795 research outputs found

    Resource management in a containerized cloud : status and challenges

    Get PDF
    Cloud computing heavily relies on virtualization, as with cloud computing virtual resources are typically leased to the consumer, for example as virtual machines. Efficient management of these virtual resources is of great importance, as it has a direct impact on both the scalability and the operational costs of the cloud environment. Recently, containers are gaining popularity as virtualization technology, due to the minimal overhead compared to traditional virtual machines and the offered portability. Traditional resource management strategies however are typically designed for the allocation and migration of virtual machines, so the question arises how these strategies can be adapted for the management of a containerized cloud. Apart from this, the cloud is also no longer limited to the centrally hosted data center infrastructure. New deployment models have gained maturity, such as fog and mobile edge computing, bringing the cloud closer to the end user. These models could also benefit from container technology, as the newly introduced devices often have limited hardware resources. In this survey, we provide an overview of the current state of the art regarding resource management within the broad sense of cloud computing, complementary to existing surveys in literature. We investigate how research is adapting to the recent evolutions within the cloud, being the adoption of container technology and the introduction of the fog computing conceptual model. Furthermore, we identify several challenges and possible opportunities for future research

    Understand Your Chains: Towards Performance Profile-based Network Service Management

    Full text link
    Allocating resources to virtualized network functions and services to meet service level agreements is a challenging task for NFV management and orchestration systems. This becomes even more challenging when agile development methodologies, like DevOps, are applied. In such scenarios, management and orchestration systems are continuously facing new versions of functions and services which makes it hard to decide how much resources have to be allocated to them to provide the expected service performance. One solution for this problem is to support resource allocation decisions with performance behavior information obtained by profiling techniques applied to such network functions and services. In this position paper, we analyze and discuss the components needed to generate such performance behavior information within the NFV DevOps workflow. We also outline research questions that identify open issues and missing pieces for a fully integrated NFV profiling solution. Further, we introduce a novel profiling mechanism that is able to profile virtualized network functions and entire network service chains under different resource constraints before they are deployed on production infrastructure.Comment: Submitted to and accepted by the European Workshop on Software Defined Networks (EWSDN) 201

    Artificial intelligence driven anomaly detection for big data systems

    Get PDF
    The main goal of this thesis is to contribute to the research on automated performance anomaly detection and interference prediction by implementing Artificial Intelligence (AI) solutions for complex distributed systems, especially for Big Data platforms within cloud computing environments. The late detection and manual resolutions of performance anomalies and system interference in Big Data systems may lead to performance violations and financial penalties. Motivated by this issue, we propose AI-based methodologies for anomaly detection and interference prediction tailored to Big Data and containerized batch platforms to better analyze system performance and effectively utilize computing resources within cloud environments. Therefore, new precise and efficient performance management methods are the key to handling performance anomalies and interference impacts to improve the efficiency of data center resources. The first part of this thesis contributes to performance anomaly detection for in-memory Big Data platforms. We examine the performance of Big Data platforms and justify our choice of selecting the in-memory Apache Spark platform. An artificial neural network-driven methodology is proposed to detect and classify performance anomalies for batch workloads based on the RDD characteristics and operating system monitoring metrics. Our method is evaluated against other popular machine learning algorithms (ML), as well as against four different monitoring datasets. The results prove that our proposed method outperforms other ML methods, typically achieving 98–99% F-scores. Moreover, we prove that a random start instant, a random duration, and overlapped anomalies do not significantly impact the performance of our proposed methodology. The second contribution addresses the challenge of anomaly identification within an in-memory streaming Big Data platform by investigating agile hybrid learning techniques. We develop TRACK (neural neTwoRk Anomaly deteCtion in sparK) and TRACK-Plus, two methods to efficiently train a class of machine learning models for performance anomaly detection using a fixed number of experiments. Our model revolves around using artificial neural networks with Bayesian Optimization (BO) to find the optimal training dataset size and configuration parameters to efficiently train the anomaly detection model to achieve high accuracy. The objective is to accelerate the search process for finding the size of the training dataset, optimizing neural network configurations, and improving the performance of anomaly classification. A validation based on several datasets from a real Apache Spark Streaming system is performed, demonstrating that the proposed methodology can efficiently identify performance anomalies, near-optimal configuration parameters, and a near-optimal training dataset size while reducing the number of experiments up to 75% compared with naïve anomaly detection training. The last contribution overcomes the challenges of predicting completion time of containerized batch jobs and proactively avoiding performance interference by introducing an automated prediction solution to estimate interference among colocated batch jobs within the same computing environment. An AI-driven model is implemented to predict the interference among batch jobs before it occurs within system. Our interference detection model can alleviate and estimate the task slowdown affected by the interference. This model assists the system operators in making an accurate decision to optimize job placement. Our model is agnostic to the business logic internal to each job. Instead, it is learned from system performance data by applying artificial neural networks to establish the completion time prediction of batch jobs within the cloud environments. We compare our model with three other baseline models (queueing-theoretic model, operational analysis, and an empirical method) on historical measurements of job completion time and CPU run-queue size (i.e., the number of active threads in the system). The proposed model captures multithreading, operating system scheduling, sleeping time, and job priorities. A validation based on 4500 experiments based on the DaCapo benchmarking suite was carried out, confirming the predictive efficiency and capabilities of the proposed model by achieving up to 10% MAPE compared with the other models.Open Acces

    Monitoring and analysis system for performance troubleshooting in data centers

    Get PDF
    It was not long ago. On Christmas Eve 2012, a war of troubleshooting began in Amazon data centers. It started at 12:24 PM, with an mistaken deletion of the state data of Amazon Elastic Load Balancing Service (ELB for short), which was not realized at that time. The mistake first led to a local issue that a small number of ELB service APIs were affected. In about six minutes, it evolved into a critical one that EC2 customers were significantly affected. One example was that Netflix, which was using hundreds of Amazon ELB services, was experiencing an extensive streaming service outage when many customers could not watch TV shows or movies on Christmas Eve. It took Amazon engineers 5 hours 42 minutes to find the root cause, the mistaken deletion, and another 15 hours and 32 minutes to fully recover the ELB service. The war ended at 8:15 AM the next day and brought the performance troubleshooting in data centers to world’s attention. As shown in this Amazon ELB case.Troubleshooting runtime performance issues is crucial in time-sensitive multi-tier cloud services because of their stringent end-to-end timing requirements, but it is also notoriously difficult and time consuming. To address the troubleshooting challenge, this dissertation proposes VScope, a flexible monitoring and analysis system for online troubleshooting in data centers. VScope provides primitive operations which data center operators can use to troubleshoot various performance issues. Each operation is essentially a series of monitoring and analysis functions executed on an overlay network. We design a novel software architecture for VScope so that the overlay networks can be generated, executed and terminated automatically, on-demand. From the troubleshooting side, we design novel anomaly detection algorithms and implement them in VScope. By running anomaly detection algorithms in VScope, data center operators are notified when performance anomalies happen. We also design a graph-based guidance approach, called VFocus, which tracks the interactions among hardware and software components in data centers. VFocus provides primitive operations by which operators can analyze the interactions to find out which components are relevant to the performance issue. VScope’s capabilities and performance are evaluated on a testbed with over 1000 virtual machines (VMs). Experimental results show that the VScope runtime negligibly perturbs system and application performance, and requires mere seconds to deploy monitoring and analytics functions on over 1000 nodes. This demonstrates VScope’s ability to support fast operation and online queries against a comprehensive set of application to system/platform level metrics, and a variety of representative analytics functions. When supporting algorithms with high computation complexity, VScope serves as a ‘thin layer’ that occupies no more than 5% of their total latency. Further, by using VFocus, VScope can locate problematic VMs that cannot be found via solely application-level monitoring, and in one of the use cases explored in the dissertation, it operates with levels of perturbation of over 400% less than what is seen for brute-force and most sampling-based approaches. We also validate VFocus with real-world data center traces. The experimental results show that VFocus has troubleshooting accuracy of 83% on average.Ph.D

    Quantifying cloud performance and dependability:Taxonomy, metric design, and emerging challenges

    Get PDF
    In only a decade, cloud computing has emerged from a pursuit for a service-driven information and communication technology (ICT), becoming a significant fraction of the ICT market. Responding to the growth of the market, many alternative cloud services and their underlying systems are currently vying for the attention of cloud users and providers. To make informed choices between competing cloud service providers, permit the cost-benefit analysis of cloud-based systems, and enable system DevOps to evaluate and tune the performance of these complex ecosystems, appropriate performance metrics, benchmarks, tools, and methodologies are necessary. This requires re-examining old system properties and considering new system properties, possibly leading to the re-design of classic benchmarking metrics such as expressing performance as throughput and latency (response time). In this work, we address these requirements by focusing on four system properties: (i) elasticity of the cloud service, to accommodate large variations in the amount of service requested, (ii) performance isolation between the tenants of shared cloud systems and resulting performance variability, (iii) availability of cloud services and systems, and (iv) the operational risk of running a production system in a cloud environment. Focusing on key metrics for each of these properties, we review the state-of-the-art, then select or propose new metrics together with measurement approaches. We see the presented metrics as a foundation toward upcoming, future industry-standard cloud benchmarks
    • …
    corecore