightpath requests ranging from 30 to 150. Moreover, we assume that

only active (utilized) network and data center resources consume power, whereas the

respective granularity is the fiber link and the DC as a whole.
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To address the statistical uncertainty associated with the input traffic, we report

confidence interval (CI) limits of the mean network utilization for a confidence level of

95%. Each value corresponds to a specific VI and lightpath load combination and is

computed as the lower and upper (±) CI limit over the mean network utilization for 50

repetitions. For each repetition, we generate a set of lightpath requests that sum up to

the corresponding loading value and the source nodes are randomly selected according

to a uniform distribution. Table 4.5 provides the corresponding values for the case of

wavelength path formulation and the MNR objective. All other formulations result in

similar values that always remain in the range of 3%-15%.

Table 4.5 – CI Limits of Mean Power Consumption for 95% Confidence Level

VI / Lightpaths 30 60 90 120

1 0.1026 0.0282 0.0129 0.0147
2 0.0335 0.0279 0.0129 0.0148
3 0.0335 0.0280 0.0128 0.0145
4 0.0334 0.0278 0.0128 0.0143

4.4.1 Power Consumption

The planning problems presented in this work model two different objective functions

(MJP and MNR) under two network technologies (VWP and WP). This study aims

at investigating: a) the impact of the VI model and request model on the power con-

sumption of the infrastructure and b) the impact of the objective function to the power

consumption when VIs are sequentially planned for both VWP and WP networks. These

issues are illustrated in Figure 4.3-Figure 4.13 and are analyzed below:

a) Figure 4.3 and Figure 4.4 demonstrate two result sets for the VWP and WP

case respectively and concentrate on the total power consumption corresponding to the

planned VIs for each objective and for all four VIs and the breakdown of power con-

sumption on DC and network parts. We first observe that the MJP objective achieves
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lower power consumption values across lower traffic volumes, as expected, whereas a

change of this trend is observed for high numbers of VIs and load values.

Focusing on the VWP case, it is observed (Figure 4.3) that the MJP objective

achieves significantly lower power consumption for 120 and 240 ligthpaths (correspond-

ing to 30 and 60 lightpaths per VI), almost similar values with the MNR objective for

360 and 480 lightpaths, and finally higher power consumption for 600 lightpaths. The

breakdown of network and DC power consumption provides a more detailed understand-

ing on how network and DC resources need to be powered up based on the output of the

two objectives and explains why the MJP objective does not lead to the optimal power

consumption across all load values and VI numbers. In this context, there are two main

observations: 1) The MJP demonstrates almost constant network power consumption

across all load values (small variations are observed due to statistical error), that is also

much higher than the respective network power consumption when applying the MNR

objective. This is verified in Figure 4.5 that demonstrates the average lightpath length

for the two objectives.
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Figure 4.3 – Power Consumption Contributions - VWP

2) At the same time, the DC power consumption of the MJP objective is much

lower than that of MNR for lower load values and grows to the same level for higher

load values. This is clearly verified in Figure 4.6, where the number of powered up

DCs versus the number of requests is illustrated. We observe that the MJP objective

causes powering up of DCs only when the already powered up DCs are not sufficient
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to accommodate the new requests. Since the DCs are the highest energy consuming

elements of the infrastructure the decision to power up DCs plays an important role in

the optimization process and leads to higher average lightpath length.
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These results have demonstrated that the MJP objective gradually causes powering

up of DCs and introduces longer paths to reach them. Therefore, the objective to achieve

lower power consumption leads to over-utilization of the network resources. On the other

hand, the MNR objective achieves better network utilization, as it aims at minimizing

the total path length. For high load values, all available DCs need to be powered up

for both objectives. However, in this case, applying the MNR, achieves lower network

resource utilization.

In Figure 4.4 we demonstrate the same set of results for a WDM network without

wavelength conversion capability. The results acquired applying the two different ob-

jectives are similar as in the VWP case, demonstrating a similar trend, where the MJP

achieves lower power consumption across most load values and the trend is changing

only for the highest load value of 600 lightpaths. The difference of the absolute values

is attributed to the absence of wavelength converters, which significantly reduces the

network power consumption.

b) Aiming at a more detailed evaluation of the objective impact on the power con-

sumption of the converged infrastructure, we provide a set of results that represent

the total power consumption of the infrastructure across the VIs established over the

physical infrastructure and for three different lightpath load volumes. Figure 4.7 and

Figure 4.8 present these results for 30-60 and 120-150 lightpaths respectively for the

virtual wavelength path case.
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Figure 4.8 – Total Power Consumption vs Number of VIs - VWP 120-150 Light-
paths

The MJP objective achieves lower power consumption only for one or two planned

VIs, whereas for higher number of VIs, MNR outperforms MJP for both low (30-60) and

high (120-150) lightpath requests per VI. The observed change of trend is attributed to

the fact that planning of multiple VIs is not based on a global optimization performed

having in advance knowledge of the VI requests. Instead a practical planning approach

is adopted, according to which, the planning procedure takes place for each VI request

sequentially, considering that all previous VIs remain established and utilize the already

assigned resources. Finally it should be noted that the addition of wavelength convert-

ers in the VWP case, assumed to employ OEO transponder technology in this study,

significantly increases the overall power consumption of the optical network. This has

an impact on the relative proportion of power consumption of the network and the data

center resources and the associated trade-offs.

These observations clearly indicate that in order to maintain the energy efficiency

benefit that MJP can offer when planning VIs over a PI, that are dynamically requested

in time, there is a need to reconsider the existing resource allocation per VI periodically

or following specific triggering events. This can then be followed by suitable reallocation

of resources per VI through a VI re-planning phase. If there is a requirement for this

reallocation of resources to not disrupt for services that are already supported, relevant

constraints in the VI re-planning process can be applied.
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Figure 4.10 – Total Power Consumption vs Number of VIs - WP 120-150 Light-
paths

Figure 4.9 and Figure 4.10 provide the same set of results for the WP case, where

wavelength converters are not present at the network nodes and the corresponding plan-

ning problem takes into account the fact that the same wavelength has to be assigned

across each lightpath established on the physical topology, known as the wavelength

continuity constraint. The graphs illustrating the power consumption for the different

load values across the VIs are in accordance to the results discussed above and indicate

similar performance for the two objectives and the WP case.

4.4.2 Blocking Performance

Figure 4.11 depicts the network resource utilization in terms of the number of link-

wavelengths utilized by the VIs for the two objectives. The results are presented across
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all lightpath volumes and after all four virtual infrastructures have been established.

For the WP network, MNR achieves link-wavelength utilization of the order of 3%-13%

compared to 8%-30% for the VWP network. MJP achieves a similar benefit, since no

difference in the network resource assignment is observed between the two formulations

for the specific problem.
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Figure 4.11 – Network Capacity Utilization

As already mentioned and observed through the investigation of power consumption

contributions from the network and data center resources, the two objectives result in

different virtual network infrastructures. The average number of wavelengths per fiber

link is the same, but the node degree and total number of links used differs. MNR

planned VIs exhibit a uniform node degree of 2 across all load volumes, whereas VIs

created by the MJP objective exhibit node degrees of 3 due to the selection of longer

paths.

Based on the VIs generated as described in detail above, we provide results that

evaluate the performance of an online routing algorithm over the established planned

VIs. We compare two virtual infrastructures differing in the node degree under both

wavelength-converted and wavelength-continuity-constrained optical networks.

Figure 4.12 depicts the blocking performance of the two VIs in a wavelength-converted

network (VWP) and quantifies the performance gain of the MJP category of VIs. The VI

with node degree 3 (MJP ) reaches a blocking probability value of 5%.The efficiency of

104



0.00	  

0.01	  

0.10	  

1.00	  

20	   30	   40	   50	   60	   70	   80	  

Bl
oc
ki
ng
	  P
ro
ba
bi
lit
y	  

Load	  (Erlangs)	  

MNR	  ND=2	  

MJP	  ND=3	  

Figure 4.12 – Blocking Probablility vs Lightpath Requests - VWP

0.00	  

0.00	  

0.01	  

0.10	  

1.00	  

20	   30	   40	   50	   60	   70	   80	  

Bl
oc
ki
ng
	  P
ro
ba
bi
lit
y	  

Load	  (Erlangs)	  

MNR	  ND=2	  

MJP	  ND=3	  

Figure 4.13 – Blocking Probablility vs Lightpath Requests - WP

the MNR objective in the utilization of network resources results in much higher block-

ing values that reach the level of 21% for the highest loading value. In the case where

wavelength assignment is applied at each network node, both VI types experience higher

demand blocking due to the increased probability of a path to be discarded because of

the wavelength continuity constraint. Figure 4.13 illustrates blocking values of up to

7% for the MJP VI and 23% for the MNR VI. A much higher difference in the blocking

probability between VWP and WP networks is observed for lower loading values and for

both objectives.
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4.5 Conclusions

In this chapter, we presented a detailed study of planning virtual infrastructures over a

physical infrastructure comprising integrated optical network and data center resources.

The study assumed a practical VI demand model that did not support any in advance

global knowledge of the VI requests and through detailed ILP modeling compared two

different objective functions the MJP and MNR as well as two different optical network

architectures one supporting the VWP and one supporting the WP. The various scenarios

under study were compared with regards to power consumption, network utilization and

blocking performance of the planned VIs. Our results illustrated that although power

consumption is an important aspect and an objective function (MJP) that optimizes the

energy efficiency of the infrastructure, it may introduce inefficiencies in the utilization of

network resources when the number of requests exceeds a certain level. This may in turn

compromise the benefit with regards to energy efficiency, compared to what is achieved,

when applying an objective that minimizes the network resource utilization for this high

demand levels. To overcome this inefficiency, periodic re-planning of the requests can

be applied. Finally, a set of dynamic traffic provisioning results were provided through

simulations illustrating that the efficient resource utilization of the second objective

(MNR) introduces a penalty on the produced VIs, especially in terms of connectivity,

that leads to poor request blocking performance.
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Chapter 5

Deployment of Correlated

Cloud-Based Services

“Clouds are a large pool of easily usable and accessible virtualized resources (such as

hardware, development platforms and/or services). These resources can be dynamically

re-configured to adjust to a variable load (scale), allowing also for an optimum resource

utilization. This pool of resources is typically exploited by a pay-per-use model in which

guarantees are offered by the Infrastructure Provider by means of customized SLAs ’’

[4]. Among several early definitions present in the literature [74], [75], the one presented

in [4] provides a simple but yet self-contained definition of Cloud computing as it has

emerged during the recent years. The basis of this definition lies in some of the main

functionalities/characteristics to support the Cloud paradigm, such as virtualization, dy-

namic reconfiguration, scalability, optimal resource utilization and pay-per-use model.

Apart from these, the Cloud paradigm shares but is not limited to several other charac-

teristics of Grid computing such as resource sharing, security, self-management and QoS

guarantees, as summarized in [4].

The concept of a Virtual Machine (VM) [76] has been introduced to capture the use

of virtualization technology to split the resources (computing, memory, storage, ...) of

a single machine to several entities that run a separate operating system instance and

enable isolation, consolidation and workload migration [77]. VM migration [76], [78] is
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the implementation of workload migration that facilitates load balancing and mainte-

nance purposes [77]. An important differentiation categorizes VM migration approaches

into a) pure stop-and-copy or cold migration and b) live or hot migration [77], [79], [80].

In the former, VM is halted at the source, required action regarding memory copying

at the destination is taken and then the VM is started at the destination. In the latter

on the other hand, the Operating System (OS) and its applications are not interrupted

and VM migration involves repeated data transfers that impose several drawbacks [77].

The main disadvantage of live VM migration lies on the service disruption in terms of

downtime against the important benefits in terms of load balancing and fault tolerance.

The work presented in this chapter is motivated by [6] where the authors demonstrate

that DC to client (D2C) cloud services present correlation patterns in terms of the need

for interaction (data exchange) between pairs of services. These correlation patterns

are not usually taken into account in the way that services are deployed across the

multiple servers in different DCs in the form of VMs. Such services include Web 2.0,

news, e-mail, video and gaming and the degree of need for interaction in [6] is illustrated

in terms of pair-wise temporal port-based correlation based on the Pearson product-

moment correlation coefficient. Based on these observations, we formulate and solve an

optimal VM deployment problem for cross-correlated services among clients and DCs in

a Cloud-based infrastructure. The relevant problems do not take into account the Cloud-

related implementation details, but are rather presented as design/planning problems in

the form of Integer Linear Programming, aiming to act as the basis for identifying trends

and proposing efficient deployment solutions. In this context, we model correlation as

a random process that follows a known probability distribution and each service pair

has a known correlation coefficient. For this reason we employ stochastic optimization

tools and more specifically the Sample Average Approximation (SAA) method to solve

the relevant problems. To illustrate the benefits of the stochastic optimization approach

and also the impact of correlation on the excess capacity and cost incurred, we also solve

appropriate problems that treat correlation as a deterministic input and problems that

do not consider correlation respectively.
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Service deployment is modeled in terms of VMs running on Data Centers (DCs) and

migration of these VMs from one DC to another is considered where applicable. The

main goal is to demonstrate the impact that service correlation has on the network and

DC resource utilization and thus the total cost of the cloud infrastructure. We refer

to the service requested by the client as the first-stage service and to the DC where

the respective VM is deployed as the first-stage DC. Accordingly, the service that the

first-stage service is correlated with is reffered to as the second-stage service and the

relevant DC as the second-stage DC. The impact of correlation relies on the need for a

first-stage service to communicate with the correlated second-stage service in order to

exchange data before the user is served. We can easily understand that this can have an

important impact on resource utilization and service provisioning depending on how the

second stage communication is implemented on the one hand and on how the services

are deployed on the other hand. Regarding the stochastic version of the problem, we

consider multiple service groups with different correlation coefficient characterizing the

pair of services in each group. Correlation per service pair is modeled as a pair of real

numbers that follow a known probability distribution. Second-stage communication is

implemented either in terms of VM migration or in terms of a DC to DC (D2D) path

and is based on a comparison rule that involves a pre-defined threshold.

In order to illustrate all these cases, we model two kinds of problems: a) a Determin-

istic Problem (DP), where for each service request a first-stage path and a VM on one

of the available DCs are assigned, whereas second-stage communication is established

where applicable between the service requested and the corresponding correlated service

on a distinct DC. Various flavors of this problem are examined: a-i) the extreme case

where correlation is not taken into account at all and thus only first-stage routing and

VM deployment decisions are made, the case where correlation is considered and second-

stage decision involves a-ii) either a path assignment from the first-stage DC to another

DC where the correlated service is deployed, or a-iii) the migration of this VM for the

second-stage service from the second-stage to the first-stage DC. The two last cases are

modeled as worst cases and thus all services are considered to require the second-stage
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communication due to the correlation. b) a Stochastic Problem (SP), where the uncer-

tainty lies in the correlation of service pairs and the Sample Average Approximation

(SAA) method is employed to provide us with solution estimates. In all cases, costs are

assigned for the establishment of ligthtpaths, the VM deployment and VM migration

and the total cost minimization is the objective of all problems. The results illustrate

a) the impact of second-stage communication approach on the deterministic problems

in terms of the increased cost required due to the additional network and DC capacity

deployed and b) the important cost savings offered by the stochastic correlation model-

ing and appropriate VM deployment. Finally, we present a significant decision against

which the infrastructure provider is faced in the existence of an upper bound on cost

regarding the choice of the optimal threshold that defines whether service correlation

will lead to second-stage communication.

5.1 Related Work

In [4], the authors present the actors, such as service providers and infrastructure

providers, and the scenarios, such as Infrastructure as a Service (Iaas), Platform as

a Service (PaaS) and Software as a Service (SaaS) that form the basic Cloud system.

Based on these and after summarizing the most important definitions of cloud comput-

ing, they propose a Cloud definition whose main focusing is on characteristics such as

“scalability, pay-per use model and virtualization”. Finally, they provide a comparison

of the main features of Grid and Cloud such as resource sharing, virtualization, scalabil-

ity etc., aming at a clear distinction between the two. In [77] the authors position VM

migration in the context of the Cloud paradigm and identify it as a key basic enabling

technology to ensure important features such as scalability and load balancing. After

differentiating it with “pure stop-and-copy”or “hot”migration, they present basic charac-

teristics of modern Internet applications that require the advanced performance benefits

offered by live migration. Based on this motivation, they implement benchmarking ex-

periments over realistic workloads aiming at providing a more clear view of live VM

110



migration. The results obtained over a Web 2.0 application example demonstrate signif-

icant service disruption in terms of downtime, making the development of more efficient

solutions required for the benefits of live VM migration to be fully utilized. In [81] the

authors present a distributed approach for solving the dynamic service placement prob-

lem with the objective to minimize “response time violations and resource rental cost

at run time”. In [82], the authors deal with the problem of “service co-deployment”in

cloud computing by formulating an integer program that ”minimizes the latency of user

requests”. They first provide a model for single service deployment where users are

assigned to be served based on the distance criterion and then extend this model to a

multi-service environment, where correlation between services is taken into account. In

this case, the solution of the problem provides the co-deployment of related services for

each request at once and aims to minimize the total latency experienced by the user. To

mitigate the huge problem size, the authors also provide an iterative heuristic algorithm

for the proposed deployment scheme. Based on real-world latency data collected for

the purpose of this work, they provide experimental results on latency and demonstrate

significant savings compared to the independent deployment scheme where the relation

of services is not taken into account. [83] presents how computational, storage and net-

work resources can be efficiently utilized through a network-aware cloud. Through a

prototype demonstration, the authors demonstrate how efficient service placement and

migration among distributed data centers can mitigate the user experience degradation

due to any possible cloud infrastructure issues. By comparing the distributed algorithm

with a greedy centralized algorithm, they indicate that near-optimal solutions are pro-

duced by the proposed approach under static traffic. Finally, they present results under

dynamic traffic, also compared to the centralized approach at specific time instances and

demonstrate adaptivity to the traffic pattern and improved performance compared to

the centralized solution in some cases.
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5.2 Methodology Background

According to [84], “the aim of stochastic programming is to find an optimal decision in

problems involving uncertain data”, as opposed to deterministic programming, where

uncertainty is not taken into account. In this chapter, the related problem is formulated

as a two-stage stochastic routing problem, as presented in detail in [25]. In two-stage

stochastic routing problems, the first stage involves a route selection and the second

stage some recourse, that being a re-routing decision, a penalty or any decision affected

by the first stage. The optimization objective is expressed as the total cost incurred by

both the first stage decisions and the expected cost of the recourse. The general class of

two stage stochastic routing problems (also referred to as the original problem) can be

formulated as in Eq. (5.1)

z∗ = min cTx+ EP [Q(x, ξ(ω))] (5.1)

where

Q(x, ξ(ω)) = min y≥0{q(ω)T y|Dy ≥ T (ω)x} (5.2)

and x is the first stage routing decision, y is the second stage recourse decision and ω ∈ Ω

is the scenario where uncertainty lies in and is not known during the first stage decision

but its probability distribution is considered known during the second stage decision.

Several solution approaches exist in the literature regarding stochastic routing prob-

lems. These are based on heuristics [85], dynamic programming [86], or exact methods

for cases with a small number of scenarios using the L-shaped method [87]. For problems

with very large number of scenarios, exact evaluation of the second stage expected value

function in Eq. (5.1) is impossible, thus several sampling methods have been proposed

in the literature [25]. Among them, the Sample Average Approximation (SAA) method

is an exterior sampling method in which the expected value function EP [Q(x, ξ(ω))] is

approximated by the sample average function
∑N

n=1
1
NQ(x, ξ(ω)).
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The SAA problem is formulated as

zn = min cTx+
1

N

N∑
n=1

Q(x, ξ(ωn)) (5.3)

The optimal objective value and optimal solution of the original problem 5.1 are

estimated by the optimal value zn and an optimal solution x̂ obtained by solving the

SAA problem.

By generating M independent samples each of size N and solving the associated

SAA problems 5.3, we obtain values z1N , ..., z
M
N and candidate solutions x̂1, ..., x̂M .

Let

z̄N =
1

M

M∑
m=1

zMN (5.4)

denote the average of the optimal objective values of the M SAA problems. Then

E [z̄N ] ≤ z∗, thus z̄N provides a statistical estimate for a lower bound on the optimal

value of the true problem.

For any feasible point x̂ ∈ X, the objective value cT x̂ + E [Q(x̂, ξ(ω))] is an upper

bound for z∗. The upper bound can be estimated by

ẑN ′(x̂) = cT x̂+
1

N ′

N ′∑
n=1

Q (x̂, ξ(ωn)) (5.5)

where {ω1, ω2, ..., ωN ′} is a sample of size N ′. Note that N ′ > N and that the sample of

size N ′ is independent from the sample used to generate x̂. Then ẑN ′(x̂) is an unbiased

estimator of cT (̂x) + E [Q(x, ξ(ω))] and hence for any feasible solution x̂ :

E [ẑN ′(x̂)] ≥ z∗ (5.6)

From the M optimal solutions x̂1, x̂2, ..., x̂M produced, we choose the one that has

the smallest objective value:

x̂∗ ∈ argmin{ẑN ′(x̂) : x̂ ∈ {x̂1, x̂2, ..., x̂M}} (5.7)
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The optimality gap estimate is calculated as

ẑN ′(x̂
∗)− z̄N (5.8)

where ẑN ′(x̂
∗) is re-computed after performing the minimization in 5.7 with an indepen-

dent sample to obtain an unbiased estimate.

5.3 Problem Formulation

In terms of the stochastic problem formulation, service correlation is modeled as follows:

Each traffic demand is assumed to require one wavelength in terms of network capacity

and one VM in terms of DC resources. All services are assumed to require the same

amount of computing, storage and memory resources and thus VMs requirements are

the same across services. Each demand requires one service and this is called the first-

stage service. The offered services are classified in two groups in the case of stochastic

problems: a) a highly correlated group and b) a low correlated group. Each group

consists of a service pair and services in each group are indexed by a ∈ A, whereas

groups are indexed by g ∈ G and demands by d ∈ D. We use ad to refer to the service

that the client asks in the first-stage and gd to the group that this demand belongs to.

The correlation of a service pair is defined as the Pearson product-moment correlation

coefficient ρ. According to the service group that a pair belongs to, we use the corre-

sponding correlation coefficient to generate a two-dimensional random vector c = (c1, c2)

whose values correspond to the pair of services of the group. For this we assume a bi-

variate normal distribution, so that the probability density function of the vector c is

given by Eq. (5.9).

f (c1, c2) =
1

2πσc1σc2
√

1− ρ2
exp

(
− 1

2(1− ρ2)[
(c1 − µc1)2

σ2c1
+

(c2 − µc2)2

σ2c2
− 2ρ (c1 − µc1) (c2 − µc2)

σc1σc2

])
(5.9)
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where

σc1 > 0, σc2 > 0, µ =

 µc1

µc2

 and Σ =

 σ2c1 ρσc1σc2

ρσc1σc2 σ2c1

 is the variance-

covariance matrix.

Upon generation of the random values for each scenario according to the SAA

method, we have a pair of values (c1, c2) for each demand that is generated based on

the correlation coefficient of the group that the services belong to. The use of the two-

dimensional matrix is two-fold: 1) among the two services, the one with the largest

value is selected to be the first-stage service that is the one initially required by the

client, denoted by ad. 2) it enables us to establish whether second-stage communication

is required. This is supported through the calculation of the absolute difference of the

two values, that is |c1 − c2|. If |c1 − c2| < cth, then service ad needs to communicate

with the other service of the group from a different DC, whereas if |c1 − c2| ≥ cth, com-

munication is not required. The initial assignment of VMs on DCs is only in terms of

capacity for each group of services and no deployment of services is considered. Thus

for every second-stage communication required by correlation of the service pair, the

solution of the problem gives us either the distinct DC that the secondary service is

deployed and the corresponding D2D path, or the migration of a VM for this service

from a distinct DC to the first-stage DC, always obeying the capacity bounds of the

DCs for each group of services. This way, we do not consider the case where enough

VM capacity exists on the first-stage DC and no migration or D2D path is needed for

communication with another DC, although the second-stage communication is required.

Each demand is characterized by the triplet {o, c1, c2}, where o is the origin node selected

from a uniform distribution among the available client nodes of the network.

We formulate, solve and compare two different classes of problems: a) the class of

Deterministic Problems (DP) that consists of a problem that does not consider any

correlation between services (DPnoCor) and two worst-case problems where all services

are considered to be fully correlated with another service of the same group. These

two problems differ in the second-stage communication between the correlated services,

since in one case migration of a VM for the correlated service takes place from a different
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DC to the first-stage DC (DPmig) (live migration) and in the other case VM migartion

is not allowed but rather a D2D path has to be established (DPd2d). b) the class of

Stochastic Problems that consists of three problems. These differ in the percentage of

high (ρ = 0.9) and low (ρ = 0.1) correlated traffic that each one consists of. The first,

SPlow consists of 90% low correlated traffic and 10% highly correlated traffic, the second

SPhigh consists of 90% highly and 10% low correlated traffic and the third, SP 50 50

consists of the same amount (50% ) of highly and low correlated traffic. A mean value

of 5 and a variance of 0.2 are used. The absolute difference of the values generated

by the bivariate normal distribution gets higher as the correlation coefficient gets lower

and thus the probability for second-stage communication to be required gets smaller as

the threshold value gets smaller. The threshold values against which we compare the

outcome of the random values are (0.1, 0.2, 0.3, 0.4, 0.5). The problems are summarized

in Table 5.1. 1.

Table 5.1 – Problems

Problem Uncertainty Correlation 2nd stage communication

DPnoCor no no no
DPmig no full live migration
DPd2d no full D2D path
SPlow yes random migration or D2D path
SP5050 yes random migration or D2D path

The converged network and DC infrastructure is modelled as a graph G = (N,E)

where N is the set of nodes and E is the set of edges (links) interconnecting these

nodes. All network nodes n ∈ N are modelled as an optical cross connect (OXC)

Figure 3.1. S is a subset of N and depicts the set of nodes where DCs are attached.

The set {N − S} represents the client nodes where demands are initiated. Each link

interconnecting the nodes is a fiber link with a maximum capacity of 100 wavelengths

and one such directional link is assumed between any two interconnected nodes. DC s

1SP ∗ refers to “low”,“5050” and “high” stochastic problems
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capacity in terms of VMs is also upper bounded by V max
s which is 60 for each DC in our

case. All problems are solved for total traffic volumes of 20, 40 and 60 lightpath/VM

requests and result in an optimal VM and network capacity placement on the available

DCs and WDM network links respectively. The developed algorithms aim to tackle the

problem of optimal VM deployment for a set of requests and thus have a planning/design

nature. For this reason, they are formulated and solved in terms of binary Integer

Linear Programs (ILP). Table 5.2 includes the inputs and parameters used throughout

the different problem formulations.

Table 5.2 – Problem Parameters

Parameter Description

HD total demands volume in terms of VMs (lightpaths)
hd volume of demand d
‖S‖ total number of DCs
V max
s maximum capacity of DC s in terms of VMs (lightpaths)
δedsp =1, if candidate path p for demand d towards DC s contains link e
γedss′q =1, if candidate path q for demand d for D2D communication between

1st stage DC s and 2nd stage DC s′ contains link e
cth threshold value for the absolute difference cross-correlation values

between services in the same group
bda =1, if service a of group gd needs to communicate with service ad.

This is the result of the randomly generated pair of values from the
bivariate normal distribution with the correlation coefficient of
the group g as an input.

The set of variables used across the problem formulations are presented in Table 5.3.

Regarding the flow variables for 1st stage (xdsp) and second-stage (zdss′q) communication

paths, we employ Yen’s k-shortest path routing algorithm with k = 2 to populate the

list of candidate paths for each demand from the client node towards any of the available

DC destinations and from the 1st stage DC to the 2nd stage DC.
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Table 5.3 – Problem Variables

Variable Domain Description

xdsp {0, 1} =1, if candidate path p is used to realized demand d towards
DC s

zdss′q {0, 1} =1, if candidate path q is used to realize demand d’s need
for D2D communication between DC s and DC s′

mda
ss′ {0, 1} =1, if VM serving service a (of the same group gd)

for demand d migrates from DC s to DC s′

zdass′q {0, 1} =1, if candidate D2D path q for service a (in the same group

dg) of demand d from DC s to DC s′ is established
ydass′q {0, 1} Used for linearization due to the multiplication of mda

s′s

and zdss′q
we Z+ number of wavelengths established on link e
vgas Z+ number of VMs for service a of group g running on DC s

In the following subsections we present the formulations of the stochastic (Section

5.3.1) and the deterministic problems (Section 5.3.2) based on the parameters and vari-

ables presented above.

5.3.1 Stochastic Problem

Throughout the problem formulations, we use the common objective function presented

in Eq. (5.10) that represents the total cost of VM deployment across the DCs and

lightpaths establishment over the fiber links interconnecting the DCs. The relevant

costs of VM hosting on a DC, VM migration from a DC to another and lightpath

establishment are presented in Table 5.4.

Table 5.4 – Cost Values

Symbol Description Value

CVM
dep Cost of deploying a VM on a DC $0.1 per VM (per period)

CVM
mig Cost of VM migration $0.01 per VM (per period)

Cpath Cost of path establishment $0.2 per VM (per GB)
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The objective function for the 2-stage stochastic problem consists of two main parts:

1) the cost of first-stage VM deployment illustrated by the first-stage variable xdsp and

including the cost of establishing the path Cpath from the client to the first-stage DC

(D2C path) and the cost of deploying the VM for the first-stage service ad at the first-

stage DC, CVM
dep . 2) The cost of the recourse in terms of the stochastic optimization.

This second part is illustrated through the variables of VM migration mda
s′s and D2D

path zdass′q and the respective costs (CVM
mig , CVM

dep ) and (Cpath, CVM
dep ). We should note

that the cost of VM hosting is also considered in the cases of VM migration and/or D2D

path establishment. For the stochastic problems, second-stage communication initiated

due to the correlation of service pairs is implemented either through the migration of

a VM from a DC (referred to also as second-stage) to the first-stage DC where service

ad is already deployed, or through the establishment of a D2D path again between the

first-stage DC and a distinct DC with available capacity. The mutual exclusion of these

two choices is illustrated in the objective function through the multiplication of each

of the respective variables with the complementary of the second. We thus introduce a

third binary variable zdass′q to replace this multiplication and mitigate the non-linearity.

The following formulation is the same for all three stochastic problems that differ only

in the mixture of traffic regarding the percentage of highly and low correlated traffic.

min Ctot =cTx+ EP [Q ((z,m) , ξ(ω))]

=
∑
d

∑
s

∑
p

(
Cpath + CVM

dep

)
xdsp+

1

N


∑
d

∑
s,s′

s6=s′

∑
a,

a6=ad

bda

[(
CVM
mig + CVM

dep

)
mda

s′s

∑
q

(
1− zdadss′q

)
+

(
1−mda

s′s

)∑
q

zdadss′q
(
CVM
depl + Cpath

)]}
(5.10)

which after the linearization becomes:
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min Ctot =cTx+ EP [Q ({z,m}, ξ(ω))]

=
∑
d

∑
s

∑
p

(
Cpath + CVM

dep

)
xdsp+

1

N


∑
d

∑
s,s′

s 6=s′

∑
a,

a6=ad

bda

[(
CVM
mig + CVM

dep

)
mda

s′s

∑
q

(
1− ydadss′q

)
+

∑
q

(
CVM
dep + Cpath

) (
zdadss′q − ydadss′q

)]}
(5.11)

The cost of deploying the VMs to the available DCs and establishing the lightpaths

over the fiber links in order to accommodate the client requests for correlated services

is minimized subject to the set of constraints presented below.

All demands served : Ensure that all demands are accommodated, both for first-stage

and second-stage communication through the variables xdsp and mda
s′s (migration)

or zdass′q (D2D path).

∑
s

∑
p

xdsp +
∑
s,s′

s 6=s′

∑
a

a6=ad

bda

(
mda

s′s + sumqz
da
ss′q

)
≥ hd, d = 1, ..., D (5.12)

Link Capacity : Ensure that the sum of first-stage and second-stage flows utlizing link

e is less that the total link capacity we

∑
d

∑
s

∑
p

δedspxdsp +
∑
d

∑
s,s′

s 6=s′

∑
a

a6=ad

bdaγ
da
edss′qz

da
ss′q ≤ we, e = 1, ..., E (5.13)

DC s capacity for each service : The total number of VMs for service a of group g on

DC s has to be enough to accommodate the VMs for first-stage services plus the

VMs of second-stage services, both those that are migrated from any DC s′ to DC
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s and those that are offered from DC s through a D2D path.

∑
d

ad=a
gd=g

∑
p

xdsp +
∑
d

ad 6=a
gd=g

∑
s′

s′ 6=s

bda

(
mda

s′s +
∑
q

zdas′sq

)
≤ ugas , s = 1, ..., S (5.14)

Upper bound on VMs running on DC s : The total number of VMs deployed at DC s

for all services should be less than the total DC capacity in terms of DCs.

∑
g

∑
a

ugas ≤ V max
s , s = 1, ..., S, g = 1, ..., G, a = 1, ..., A (5.15)

VM migration origin/destination constraints (part a) : VM migration for second-stage

communication cannot be originated at the DC s where first-stage service ad is

served. ∑
p

xdsp +
∑
a

a6=ad

∑
s′

s′ 6=s

bdam
da
ss′ ≤ 1, d = 1, ..., D, s = 1, ..., S (5.16)

VM migration origin/destination constraints (part b) : The VM migration destination

for second-stage communication cannot take place between two DCs that are both

different than the first-stage DC s.

∑
p

xdsp +
∑
a

a6=ad

∑
s′

s′ 6=s

∑
s′′

s′′ 6=s′

s′′ 6=s

bdam
da
s′s′′ ≤ 1, d = 1, ..., D, s = 1, ..., S (5.17)

D2D paths constraints (part a) : The D2D path for second-stage communication origi-

nates from the first-stage DC, not from the second-stage (used for uniformity on

how paths are assigned).

∑
p

xdsp +
∑
a

a6=ad

∑
s′

s′ 6=s

∑
q

bdaz
da
s′sq ≤ 1 (5.18)

D2D paths constraints (part b) : The D2D path for second-stage communication has to
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include the first-stage DC and a distinct DC.

∑
p

xdsp +
∑
a

a6=ad

∑
s′

s′ 6=s

∑
s′′

s′′ 6=s′

s′′ 6=s

∑
q

bdaz
da
s′s′′q ≤ 1 (5.19)

Linearization : Set of constraints used to linearize the objective function due to the

multiplication of the binary variables mda
s′s and zdadss′q through the binary variable

ydass′q

ydass′q ≤ mda
s′s

ydass′q ≤ zdadss′q

ydass′q ≥ mda
s′s + zdadss′q − 1 (5.20)

5.3.2 Deterministic Problems

The general formulation for the class of deterministic problems is presented in this

subsection. The same sets of variables and parameters with the stochatic formulation

are used here, apart from the parameter bad that reflects the uncertainty of the need for

second-stage communication for service a of demand d due to correlation with the other

service of the group gd. As mentioned before, we solve three deterministic problems,

DPmig, DPd2d and DPnoCor. Specifically for the first two problems where correlation

is taken into account and treated with VM migration and D2D path establishment

respectively, we consider a deterministic and worst-case scenario for correlation between

each service pair, meaning that second-stage communication is required for the services of

every demand. The formulation of each problem falls under the generic ILP formulation

presented here, which however includes some modifications required to address the details

corresponding to each specific case. The differences of each problem are listed below:

DPmig : Second-stage communication is realized through VM migration from a distinct

DC with available capacity for the specific service to the first-stage DC that serves
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the client request. This approach can be classified as live VM migration with

more stringent requirements in terms of delay, synchronization and implementation

cost. However, the cost of deploying the VM and VM migration used in the set of

problems presented here is the same.

DPd2d : Second-stage communication is realized through the establishment of a D2D

path from a distinct DC with available capacity for the specific service correlated

with the client-requested service ad that is deployed at the first-stage DC. No VM

migration is considered in this case. Due to the high cost of D2D path establish-

ment compared to the cost of VM migration, we expect this problem to provide a

worst-case upper bound for all problem solutions and especially for the stochastic

problems.

DPnoCor : Correlation of services is not considered at all, thus only first-stage VM

deployment and bandwidth assignment form the problem solution. This problem

is expected to provide a lower bound for the rest of the problems since no VM

migration, deployment or second-stage services and D2D paths are considered.

min Ctot =
∑
d

∑
s

∑
p

(
Cpath + CVM

dep

)
xdsp+

∑
d

∑
s,s′

s 6=s′

∑
a,

a6=ad

[
mda

s′s

(
CVM
mig + CVM

dep

)∑
q

(
1− ydadss′q

)
+

∑
q

(
CVM
dep + Cpath

) (
zdadss′q − ydadss′q

)]
(5.21)

All demands served :

∑
s

∑
p

xdsp +
∑
s,s′

s6=s′

∑
a

a6=ad

(
mda

s′s +
∑
q

zdass′q

)
≥ hd, d = 1, ..., D (5.22)
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Link Capacity :

∑
d

∑
s

∑
p

δedspxdsp +
∑
d

∑
s,s′

s6=s′

∑
a

a6=ad

γdaedss′qz
da
ss′q ≤ we, e = 1, ..., E (5.23)

DC s capacity for each service :

∑
d

ad=a
gd=g

∑
p

xdsp +
∑
d

ad 6=a
gd=g

∑
s′

s′ 6=s

(
mda

s′s +
∑
q

zdas′sq

)
≤ ugas , s = 1, ..., S (5.24)

Upper bound on VMs running on DC s

∑
g

∑
a

ugas ≤ V max
s , s = 1, ..., S, g = 1, ..., G, a = 1, ..., A (5.25)

VM migration origin/destination constraints (part a)

∑
p

xdsp +
∑
a

a6=ad

∑
s′

s′ 6=s

mda
ss′ ≤ 1, d = 1, ..., D, s = 1, ..., S (5.26)

VM migration origin/destination constraints (part b)

∑
p

xdsp +
∑
a

a6=ad

∑
s′

s′ 6=s

∑
s′′

s′′ 6=s′

s′′ 6=s

mda
s′s′′ ≤ 1, d = 1, ..., D, s = 1, ..., S (5.27)

D2D paths constraints (part a)

∑
p

xdsp +
∑
a

a6=ad

∑
s′

s′ 6=s

∑
q

zdas′sq ≤ 1 (5.28)
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D2D paths constraints (part b)

∑
p

xdsp +
∑
a

a6=ad

∑
s′

s′ 6=s

∑
s′′

s′′ 6=s′

s′′ 6=s

∑
q

zdas′s′′q ≤ 1 (5.29)

Linearization

ydass′q ≤ mda
s′s

ydass′q ≤ zdadss′q

ydass′q ≥ mda
s′s + zdadss′q − 1 (5.30)

5.4 Results and Discussion

In this section we present the results obtained after solving the six distinct problems

described in Table 5.1. All problems are solved for the converged optical network and

DC infrastructure with 4 DCs deployed across the COST239 [39] reference network,

as this is presented in Figure 4.2. The fiber capacity for each link is 100 wavelengths

and each DC supports 60 VMs in total, uniformly spread across the two service groups

and the pair of services for each group, where applicable. Since differentiation of traffic

in terms of correlation groups (highly and low correlated group) is considered only in

the stochastic problems, the total DC capacity is also uniformly spread across the two

groups and among services of each group. This means that for each service in the pair

of services of each group, 15 VMs are considered as the maximum capacity for each DC.

We present results for the three deterministic problems DPmig, DPd2d and DPnoCor

as these are presented in the previous subsection and for three versions of the stochastic

problem: a) SPlow, b) SP5050 and c) SPhigh. Low and high refer to the percentage of low

and correlated traffic respectively. Low correlated traffic is modelled as a group of two

services with correlation coefficient equal to 0.3, whereas a value of 0.9 is used for the

highly correlated traffic group. The percentage of the dominant traffic is 90% in each of
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these two cases. All problems are solved for 20, 40 and 60 total volume of lightpath/VM

requests. Specifically for the stochastic problems, the presented results are obtained

for 5 samples of size 50 for the lower bound and 500 for the upper bound. The result

regarding the optimality gap estimate that reflects how the solution estimation quality

gets better across increasing number of samples is produced for 5, 10 and 20 samples,

each of size 50 for the lower bound and 500 for the upper bound. Also, a lower number

of demands (10) has been considered, since the increased number of considered scenarios

also increases computational complexity.

Most of the results presented in this work are related to the correlation threshold

cth as this is defined in Section 5.3. Figure 5.1 - Figure 5.3 illustrate the total cost of

deploying the required VMs across the 4 DCs and assigning the required capacity over

the fiber links for 20, 40 and 60 lightpath requests originating from all client nodes.

For all three cases, we observe the lower bound provided by the DPnoCor problem and

the upper bound provided by the DPmig problem, since all solutions of the stochastic

problems lie between the two. We also observe the worst-case cost illustrated by the

DPd2d problem, where migration of VMs is not permitted and D2D paths have to be

established. Across the deterministic problems, the results illustrate a 36% increase for

the DPmig problem and a 100% increase for the DPd2d problem in the total cost com-

pared to the DPnoCor problem. This way we identify a) the impact of service correlation

on the cost of deploying the required VMs and assigning lightpaths under two different

implementation approaches, VM migration and D2D paths and b) the cost savings of-

fered, even in the case of approaching service cross-correlation in a deterministic way,

by enabling migration of VMs instead of establishing inter-DC paths, and the analogy

of these savings to the respective costs of VM migration and path establishment. The

latter observation illustrates the importance of live migration and the need to implement

efficient algorithms that provide minimum delay when pre-planned migration is not an

option.

The three stochastic problems are differentiated by varying the percentage of highly

and low correlated traffic and a cost difference that lies between 5% and 8% is observed
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Figure 5.1 – Total Cost vs Correlation Threshold - 20 lightpath/VM requests
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Figure 5.2 – Total Cost vs Correlation Threshold - 40 lightpath/VM requests

among these problems across all threshold values and for all three total traffic volumes

considered. The threshold value is compared with the absolute difference of the ser-

vice values related to their correlation. As this value increases, the cost results of the

stochastic problems approach the upper bound of the deterministic problem, where mi-

gration is considered for second-stage communication. This is clear if we recall that

the stochastic problems are modeled in a way that the lower cost solution is offered by

enabling either VM migration or D2D path for the second-stage communication of each
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Figure 5.3 – Total Cost vs Correlation Threshold - 60 lightpath/VM requests

request. However, the relatively lower cost of the VM migration compared to the D2D

path establishment results in migration for all requests, as this is the optimal choice and

the reason for which the result of the DPmig problem is an upper bound for the stochas-

tic problems. In a different case where both VM migration and D2D paths would be

part of the solution, the stochastic problems’ cost would reside between the same lower

bound, DPnoCor and the worst-case upper bound, DPd2d. Finally, for small correlation

threshold, i.e. when having a requirement for values with very small absolute difference

for the service pairs obtained from the bi-variate normal distribution (a result that is

already driven by the correlation coefficient), the stochastic problems’ costs are close to

the case where no correlation takes place, since this requirement lowers the probability

of two services in a group to require communication.

For the same set of problems, threshold values and traffic volumes, Figure 5.4 -

Figure 5.6 provide the results of the total network capacity in terms of the total number

of wavelengths. Despite the clear differentiation of the worst-case DPd2d problem results

where an important amount of additional capacity is assigned due to the establishment

of D2D paths, this is not the case among the rest of the problems. The DPnoCor is

still a lower bound, but this is not clear in the results since all other problems’ capacity

assignment is similar and due to the small number of samples and sample size that have
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an important limitation on the solution quality.
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Figure 5.4 – Network Capacity vs Correlation Threshold - 20 lightpath/VM re-
quests
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Figure 5.5 – Network Capacity vs Correlation Threshold - 40 lightpath/VM re-
quests

The results regarding the total number of VMs deployed across the four DCs are

presented in Figure 5.7 - Figure 5.9 for 20, 40 and 60 requests respectively. DP all rep-

resents the deterministic problems DPmig and DPd2d since there is no differentiation on

the number of VMs needed when all services are deterministically considered correlated

with their pairs. This makes obvious the reason for which in all cases these results are
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Figure 5.6 – Network Capacity vs Correlation Threshold - 60 lightpath/VM re-
quests

fixed and equal to double the total traffic volume, since two VMs are needed for each

request, one first-stage and one second-stage. The DPnoCor deterministic problem still

provides a lower bound that is again fixed and equal to the number of requests, since

no correlation is considered for any service. The stochastic problems results follow the

same pattern with the cost-related results, since the number of VMs deployed gets higher

when more higly correlated services are part of the total traffic requested.
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Figure 5.9 – Number of VMs vs Correlation Threshold - 60 lightpath/VM requests

To demonstrate how the solution estimate quality gets better with the number of

samples, we present in Figure 5.10 the optimality gap estimate for values of M equal to

10, 20 and 50. This is based on a stochastic problem solution for 10 lightpath requests,

since the increasing number of samples with a fixed sample size of 100 makes the problem

very difficult to solve. We observe that if problems are solved for higher number of

samples, the optimality gap estimate is subject to exponential decay.

Finally, in Figure 5.11 and Figure 5.12 we explore the same data set from a different
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Figure 5.10 – Network Capacity vs Correlation Threshold - 20 lightpath/VM re-
quests

point of view and present the threshold value required for different upper bounds on

the total cost of the three stochstic problems. Two main observations can be made: a)

Lowering the maximum cost accepted for deploying the VMs and assigning the required

network capacity requires to decrease the threshold value in a different way across the

three mixtures of traffic. Lowering the threshold means that we are more strict in

considering when second-stage communication is required. This choice can keep the cost

in the desired level but imposes an important trade-off: our estimation on the needs

for required second-stage communication according to the threshold may in practice

result in inadequate VM deployment and capacity placement and thus either impose a

quality decrease or require re-establishment of resources within very strict time limits.

b) Different threshold values are required across different traffic patterns for the same

upper bound of the cost. This means that even if the estimation regarding correlation

is considered to be acceptable and its trade-offs can be afforded, an adaptive way of

selecting the threshold may be required according to the percentage of highly and low

correlated traffic in the network. If such an approach is not available, the minimum

threshold can only be applied uniformly, without considering the details of the traffic

pattern. This may result in some cases in over-estimation of the required resources as
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more second-stage communications will be planned and not applied when the actual

services will be requested.
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5.5 Conclusions

In this chapter we have presented optimal VM deployment problems and solutions for

minimum cost over an optical network infrastructure interconnecting a set of Data Cen-

ters. Motivated by recent studies of traffic between client nodes and Data Centers and

the findings indicating correlation patterns among such cloud-based services, we formu-

lated problems that take into account the cross-correlation between pairs of services in
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the deployment process. The correlation between pairs of services has been assumed to

create the need for additional inter-DC communication in order for clients to be served

by the available DCs. This additional communication is modeled either through D2D

paths or the VM migration process and a stochastic optimization problem has been

formulated to account for the random nature of correlation and illustrate through the

produced solutions the impact of handling service correlation as a random process on

the total cost. Appropriate deterministic problems are formulated to produce lower and

upper bounds and illustrate extreme cases that handle correlation either as non-existing

or as a deterministic process that requires additional communication for every single

request. The stochastic problems have been solved assuming different traffic patterns

related to the percentage of highly and low correlated traffic. The results demonstrate

two main findings: a) the impact that service correlation has on the additional DC and

network resources required in the context of deterministic problems and b) the signifi-

cant savings in cost illustrated through lower network capacity and more efficient VM

deployment when correlation is handled as a random variable.
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Chapter 6

Summary

This thesis focuses on service provisioning and network design problems aiming to il-

lustrate some key problems and challenges and demonstrate efficient solutions towards

core optical networks that can efficiently and effectively support the increasing volume

of traffic. We have thus addressed four main areas of interest related to optical networks:

a) physical layer impairments and resilence, b) resilience and energy efficiency, c) con-

verged optical network and DC infrastructure planning and d) deployment of correlated

cloud-based services over optical networks.

We have presented a performance evaluation study of an impairment aware routing

algorithm in the presence of dual link failures and shared path protection. This has led

to two main findings: network performance in terms of blocking and capacity utilization

was related with the physical performance of the network links and the second evaluated

the network performance of the different routing/sharing scheme combinations in the

presence of dual-link failures. When the quality of the formed paths was taken into

account in the process of routing, the physical performance of the selected paths was

shown to be better, compared to the traditional routing schemes that consider only band-

width availability. The finding was driven by the almost invariant blocking probability

of all schemes for a wide loading range. The main contributor to this blocking was the

dominant effect of physical impairments in the backup paths for the different simulated

scenarios. The results showed a relatively constant response of the network to incoming

requests for the whole loading range. Regarding the dual-link failures, although the

absolute values of the average connection loss rate implied high tolerance of single-link

failure-resilient networks in the presence of dual failures, the results were identified as
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sufficient to violate the required 99.999% availability of carrier-grade networks, indicat-

ing the importance of spare capacity placement and/or restoration schemes against dual

link failures. An overall evaluation of the results lead to the conclusion that the con-

sideration of impairments in the routing algorithm for both primary and backup paths

provides a reduced network blocking probability and thus an improved overall solution

in the presence of single and dual-link failures.

Furthermore, we have evaluated the impact of all-optical wavelength conversion tech-

nology on the overall power consumption of resilient WDM optical networks. After con-

sidering the cases of no protection, 1:1 dedicated path protection and shared backup path

protection schemes, we demonstrated that the shared path protection scheme achieves

increased efficiency in the utilization of network resources. In combination with the

energy-efficient technology of all-optical wavelength conversion, we illustrated how this

scheme provides resilience to single link failures at the expense of minimal increase in

the total power consumption of the network compared to the unprotected case.

Entering the field of converged optical networks and Data Center infrastructures,

we presented a detailed study of planning virtual infrastructures over a physical infras-

tructure comprising integrated optical network and Data Center resources. The study

assumed a practical VI demand model that did not support any in advance global knowl-

edge of the VI requests. The various scenarios under study were compared with regards

to power consumption, network utilization and blocking performance of the planned VIs.

Under this specific VI request assumption, our results illustrated that although power

consumption is an important aspect and an objective function (MJP) that optimizes the

energy efficiency of the infrastructure, it may introduce inefficiencies in the utilization of

network resources when the number of requests exceeds a certain level. This may in turn

compromise the benefit with regards to energy efficiency, compared to what is achieved

when applying an objective that minimizes the network resource utilization for this high

demand levels. To overcome this inefficiency, periodic re-planning of the requests can be

applied. Finally, a set of dynamic traffic provisioning results were provided through sim-

ulations illustrating that the efficient resource utilization of the second objective (MNR)

introduces a penalty on the produced VIs, especially in terms of connectivity, that leads

to poor request blocking performance

Lastly, we have presented optimal VM deployment problems and solutions for mini-

mum cost over an optical network infrastructure interconnecting a set of Data Centers.

136



Motivated by recent studies of traffic between client nodes and Data Centers and the

findings indicating correlation patterns among such cloud-based services, we formulated

problems that take into account the cross-correlation between pairs of services in the

deployment process. The correlation between pairs of services has been assumed to cre-

ate the need for additional inter-DC communication is required in order for clients to be

served by the available DCs. This additional communication is modeled either through

D2D paths or the VM migration process and a stochastic optimization problem has been

formulated to account for the random nature of correlation and illustrate through the

produced solutions the impact of handling service correlation as a random process on

the total cost. Appropriate deterministic problems are formulated to produce lower and

upper bounds and illustrate extreme cases that handle correlation either as non-existing

or as a deterministic process that requires additional communication for every single

request. The stochastic problems have been solved assuming different traffic patterns

related to the percentage of highly and low correlated traffic. The results demonstrate

two main findings: a) the impact that service correlation has on the additional DC and

network resources required in the context of deterministic problems and b) the signifi-

cant savings in cost illustrated through lower network capacity and more efficient VM

deployment when correlation is handled as a random variable.
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