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SUMMARY

It was not long ago. On Christmas Eve 2012, a war of troubleshooting began

in Amazon data centers. It started at 12:24 PM, with an mistaken deletion of the

state data of Amazon Elastic Load Balancing Service (ELB for short), which was

not realized at that time. The mistake first led to a local issue that a small number

of ELB service APIs were affected. In about six minutes, it evolved into a critical

one that EC2 customers were significantly affected. One example was that Netflix,

which was using hundreds of Amazon ELB services, was experiencing an extensive

streaming service outage when many customers could not watch TV shows or movies

on Christmas Eve. It took Amazon engineers 5 hours 42 minutes to find the root

cause, the mistaken deletion, and another 15 hours and 32 minutes to fully recover the

ELB service. The war ended at 8:15 AM the next day and brought the performance

troubleshooting in data centers to world’s attention. As shown in this Amazon ELB

case.Troubleshooting runtime performance issues is crucial in time-sensitive multi-tier

cloud services because of their stringent end-to-end timing requirements, but it is also

notoriously difficult and time consuming

To address the troubleshooting challenge, this dissertation proposes VScope, a

flexible monitoring and analysis system for online troubleshooting in data centers.

VScope provides primitive operations which data center operators can use to trou-

bleshoot various performance issues. Each operation is essentially a series of mon-

itoring and analysis functions executed on an overlay network. We design a novel

software architecture for VScope so that the overlay networks can be generated, ex-

ecuted and terminated automatically, on-demand. From the troubleshooting side,

xiii



we design novel anomaly detection algorithms and implement them in VScope. By

running anomaly detection algorithms in VScope, data center operators are notified

when performance anomalies happen. We also design a graph-based guidance ap-

proach, called VFocus, which tracks the interactions among hardware and software

components in data centers. VFocus provides primitive operations by which opera-

tors can analyze the interactions to find out which components are relevant to the

performance issue.

VScope’s capabilities and performance are evaluated on a testbed with over 1000

virtual machines (VMs). Experimental results show that the VScope runtime neg-

ligibly perturbs system and application performance, and requires mere seconds to

deploy monitoring and analytics functions on over 1000 nodes. This demonstrates VS-

cope’s ability to support fast operation and online queries against a comprehensive

set of application to system/platform level metrics, and a variety of representative

analytics functions. When supporting algorithms with high computation complexity,

VScope serves as a ‘thin layer’ that occupies no more than 5% of their total latency.

Further, by using VFocus, VScope can locate problematic VMs that cannot be found

via solely application-level monitoring, and in one of the use cases explored in the

dissertation, it operates with levels of perturbation of over 400% less than what is

seen for brute-force and most sampling-based approaches. We also validate VFocus

with real-world data center traces. The experimental results show that VFocus has

troubleshooting accuracy of 83% on average.
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CHAPTER I

INTRODUCTION

1.1 Troubleshooting in Data Centers: Challenges and Op-
portunities

In the emerging cloud computing era, enterprise data centers host a plethora of web

services and applications, including those for e-Commerce, distributed multimedia,

and social networks, which jointly, serve many aspects of our daily lives and business.

For such applications, lack of availability, reliability, or responsiveness can lead to

extensive losses. For instance, on June 29th 2010, Amazon.com experienced three

hours of intermittent performance problems as the normally reliable website took

minutes to load items, and searches came back without product links. Customers were

also unable to place orders. Based on their 2010 quarterly revenues, such downtime

could cost Amazon up to $1.75 million per hour, thus making rapid problem resolution

critical to its business. In another serious incident, on July 7th, 2010, DBS bank

in Singapore suffered a 7-hour outage which crippled its Internet banking systems,

and disrupted other consumer banking services, including automated teller machines,

credit card and NETS payments. The cascading failure occurred due to a procedural

error while replacing a faulty component in one of the bank’s storage systems that

was connected to its main computers.

The huge cost of downtime in large-scale distributed systems drives the need for

troubleshooting tools that can quickly detect problems and point system adminis-

trators to potential solutions. The increasing size and complexity of enterprise ap-

plications, coupled with the large scale of data centers in which they operate, make

troubleshooting extremely challenging. Problems can arise due to a large variety
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of root-causes because of the complex interactions between hardware and software

systems. The large volume of monitoring data available in these systems can ob-

scure the root-cause of these problems. Lastly, the multi-tier nature of applications

composed of entirely different subsystems managed by different teams complicates

problem diagnosis. The following characteristics of enterprise applications and data

centers challenge performance troubleshooting.

1. Scale. It is not unusual for a data center to have thousands of servers. Large web

companies’ data centers can have over 1 million servers. In consolidated data centers,

each server can host hundreds of VMs, and each VM hosts hundreds of applica-

tion processes supporting various interacting components of application services. At

this scale, performance problems occur frequently, and in response, software in these

systems is written to deal with potential sources of problems through built-in error

logging and tracing. With large volumes of monitoring/tracing data, troubleshooting

is much like finding a needle in a haystack.

2. Complexity. Performance troubleshooting in the massively distributed envi-

ronment of today’s data centers goes beyond what is done in private data centers

that only host applications owned by a single company. (1) Applications commonly

consist of distributed software components deployed on different machines or even

different data center sites. (2) Components may come from different software ven-

dors or open-source developers. (3) Component interactions are complex, not only

due to scale, but also because they use built-in resilience methods like those based on

replication, quorums, and automatic restart. (4) Different teams of developers may

be responsible for the different services or tiers of SOA-based applications; therefore,

multiple teams need to work together when something goes wrong with a service. (5)

Public clouds, like Amazon EC2 or Google App Engine, experience greater levels of

complexity than private data centers because they host applications from a diverse
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set of customers. Data-center operators typically have little knowledge about the im-

plementation logic — one reason being to protect customer privacy. Conversely, for

security and compliance reasons, application developers may not have direct access to

underlying hardware — requiring them to request operations teams to provide them

with the relevant log and trace files for troubleshooting. If analysis of one server’s log

fails to reveal the problem because a different server is responsible for the fault, the

manual, tedious and error-prone process must be repeated.

3. Dynamism. A data center is a shared infrastructure, with frequently changing

users, and with applications frequently installed/deployed and removed. Workloads

vary over time, i.e., temporally, and across data center nodes, i.e., spatially. These

variations are exacerbated by their aforementioned resilience methods. The situation

is even worse in virtualized public clouds, where VMs running a large variety of

customer applications can be created, migrated and terminated dynamically.

Scale, complexity, and dynamism make it extremely difficult to diagnose data

center problems, yet effective performance troubleshooting remains crucial for both

data center users and providers, because data center providers seek:

• increased hardware utilization and reduced resource consumption,

• reduced IT costs,

• consolidation with automated management tools, all

• to optimize their investment at cloud scale.

while users demand:

• increased service availability and reliability,

• increased service performance and productivity,

• more proactive response to customer needs,

• less downtime for increased revenue, all with

3



• appropriate levels of security and data privacy.

1.2 State of the Art

Previous research on monitoring has created scalable methods for real-time data

collection and aggregation [52, 193, 179, 138], to support efficient on-line queries

that answer questions like ‘which machines have CPU utilization above 90%?’[114].

‘Analysis-focused’ research has drawn from areas like data mining, machine learn-

ing, and statistics to create techniques that assist in or automate problem diagno-

sis [59, 23, 38, 40, 110], with high accuracy and significantly reduced human interven-

tion. However, while monitoring has been shown feasible at scale and in real-time,

analysis is typically performed after a volume of monitoring data has been written

to disk-resident logs, or in a central location, which impedes the scalability of on-line

monitoring and analysis tasks. Further, due to lack of underlying infrastructure sup-

port, analytics often require global data – over time and space – making it difficult

to use them on-demand and in real-time. Finally, in modern virtualized utility or

cloud computing systems, operators or administrators have limited visibility into the

virtual machines running on data center machines. This prevents them from using

problem diagnosis methods that require such insight.

Previous troubleshooting solutions are either brute-force [138, 193], i.e. ‘every-

thing is monitored all the time’ including both application- and system-level events,

or statistically sampling [156, 165, 73, 42] a portion of components and/or for a pe-

riod of time. Brute-fore solutions do not scale for detailed diagnostics which mostly

requires debugging level logging or tracing, because of the undue penalties on appli-

cation performance.

Current sampling solutions are also not flexible enough for aforementioned hetero-

geneous multi-tier application because they are using a homogeneous and/or random

sampling strategy across all the nodes. For instance, Dapper [165] is using a static
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1/1000 sampling rate across all the servers. GWP [156] randomly samples a small

portion of machines and uses an event-sampling rate pre-determined by the event type

at machine-level. Therefore more sophisticated methods are needed to tune sampling

rates to capture desired behaviors, and such tuning must be done differently for each

behavior, tier, and type of analysis being performed.

1.3 Thesis Statement

A flexible architecture integrating monitoring and analysis can cope with

the diversity of performance troubleshooting needs on performance, cost

and interference to applications. VScope system realizes this architecture

in large scale virtualized data center environment. It integrates novel

anomaly detection algorithms and graph-based guidance approach. It is

scalable to 1000s of virtual machines. It has better performance, lower

overhead and interference than traditional brute-force approaches have.

1.4 Modeling, Systems & Algorithms : A Cohesive Solu-
tion

This dissertation addresses challenges of performance troubleshooting in data centers

in a series of cohesive research components. Their relationships are illustrated in

Figure 1.

The first research component is Monalytics, a novel, flexible architecture inte-

grating monitoring and analytics for data center management. It is a novel software

design for two reasons. First, previous solutions are either monitoring or analyt-

ics systems, while Monalytics is a stream analysis system design which can process

the monitoring data (i.e. analytics), when it is being collected and transmitted (i.e.

monitoring). Secondly, Monalytics is flexible in terms of supporting various kinds of

topologies for different monitoring and analysis purposes. As a proof of concept, the

usefulness of Monlaytics architecture is validated by two use cases. I also studied
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Figure 1: Relationships between research components

the scalability issues of Monalytics architecture at extremely large scale (1 million

servers), which concludes that flexibility is in need to build a scalable monitoring and

analysis system in large scale data center environment. In sum, Monalytics research

builds the theoretical foundation.

VScope inherits the Monalytics concepts with comprehensive system design and

implementation. We designed the primitive API for troubleshooting, the automation

mechanism for dynamically manipulating monitoring topologies and a set of interac-

tion tracking functionalities to guide the troubleshooting process. VScope is scalable

to over 1000 virtual machines. Its usefulness is validated by two use cases in managing

large scale big-data applications.

Algorithm research on EbAT (Entropy based Anomaly Tester), and other statis-

tical techniques yields an anomaly detection functionality in VScope system. It is

also one of the basic operations of VScope. In this research component, we design

and implement a novel anomaly detection algorithm, EbAT and leverages a variety

of statistical tools. We evaluate the algorithms in real-world data center traces and

compare them with traditional solutions. The results reveal that EbAT considerably

outperforms threshold-based solutions..
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To further enhance the functionality of VScope, I propose VFocus as a unified ap-

proach using graph analysis to track interactions among components in data centers

online. We validate, by real-world use cases, that the run-time interaction traces can

serve as guidance information for troubleshooting, significantly reducing troubleshoot-

ing overheads while achieving high accuracy. We also integrate VFocus into VScope

system and test its performance and interference to the data center applications.

1.5 Technical Contributions

In the course of the cohesive research, we make the following technical contributions:

• A novel flexible software architecture: we propose and validate Mona-

lytics architecture in use cases which reveals significantly lower interference and

higher performance than traditional brute-force approaches.

• Analytical models for assessing monitoring/analysis systems: we

propose and evaluate analytical models at 1 million nodes’ scale. The results

confirm that flexible topologies provided by Monalytics architecture can yield

considerably better performance than transitional static topologies.

• A flexible and scalable monitoring/analysis system: we design and

implement VScope at large scale virtualized data center with over 1000 Vir-

tual Machines. VScope is comprehensively tested in that environment. The

experimental results show that VScope is scalable, efficient and has low over-

heads.

• Novel anomaly detection algorithms: we design and implement novel al-

gorithms which are further tested in both home-made controlled environment

and with real-world data center traces. The results show that our algorithms

perform better than traditional approaches.
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• Novel graph-based approach to guide troubleshooting: we design and

implement a novel, graph-based, approach for guiding troubleshooting, called

VFocus. We integrate it into VScope and test the method in large scale virtu-

alized data center environment, which shows negligible overhead and high effi-

ciency. VFocus is also validated by real-world data center traces, which shows

that VFocus can capture real-world application interactions and can yield good

troubleshooting performance.

1.6 Organization of the Dissertation

The remainder of this dissertation is organized as follows:

Chapter 2 describes our work on Monalytics architecture and analytics models.

Chapter 3 presents the design, implementation and evaluation of VScope system.

Chapter 4 describes the design, implementation and evaluation of novel anomaly

detection algorithms.

Chapter 5 proposes VFocus, graph-based guidance approach. It presents its de-

sign, implementation, usecases and experimental results.

Chapter 6 provides a comprehensive literature study on performance troubleshoot-

ing in data centers.

Chapter 7 concludes this research with lessons we have learned, and provides

future work directions.
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CHAPTER II

MONALYTICS: FLEXIBLE ARCHITECTURE

INTEGRATING MONITORING & ANALYTICS

2.1 Introduction

Monitoring and data analysis1 are two fundamental elements of data center manage-

ment. Monitoring tracks desired hardware and software metrics. Analysis evaluates

these metrics to identify system or application states for troubleshooting, resource

provisioning, or other management actions. To effectively manage modern data cen-

ters, both monitoring and associated analytics must be performed in real-time and

at scales of tens of thousands of heterogeneous nodes with complex network and I/O

structures.

Previous research on monitoring has created scalable methods for real-time data

collection and aggregation [52, 193, 179, 138], to support efficient on-line queries

that answer questions like ‘which machines have CPU utilization above 90%?’[114].

‘Analysis-focused’ research has drawn from areas like data mining, machine learn-

ing, and statistics to create techniques that assist in or automate problem diagno-

sis [59, 23, 38, 40, 110], with high accuracy and significantly reduced human interven-

tion. However, while monitoring has been shown feasible at scale and in real-time,

analysis is typically performed after a volume of monitoring data has been written

to disk-resident logs, or in a central location, which impedes the scalability of on-line

monitoring and analysis tasks. Further, due to lack of underlying infrastructure sup-

port, analytics often require global data – over time and space – making it difficult

to use them on-demand and in real-time. Finally, in modern virtualized utility or

1We use ’analysis’ and ’analytics’ interchangeably in this paper.
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cloud computing systems, operators or administrators have limited visibility into the

virtual machines running on data center machines. This prevents them from using

problem diagnosis methods that require such insight.

To address these challenges, we propose a system integrating monitoring with an-

alytics, termed Monalytics, which can capture, aggregate, and incrementally analyze

data on-demand and in real-time, only where (i.e., in situ) and to the extents needed

by intended management actions. This is first introduced in [120], with initial results

indicating that Monalytics should be built to respect notions of ‘scope’ in time and

space for (i) acceptable overheads, and (ii) appropriate delays between when certain

conditions arise and when they are detected (and thus, can be acted on). To do so,

however, requires a flexible architecture to accommodate the changing and diverse

characteristics of analytics, with cost-effectiveness in large-scale data centers.

This chapter presents the design and evaluations of Monalytics’ flexible archi-

tecture built upon dynamic distributed computation graphs (DCGs), providing the

following technical contributions:

• Pro re nata (PRN) deployment: an important property of Monalytics is its

instantiations of analytic functions only where and when they are needed. In

other words, Monalytics must have capabilities for dynamically zooming in to

‘interesting’ locations and periods of time. Such capabilities can also bene-

fit scalability by substantially reduced costs compared with systems forced to

‘watch everything all the time’. We validate the PRN deployment in two real-

istic use cases and compare them with traditional brute-force approaches.

• Reducing ‘Time to Insight’ (TTI) and cost: a vital metric for assessing

the performance of monitoring/analysis actions is Time to Insight (TTI) cap-

turing the total delay between the time when ‘interesting’ events occur and the
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time when they are recognized (i.e., after analysis is complete). Using this met-

ric and also assessing the costs incurred along with different values of TTI, we

evaluate the cost-effectiveness of alternative topologies used to construct DCGs,

and validate our novel flexible hybrid DCG design.

The evaluations are based on both experimental results and performance modeling

at scale. They show that, as the key to autonomic data center management, the

flexible PRN deployment of DCGs enables continuous operation at scale and is cost-

effective in attaining TTI required for various analytics functions. Compared with

brute force solutions and traditional static topologies, Monalytics yields up to 92%

TTI reduction and 86% lower cost.

The remainder of this chapter is organized as follows. Section 2.2 elaborates

challenges for integrating monitoring and analysis in large-scale data centers. The

two use cases driving our research are presented in Section 5.4. The design of DCG-

based Monalytics software is described in Section 2.4, and a series of analytical models

assessing DCG topologies is detailed in Section 2.5. Section 2.6 presents experimental

and analytical evaluation results, related work appears in Section 2.7. Conclusion and

future work are in Section 2.8.

2.2 Problem Statement

Accommodating the Variety of Analytics: A first step towards integrating mon-

itoring and analytics is to recognize that analytics approaches vary widely in terms

of computational complexity and implementation (e.g., centralized or distributed,

etc.). As an illustration, we list representative analytics approaches for data center

management in Table 212. The second column describes core algorithms, including

simple sorting or traversal algorithms, machine learning methods (e.g., TAN–Tree

2N :number of monitoring samples, n:number of metrics in each monitoring sample, k:number of
centroids, ∆:increment number of samples, {p, e, S, E, W , τ , m}:approach-specific parameters
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Table 1: Typical Analytics Approaches
Name Core Algorithms Computational Complexity

MAX [179] Traversing O(nN)

Top-K [179] Sorting O(nNlogN)

Signatures [61]
TAN Bayes O(n2N) [76]

K-Clustering O(Nnk+1logN) [96]

Pinpoint [110] UPGMA Clustering O(N2) [145]

Magpie [40] Incremental Clustering O(n(N+∆)) [49]

Pranaali [117] TAN Bayes O(n2N) [76]

Black-Box [21]
Nesting Algorithm O(Np)

Convolution Algorithm O(em+eSlogS)

E2EProf [21] Pathmap O(E[Wτ ]2)

Sherklock [38] Inference Graph O(3m)

Augmented Naive Bayes and K-Clustering), and algorithms used for specific pur-

poses, such as Convolution [23] and Pathmap [21]. The computational complexities

of these various analytics approaches range from linear to exponential, with differ-

ences in their computation styles as well. For instance, MAX and Top-K could be

run in a distributed manner using an aggregation tree, while TAN Bayes is processed

at a centralized location. Magpie can use incremental clustering as new monitoring

data arrives, whereas [23] needs to collect traces for some period of time and do a

one-time off-line analysis.

A challenge resulting from this variety is how to accommodate such a wide range of

analytics for autonomic management in large scale data centers? Previous research

does not address this challenge when designing monitoring or aggregation systems,

instead focusing optimization efforts on the communication overheads incurred for

monitoring, including message volumes and bandwidth consumption, delays in data

delivery, etc., using techniques such as in-network processing [134] and source-based

filtering [85, 69, 111]. Section 2.6 shows that traditional static system designs cannot

easily accommodate analytics functions of varying computation complexities.

Meeting the Varying Requirements in Time and Space: Autonomic man-

agement requires on-demand monitoring and analytics to diagnose problems and to
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understand system behavior, so as to take timely corrective actions to meet service

level objectives. The actual analytics used, however, and the level of detail at which

they must operate vary over time, across the different components or entities being

managed, as well as across the multiple levels of abstraction present in complex data

center systems. Specifics for this depend on the types of applications or services de-

ployed, system loads, hardware configurations used, desired service level objectives,

etc. In any large scale data center, therefore, there will be heterogeneous and non-

uniform monitoring and analytics needs over time and space, and these properties

also and perhaps, even more so, hold for cloud environments. The elasticity provided

by cloud environments allow system deployments to scale-up and scale-down, thereby

directly affecting associated analysis structures and requirements.

The resulting challenge for a Monalytics system is: how to design a system capable

of dynamically configuring monitoring and analysis structures to meet the varying

requirements in time and space? Section 2.6 shows that static solutions do not meet

the flexibility needed at large scale, whereas our Monalytics design can address the

challenge with significant potential performance improvements.

Improving Cost-Effectiveness: With active management of data center hardware

and applications becoming increasingly common, it is important to study the costs of

management [167, 126, 97]. This should include budgeting both for the capital costs

of management hardware resources and for their operational costs (power, cooling,

administration, etc). Such budgeting must differentiate costs incurred when manage-

ment uses dedicated hardware (e.g., HP’s iLO [7] or IBM’s Director [9]) versus when

it is collocated with the machines being monitored. Intuitively, the former typically

provides performance benefits at higher capital costs, whereas the latter has less cap-

ital costs but offers reduced performance since it competes for machine resources with

the applications being run in the data center.
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A resulting challenge is: how to design a cost-effective system minimizing man-

agement cost while yielding the best possible performance?. As shown in Section 2.6,

when considered at scale, high performance for management may incur potentially

prohibitive capital cost. Our research addresses this by explicitly modeling the cap-

ital costs of management resources. Preliminary results show that Monalytics can

outperform static systems at considerably lower capital costs.

2.3 Motivating Use Cases

2.3.1 ZIA: Zoom-In Analysis in Internet Services

Figure 2: Illustration of ZIA: Zoom-In Analysis in Internet Services

Automatically inferring causal dependencies between components [23, 38, 21] –

causal path inference – is known to be useful for identifying performance problems in

multi-tier web applications. A typical example is the detection of bottlenecks in the

end-to-end latencies experienced by requests. However, the monitoring requirements –

large request traces – and high computational complexity make it expensive and most

likely, unrealistic to determine all causal paths in large scale data centers, whether

they contribute to bottlenecks.
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Consider a flexible monitoring and analytics (Monalytics) software that can ad-

dress this issue by implementing a two-phase approach that evaluates only those de-

pendencies that likely contribute to sudden bottlenecks. This PRN method, termed

Zoom-in Analysis (ZIA), allows system administrators to use powerful tools like those

required for causal path detection at large scales. Key to the implementation of ZIA

is the ability to deploy overlays and analysis functions on any subset of machines, at

runtime and as needed (PRN) for further diagnosis.

The phases of ZIA are described with an illustration in Figure 2, showing a practi-

cal use case. The group of servers in the middle of Figure (a) exemplifies a utility cloud

that hosts Internet services. FS[i], AS[i], DS[i] denote Front-end Server, Application

Server, and Database Server for Service i, respectively. The assemblies of rectangles

in Figures (a) and (b) represent autonomic deployments of Monalytics overlays.

The first phase is global light-weight anomaly detection. Anomaly detection runs

continuously with a Monalytics overlay (i.e., the DCG elaborated in Section 2.4)

that spans all appropriate data center machines. The overlay collects application-

level SLO (Service Level Objective) metrics and system metrics, e.g. transaction

response times and CPU utilizations, and it processes them with a low-cost algorithm

described in [188, 191]. For simplicity, the figure depicts a hierarchical overlay, but

other topologies may also be used. Anomaly detection has each processing unit

aggregate and analyze its local metrics and then pass results to its parents. The root

has a global view of all machines.

Alarms are raised if anomalies in, say SLOs (e.g., long request duration) are

detected, which then triggers the second phase of ZIA. The second phase performs

in-depth analysis in ‘problem areas’, which touches only upon a subset of the machines

being monitored, i.e., those for which anomalous behavior has been observed. As il-

lustrated in Figure 2, this involves creating a new overlay at runtime and on-demand
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to cover the machines associated with Service 3, Front-end Server 3 (FS3), Appli-

cation Server 3 (AS3), and Database Server 3 (DS3). This overlay uses a network

tracing facility to identify all messages between these servers (RPC requests/replies,

IP packages). The data is sent to an analyzer for casual path inference, using an

inference engine like the one described in [23]. Knowledge about causal paths can

then help identify the potential bottlenecks that caused large end-to-end transaction

response times.

The concept of zoom-in analysis generalizes to other problems and applications,

and in fact, we next show a second use case in which zoom-in is performed in an

entirely different fashion. The effect of using PRN techniques like zoom-in, of course,

is that intensive or high overhead analytics can be focused on likely problem areas

instead of entire systems. This substantially reduces monitoring overheads and in-

terference to applications compared to a brute force approach that performs causal

path inferences all the time.

2.3.2 VMC: Virtual Machine Clustering

A common problem experienced in data centers and utility clouds is lack of knowledge

about the mappings of the services being run by or offered to external users to the sets

of virtual machines (VMs) that implement them. This makes it difficult to manage

VM ensembles – sets of VMs implementing some common service – to attain provider

goals like minimizing the resources consumed by certain services or reducing the power

they consume on data center machines. A case in point is high network resource

consumption when in a public cloud, a VM ensemble running a Hadoop Mapreduce

application [4], for instance, is deployed on physical hosts located on different racks

rather than on the same rack. This substantially reduces the cross-section bandwidth

available in the data center because typically, hardware is configured in ways that

offer much less bandwidth across versus within racks. The outcomes are not only
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Figure 3: Illustration of VMC: Virtual Machine Clustering

deteriorated performance for the Hadoop application, but also negative impacts on

other applications running on these machines. The problem is important because

cross-section bandwidth is a limited commodity and increasing it can be costly in

terms of the network switches and routers that must be purchased.

Key to properly placing VM ensembles is to first recognize their existence, i.e.,

to identify them, but this can be difficult. First, system administrators running

utility clouds typically have limited knowledge about the applications being run, in

contrast to the previous ZIA use case in which we assume an a priori knowledge about

the web application’s configuration. As a result, administrators must use black-box

methods to identify VM ensembles. One such method, based on correlation analysis

and described in [94], is efficient in terms of the overheads being experienced, thereby

permitting the continuous monitoring necessary to deal with dynamic changes in

ensembles and their dynamic arrivals and departures commonly seen in utility data

centers. Unfortunately, while overheads are low, the method only discovers potential

VM ensembles, thus making it necessary to use additional monitoring to distinguish
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potential from actual ensembles. With Monalytics, such additional, in-depth analysis

can be done where and as needed (PRN) and at runtime. Specifically, the analysis

method we use is one that inspects all data exchanged between the VMs in a candidate

ensemble, both to confirm the ensemble’s existence and to gain additional information

for improved ensemble placement, such as inter-VM message volumes. As will be

explained in later sections, this PRN method is implemented by installing netfilter

modules only into appropriate machines and building an appropriate DCG to analyze

the data captured in this fashion (see [94] for additional detail).

A small-scale use case is depicted in Figure 3, each of the three sample servers

hosts three virtual machines, where slaves are the worker processes in the mapreduce

application, controlled by the master process. Virtual machines running applica-

tions other than mapreduce or Internet services are named Misc.. A basic overlay

is deployed on three sample servers hosting nine VMs running multiple applications,

including a Mapreduce application and a multi-tier web service code. The CPU uti-

lizations of VMs (i.e., VCPU utilizations) are collected on each host. A central node

gathering the data runs the lightweight clustering algorithms described in [34]. Its

output is a list of potential VM ensembles, i.e., VMs that probably communicate

regularly. An ensemble spanning different racks is picked as a potential target for

VM migration, but before constructing a migration plan and carrying it out, a PRN

method is used to assess the actual amounts of traffic they exchange. This involves

creating a new overlay, on-demand, targeting only this ensemble of VMs (a master

VM, two slave VM, and a Misc. VM). The new overlay gathers IP package statistics

from the VMs and analyzes total network traffic by using Top-K flow analysis [115].

The analysis finds the k flows that most contribute to the traffic between any two

VMs and their sizes. It eliminates any member of the ensemble with coincidental cor-

relations in terms of CPU usage, and provides the flow data needed to better assess

the cost-benefits derived from VM migration.

18



2.4 System Design

The building block of the flexible Monalytics architecture is the Distributed Compu-

tation Graph (DCG), a reconfigurable overlay that undertakes monitoring data col-

lection, exchange, and processing. As illustrated in Figure 4, a DCG is comprised of

two types of basic entities, Data Collector(DC) and Monitoring Broker (M-Broker).

A DC typically runs on the monitored node, invoking general monitoring tools to

collect run time states. Depending on analysis needs, monitoring metrics can be

gathered periodically as samples, continuously as traces, or in one-shot. DCs send

them to the M-Brokers to which they are attached, using local shared memory when

the DCG is collocated with monitored nodes (i.e., the collocated mode) or via the

network when the DCG is deployed in dedicated management hardwares (i.e., the

dedicated mode). M-Brokers are also connected to each other through a topology for

cooperative analysis.

Figure 4: A sample DCG with three M-Brokers and four data collectors (DCs).

A DCG achieves the flexibility needed for scalable, autonomic management

19



through three design features:

Flexible Analytics Containers (M-Brokers): An M-Broker is the key analytics

processing unit in Monalytics. It aggregates the raw data, and passes aggregate

results to other M-Brokers for further aggregation for larger scope, or into global

states, or for cooperative analysis. Specifically, current M-Brokers maintain analysis

state structured as Look-Back Windows (LBWs) supporting on-line analysis. They

use these windows to store the monitoring data, to aggregate data, or to maintain

intermediate analytics results for some period of time. Analysis actions operate on

LBWs, and they are updated as new data flows in. A M-Broker can be deployed in

collocation with the node monitored or on dedicated management components such as

management blades and processors in the data center. As an analytics container, an

M-Broker is able to hold various kinds of analytics functions with associated DCGs.

In other words, multiple DCGs implementing different analytics may be constructed

by the same set of M-Brokers and DCs.

On-Demand DCG Creation (DCG Controllers): An important attribute of

Monalytics is that DCs, M-Brokers, and DCGs are dynamic entities which can be

created, connected to each other, and terminated on-the-fly. It is in this fashion

that new analytics functions can be initiated and stopped on demand, and existing

functions can be adjusted. This on-demand creation and management is done by

DCG controllers. A controller can create M-Brokers or DCs on any node to which

it has access, or reuse existing ones. After that, it connects DCs and M-Brokers

using a DCG topology that could be predefined by users or auto-generated based on

given management policies. As soon as the DCG is constructed, the DC will start

pushing monitoring data into DCG and M-Brokers will process it. The DCG can be

terminated via signals issued by the controller, or that task can be assigned to some

M-Broker. The controller also tracks the states of DCGs.

For example, in the ZIA use case described in Section 2.3.1, we initially create DCs
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on each host to collect application-level monitoring data through JMX and system

level metrics using Syststat. Those DCs are attached to M-Brokers that are created

and constructed into a hierarchy. Each M-Broker is equipped with the EbAT [188, 191]

functions for anomaly detection. When an anomaly is caught, a new DCG is created

with DCs on the suspicious nodes and a single M-Broker. The formers trace network

flows and relay the data to the latter, which uses a causal path inference engine [23] to

analyze the data. When the causal inference process finishes, the DCG is terminated,

and the associated DCs and M-Broker can be reclaimed.

Flexible Topologies: The third aspect of the DCG is its ability to use multiple

topologies across M-Brokers to meet various analytics requirements in the data cen-

ter, and to also meet various performance and cost needs. These topologies include

the traditional ones used in previous monitoring/aggregation systems. In addition,

we propose what we term hybrid DCGs that consist of heterogeneous topology struc-

tures adapted to different regions of the data center, and interconnected through an

inter-region topology. Each region can have its own local topology among the M-

Brokers, and the leader M-Brokers of respective regions can be interconnected with

another topology. This is very effective at large scale, where the use of a single, static

topology to implement various analytics characteristics has substantial negative ef-

fects on performance/cost, as shown in Section 2.6. The hybrid approach also makes

it easier for the analytics system to scale-up and scale-down, and to support multi-

ple heterogeneous services and data center structures. In addition, it lends itself to

scalability of DCG controllers, as shown in Figure 5. At larger scale, a federation of

controllers can be used, where each controller manages a region of the DCG. Finally,

we note that DCGs and their regions need not correspond to ‘physical zones’ in the

data center. For example, there could be a 1:1 mapping of DCG regions to zones,

or there could be multiple DCG regions within a zone, or a DCG region could span

multiple zones if zones are small or if large applications run across all of them.
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Figure 5 depicts a typical initial deployment of Monalytics, where there are four

DCG regions assigned onto 4 racks, respectively. Each region has a leader talking to

leaders from other regions. This is a hybrid DCG because each region can deploy a

different topology, and the topology between leaders can be arbitrary, as well. There

is one DCG controller for each rack; they have access to the M-Brokers in their own

rack; and they cooperate with each other to jointly manage DCGs. Our current

Monalytics prototype implements one controller for a single region; the development

of federation support for controllers is in progress.

Figure 5: A typical Monalytics deployment on 4 racks

2.5 Modeling DCG Topologies

This section presents a systematic modeling approach to understand Monalytics at

scale. These models provide rational estimations and compare the various topologies

that Monalytics can create in large scale (from 1000 to 1 million nodes). They are

based on real world parameters (network bandwidth, latency, number of nodes, etc.)

seen in commercial data centers, and evaluated in realistic configurations, e.g., scale,

region size, run times of functions.

Models serve as a sound foundation for the elements of flexibility part of the DCG

design. Further, the results obtained from their use reveal new insights on combining
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Table 2: Parameters
Parameter Notation Example value

Number of Nodes N 100− 106[66]
Network Latency l 0.25ms[66]

Bisection Bandwidth B 1 Gbps[25]
Bandwidth Budget (in %) b 0.1% - 1%

Size of Monitoring Data per Node s 100KBytes
Number of Metrics n 1890

Processing Time per Metric a 3.5 ∗ 10−8seconds
Capital Cost per Server c $1000[14]

Fraction of Mgmt Cost Per Server α 1/16[14]
Region Size Nr 1000

monitoring and analytics, including validation of Monalytics’ autonomic features like

the PRN methods described earlier.

2.5.1 Traditional Topologies and Hybrid DCGs

Topologies of previous monitoring/aggregation works can be generalized into three

types: centralized, hierarchical tree and binomial swap forest. In a centralized topol-

ogy, monitoring data is collected on each node but sent to a central node for analysis.

Most of the analysis systems and small to moderate monitoring systems use this ap-

proach. Hierarchical trees [193, 146] are widely used in monitoring and aggregation

systems, where nodes are organized into a balanced tree (or balanced forest where

each tree is according to a different set of attributes), usually with some moderate

fanout factor, e.g., 16 [146]. BSF is proposed in [52]. Nodes exchange monitor-

ing data with each other in order and the last two swapping nodes yield the global

aggregate data.

Monalytics is capable of creating any of those traditional topologies and in addi-

tion, the hybrid DCGs that have significantly higher cost effectiveness in large scale

systems, compared to traditional topologies.
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2.5.2 Assumptions

We model the TTI of each topology and the associated management cost. For gener-

ality, TTI is defined as the latency between when one monitoring sample (indicating

event of interests) is collected on each node and when the analysis on all of those mon-

itoring samples has completed. Management cost is modeled as the capital cost for

management hardware and associated software, i.e., the dollar amount for purchasing

management hardware/software resources. We study topologies with dedicated mode

and collocated mode in large scale. To the best of our knowledge, our work is the

first to model capital cost for management infrastructures in large scale data centers.

Models are based on real word parameters in data centers, as listed in Table 2.

The bandwidth resource for each M-Broker in collocated mode is estimated as the

product of the bisection bandwidth B and the bandwidth budget b. This estimate

reflects the common fact that in many modern data centers, the applications and the

monitoring overlay share the same network. It extends on previous models [52] that

assume full bandwidth to be available to content aggregation overlays. Further, since

monitoring is continuous, which means that it continuously uses the network resource,

its bandwidth consumption should be a small fraction of the total bandwidth available

in order to confine its interference with applications. Similarly, it is intuitive that on

each node, a small portion of resource is used for monitoring/analysis, as captured

by a fraction α of its capital cost.

We assume DCs are reporting one monitoring sample at a time. Each sample

has a size s due to its use of some number of metrics n. We estimate an interme-

diate/aggregation result has size s and n metrics as well 3. We also assume there

is support for buffering of raw and aggregated monitoring data throughout the data

3In extreme cases, the intermediate result can be much larger than s, without aggregation, or
much smaller, with higher ’compression’ effect. We believe it is reasonable to pick a value in the
middle as an estimation.
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center, and that there is enough bandwidth provisioned for monitoring for both the

dedicated and collocated strategies. M-Brokers failures and associated costs are be-

yond the scope of this paper.

2.5.3 Traditional Topologies

Centralized: In a centralized topology, monitoring data collected from each node

is sent to a centralized server for analysis. The TTI, noted TC(N), consists of data

delivery time and data processing time. When the aggregate bandwidth of the nodes

is smaller than the maximum bandwidth of the central server, the data delivery time

is s
B∗b + l, otherwise it becomes s∗N

B
+ l (central node has full bandwidth because it is

dedicated). The processing time is formulated as a function F(n, M), where n is the

number of metrics to monitor, and M is the number of instances of each metric. In our

analytical models, we assume each node collects n metrics, and uses one instance per

metric for analysis, for generality purpose. We can set M to other value representing

a different number of instances for analysis, and this will not affect the comparison

results shown in Section 2.6. Therefore, the TTI for centralized DCG is:

TC(N) =
s

B ∗ b
+ l + F (n,N), ifB > B ∗ b ∗ N

or =
s ∗ N

B
+ l + F (n,N), ifB ≤ B ∗ b ∗ N

The management cost for the centralized topology has two parts. The first part

is the dedicated central server, with cost of C, and the second part is the fraction

of management cost on each node. According to empirical experience [14], there is

usually one additional dedicated management server for every 1000 nodes added to

the data center. Therefore, the cost measurement CC(N) is:

CC(N) = d N

1000
e ∗ c + N ∗ c ∗ α

Hierarchical Tree (HT): In a hierarchical tree, internal nodes have similar fanout

of at most d, and the leaf nodes have depth of at most dlogdNe for a system of N
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nodes. Starting from the leaf level, the nodes at each level can be divided into groups

with at most d members. A group can be treated as a centralized topology where

children report to their parent. The groups at the same level process data in parallel.

Hence, the processing time is d∗s
B

+ l +F (n, d). For the top single group level with the

root as the central server, the processing time is
d N

ddlogd Ne−1
e∗s

B
+ l + F (n, d N

ddlogd Ne−1 e).

A parent analyzes its children’s data and sends the results to the next parent at the

higher level. This data flow between levels is sequential. Hence, the TTI in dedicated

mode is:

THT(N) =(dlogdNe − 1) ∗ (
d ∗ s

B
+ l + F (n, d))+

d N

ddlogd Ne−1 e ∗ s

B
+ l + F (n, d N

ddlogdNe−1
e)

If HT is collocated with the monitored system, the bandwidth resource for each node

for aggregation is limited. Therefore, the TTI T̄HT(N) is:

T̄HT(N) =(dlogdNe − 1) ∗ (
d ∗ s

B ∗ b
+ l + F (n, d))+

d N

ddlogd Ne−1 e ∗ s

B ∗ b
+ l + F (n, d N

ddlogdNe−1
e)

The management cost for dedicated mode CHT(N) is the total cost of its internal

nodes, of the root, and the inherent cost on each node. The number of parents with

N leaves is
∑dlogdNe

i=1 dN
di
e:

CHT(N) =

dlogdNe∑
i=1

dN
di e ∗ c + N ∗ c ∗ α

In collocated mode, the only cost for management is the fractional management cost

on each node:

C̄HT(N) = N ∗ c ∗ α

Binomial Swap Forest (BSF): In a Binomial Swap Forest (BSF) [52] topology,

each node computes an intermediate result by repeatedly swapping (exchanging) data
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with other nodes. Two nodes swap data by sending to each other the intermediate

results they have so far, letting each to compute the new results of both nodes’ data.

The swaps are organized so that a node only swaps with one other node at a time, and

each swap roughly doubles the number of nodes whose data are processed a node’s

intermediate result, so that the nodes will compute the global result in roughly log(N)

swaps. The sequence of swaps performed by a particular node form a binomial tree

with that node at the root. BSF runs in collocated mode and its TTI and cost are:

TBSF(N) = dlog2Ne ∗ (
s

B ∗ b
+ l + F (n, 2))

CBSF(N) = N ∗ c ∗ α

2.5.4 Hybrid DCGs

In hybrid DCGs, any of the traditional topologies described above (centralized, hi-

erarchy, BSF) can be used locally within regions, and also to interconnect region

leaders. The resulting graph is thus a hybrid of multiple traditional topologies, same

or different, interconnected together. For a hybrid DCG that consists of m regions

which process their local monitoring data in parallel, the time for leaders to receive

the aggregated data would be maxmi=1 TINTRA(Ri), where TINTRA(Ri) is the TTI for

region i, and Ri is the number of nodes in region i. The region leaders then cooperate

to perform the next level processing in a time of TINTER(m). Therefore, the TTI and

capital cost of a hybrid DCG are formulated as follows:

THYBRID(N) =
m

max
i=1

TINTRA(Ri) + TINTER(m)

CHYBRID(N) =
m∑
i=1

CINTRA(Ri) + CINTER(m)

(N =
m∑
i=1

Ri)

In practice, there could be numerous topology combinations for a hybrid DCG.

For purposes of modeling and evaluation, we pick three representative ones: (1)
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Centralized-BSF Monalytics (CB) uses a centralized topology within each region and

a BSF topology inter-region; (2) Centralized-Hierarchy-BSF Monalytics (CHB) has

centralized or hierarchical topologies within regions and a BSF topology to connect

these regions; and (3) BSF-BSF Monalytics (BB) uses a BSF topology both intra-

and inter-region, and is also ‘hybrid’ in the sense that the sizes of the intra-region

BSF and the inter-region BSF topologies are different. The formulation for the TTI

and capital cost for these examples can be obtained by substituting appropriate for-

mulations for centralized, hierarchical, and BSF topologies in the THY BRID(N) and

CHY BRID(N) equations above. For example, assuming all regions have same size

Nr for simplicity, the formulations for TTI and capital cost for the Centralized-BSF

hybrid DCG would be:

TCB(N) = TC(Nr) + TBSF(d N

Nr

e)

CCB(N) = d N

Nr

e ∗ CC(Nr) + CBSF(d N

Nr

e)

2.6 Experiments and Evaluations

We have implemented a prototype of Monalytics in C/C++ using the EVPath li-

brary [69]. Experimental evaluations at smaller scale use a virtualized environment

with 36 virtual machines on 12 physical hosts, complemented by a set of large-scale

analytical evaluations to up to 1 million nodes. The results support three main

conclusions. First, Monalytics’ PRN deployment feature results in substantial TTI

reduction compared to traditional approaches. Second, Monalytics has significantly

lower cost and interferes less with applications, compared to static systems watching

everything all the time. Third, the flexible, hybrid DCG design provides promising

advantages in terms of performance and cost, compared to static, single topology

solutions (up to 92% TTI reduction and 86% lower cost).
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2.6.1 Experimental Evaluations

Setup: Our testbed consists of 12 blade servers, each hosting 3 VMs. We realize

the two use cases described in Section 5.4, using our Monalytics prototype to moni-

tor/analyze two application benchmarks: (1) RUBiS[53] representing Internet services

and (2) Hadoop[4] representing MapReduce applications. We use the 32 out of total

36 VMs as the monitored nodes running RUBiS and Hadoop instances. The remain-

ing 4 VMs are used to emulate user requests to RUBiS and for PRN deployments of

new M-Brokers.

The initial DCG is a hierarchical tree with max fanout of 8. The 32 VMs are leaves,

each having one DC and one M-Broker deployed. Some of them are also reused as

internal M-Brokers as 1 root and 4 parents. Lightweight anomaly detection [188, 191]

and on-line clustering [34] approaches are running on the hierarchy continuously and

throughout the experiment. As described in Section 5.4, the DCG controller creates

new centralized DCGs to run deeper analysis functions, causal path inference or

Top-k, on demand. Causal path inference needs to gather and merge a considerable

volume of traces collected from ‘suspicious’ VMs, so the transmission of monitoring

data has an important effect both on TTI and on application interference, which we

will discuss next. The Top-K approach analyzes IP packets locally on each candidate

cohort member, so the network overhead is low. However, since it parses every input

and output IP packet, its CPU consumption is high, which again, can significantly

interfere with the applications, especially when running it on every node all the time.

Experiments measure the TTI, monitoring data volume, and interference with

applications. We compared our PRN solution with brute-force solutions that ‘turn

on’ analytics functions all the time or on every node. To be more specific, the brute-

force ZIA approach collects network traffic trace from all the nodes involved because

it does not have the ’zoom-in’ capability. By the same token, brute-force VMC runs

Top-K functions all the time on a VM ensemble. results show that the PRN and in
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situ approaches result in up to 86% TTI reduction and considerably less interference

with application performance. The data size needed for Monalytics is also up to 95%

smaller than that of brute-force.

Results: Zoom In Analysis In the ZIA use case, the data center hosting multiple

Internet services is monitored, and one of those services has performance problems

that requires further analysis via casual path inference. We emulate those problems

by injecting anomalies described in [188]. In the experiment, each Internet service

is a RUBiS instance embedded in 4 VMs running 1 Apache web server, 2 Tomcat

application servers, and 1 MySQL database server, respectively. We vary the system

scale from 8 VMs (2 services) to 32 VMs (8 services). Monalytics deploys a DCG

on the 4 VMs running the problematic service, on-demand and when needed, while

the brute force approach triggers data collection and transmission on all of the VMs.

The TTI of Monalytics, then, is significantly shorter than that of the brute force

approach, as shown in Figure 6. As the scale increases, the TTI gap grows rapidly,

indicating even better performance of Monalytics at larger scales, with a 86% TTI

reduction on 32 VMs. In addition, the amount of data collected, transmitted, and

processed remains low even as the system scales, with the consequent benefits shown

in Figure 7, in comparison to the brute force approach in which the data size increases

with increased system scale.

Results showing the degree of interference with application performance are en-

couraging, as well. Here, we measure the average throughput of all RUBiS services as

an indication of performance. In Figure 8, the baseline bar is the average throughput

without monitoring/analysis deployed. The Monalytics and brute force bars repre-

sent the average throughput for RUBiS with continuous monitoring/analysis. We

can see that as the scale increases, the brute force approach results in high interfer-

ence with application, severely reducing their throughput. This is because the brute
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Figure 6: ZIA usecase TTI w.r.t. number of nodes

Figure 7: ZIA usecase data size w.r.t number of nodes
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Figure 8: ZIA usecase interference to application

force approach consumes substantial network bandwidth to transmit the larger vol-

umes of monitoring data collected, which in turn slows down the performance of the

applications sharing the same network. The Monalytics approach has overall lower

interference than the brute force approach (up to 44% higher throughput), and the

effect of interference decreases as system scales (due to the increased availability of

total network bandwidth).

Results: Virtual Machine Clustering We run a MapReduce application that

uses a BBP-type method to compute the exact binary digits of π [4], on 4 VMs to

32 VMs. Figure 9 shows the job completion times when the total workload of the

application is fixed, i.e., the workload on each VM is reduced as the system scales.

Figure 10 depicts the job completion times when the workload on each slave VM is

fixed. In both scenarios, Monalytics incurs much less interferences than the brute

force solution, because the former turns on the CPU consuming Top-K functions

only when needed, whereas the latter runs them all the time, thereby unnecessarily

stealing CPU cycles from the Hadoop application. When total workload is fixed, the

completion time deceases as the system scales due to the parallel executions on more
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Figure 9: VMC usecase interference, total workload fixed

Figure 10: VMC usecase interference, slave workload fixed
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Table 3: F (n,M) Functions Representing Two Types of Analytics
Types of Analytics F (n,M)

Linear-Time Approach a ∗ n ∗M
Quadratic-Time Approach a ∗ n2 ∗M2

Table 4: Abbreviations used for the Monalytics topologies
Centralized Centralized

Hierarchical Tree (Collocated) HT

Hierarchical Tree (Dedicated) HT-Dedicated

Binomial Swap Forest BSF

Centralized-BSF CB

BSF-BSF BB

Centralized-Hierarchy-BSF CHB

slaves. The baseline bars in Figure 9 reflect this trend. Accordingly, the effects on

completion time decrease, because the application’s workload can be finished in a

few CPU time slots without interruption. When the per slave workload is fixed, the

baseline does not change much because slaves run in parallel, and the job completion

time is largely determined by the running time of a slave. Because a slave needs to

run a relatively longer time, the brute force approach drags down its performance by

running the Top-K algorithm throughout the Hadoop execution. Monalytics induces

much less interference on job completion time (an average 12% increase) than brute

force (85% increase).

2.6.2 Analytical Evaluations at Large Scale

In this section, we evaluate the Monalytics DCG topologies at scale using the models

described in Section 2.5.

Parameters and Estimations: The parameter values used are based on real world

practices, and are shown in Table 2 (third column). The characteristics of monitoring

data were determined using several runs of a microbenchmark consisting of over 15

well known system monitoring tools. This was used to estimate the monitoring data
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size and number of metrics per node and per data collection interval4. The data

processing time on each node, represented by F(n, M), can have various values due

to the variety of analytics functions possible. Since it is impossible to exhaust all

possibilities, we instantiate F(n, M) for our evaluations with two straight-forward

and representative run time functions, shown in Table 35. For simplicity, the hybrid

DCGs in our evaluations are assumed to have the same region sizes.

Evaluation Results: We compare the TTI and capital cost of various topologies

that can be created by Monalytics (see Table 4 for acronyms). The flexibility offered

by hybrid DCGs results in better performance with low cost at scale. In particular,

Figures 11, 12, and 13 compare the Monalytics’ hybrid topologies with traditional HT

and BSF topologies when using linear-time and quadratic time analysis functions. As

shown in Figure 11, Monalytics CB provides the second shortest TTI for linear-time

analysis.

Figure 11: TTI of complexity O(N) w.r.t number of nodes

4Note that some previous works [52] have used larger estimates of data sizes, dependent on
number of application metrics. We did model evaluations with larger data sizes, as well, and found
similar results and conclusions.

5a is the processing time of one metric, and n ∗M is the total number of metrics
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Figure 12: TTI of complexity O(N2) w.r.t number of nodes

Figure 13: Cost w.r.t number of nodes
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At the scale of 1 million nodes, the Monalytics CB exhibits a 61% TTI reduction

over collocated HT topology. The dedicated HT has the best TTI but also has the

highest capital cost, as depicted in Figure 13(normalized capital cost with respect to

HT-Dedicated cost at scale 1 million). Hybrid DCGs have significantly lower cost,

over 85%.

For quadratic-time analysis, Figure 12 shows that Monalytics BB yields the best

performance, with a significant 92% smaller TTI than that of the dedicated HT. CB,

not shown in Figure 12, has the highest TTI(over 200 seconds). The computation

at each M-Broker dominates TTI for quadratic-time analysis. Since BSF has much

less data to compute per node than what HTs have, BSF and Monalytics BB both

yield shorter TTI. Conversely, with linear run time, the communication overhead

dominates, so the dedicated HT with larger bandwidth out-performs others.

Other hybrid DCGs can perform comparably better than traditional topologies,

as well. The Monalytics CBH has better performance than the collocated-HT in both

linear and quadratic runtime, and its maximum cost is slightly higher than that of

collocated HT, BSF, BB, and HB, but much lower than dedicated-HT, about 86%.

Hybrid DCGs are more effective due to their ability to mix and match the best

topologies that meet local analytics requirements and that also perform best at varied

local scale levels. In Figure 14, the completion time of the centralized topology is

linear to the scale of data centers, which makes performance prohibitively low at a

large scale like 1 million nodes. However, this topology is not always the worst choice

because for less than about 2000 nodes, its TTI is less than that of collocated HT

and BSF because it has only one level of hierarchy. It also has much lower cost

than the dedicated HT, as shown in Figure 13. Hence, using a centralized topology

at appropriate scale may yield good performance. This insight is leveraged to build

hybrid CB with encouraging cost-effectiveness in Figure 11, because for CB, the intra-

region centralized topology has smaller TTI than the collocated HT and BSF when
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the number of nodes is within 2000, and inter-zone processing time is the second

smallest.

Figure 14: Change of performance ranking at different scales

We also study how topology configurations like fan-out factors affect performance

and cost. Figures 15 and 16 reveal that smaller fan-out contributes to smaller TTI.

That’s because each internal node processes less data with smaller fan-out. Although

the height of the tree is larger with smaller fan-outs, the increase has much less

effect than that of input data processed by each parent. The improved performance,

however, comes with higher cost. As shown in Figure 17, the dedicated HT with

smaller fan-out factors have higher management server costs, because the number of

internal nodes increases. The results tell us that configuration may have substantial

impact on performance, and the trade-off between performance and cost. Flexibility

in DCGs can result in on-demand changes in configurations to meet these different

trade-off needs.

Finally, evaluations also show that there is hardly a ‘one size fits all’ topology for

all scale and analysis needs. For example, dedicated HT and Monalytics CB which has

best performance in linear runtime analysis are among the worst in quadratic time,
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Figure 15: TTI of hierarchy topology O(N)

Figure 16: TTI of hierarchy topology O(N2)
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Figure 17: Cost of HT-Dedicated

which suggests that, instead of using a static, single topology, a dynamic hybrid

topology should be applied to meet the changing analytics requirements.

2.7 Related Work

Monitoring systems [138, 78, 31, 166, 85] are designed to monitor the status of large

networked systems or large cluster machines. Some of these leverage hierarchical

architectures for scalability. Ganglia [138], in particular, uses multicast messages

inside a cluster and federations between clusters. While they are widely used and

exhibit high performance in reporting states at large scale, their analysis capabilities

are limited.

Aggregation systems [134, 52, 193, 179, 146] aggregate distributed data with

large volumes, and usually provide mechanisms to query the runtime aggregate states.

While Monalytics is similar in its ability to perform in-network, distributed process-

ing, there are two major differences. First, Monalytics provides the flexibility to

dynamically create, change, and terminate new topologies to meet varying analysis

needs. Second, the analysis functions supported by aggregation systems are typically
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limited to those with the specific computational properties [134] suitable for aggre-

gation, while Monalytics is designed to support a variety of analytics without the

restrains.

Analytics solutions [21, 23, 38, 40, 110] are promising sophisticated analysis of

system behaviors with high accuracy and significantly reduced human intervention.

However, they rarely support analytics on-demand and at large scale. In addition,

they are often application-specific rather than supporting the general class of utility

data center applications targeted by our work.

2.8 Conclusions

We presented the Monalytics software architecture for integrating monitoring and an-

alytics in large scale data centers, with flexibility for supporting a variety of analytics

functions. We introduce pro re nata(PRN) methods and experimental evaluations

are carried out with a Monalytics software prototype implemented in small scale

data center running three tier enterprise applications and Hadoop codes. Results

clearly show the importance of using PRN, along with the ability of the current

Monalytics prototype to support the multiple and sophisticated monitoring/analysis

functions required by two realistic use cases. We contribute novel analytical formu-

lations modeling DCG’s effects on both the performance and the capital costs of

monitoring/analysis, with extensive analytical evaluations in large scale.
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CHAPTER III

VSCOPE: MIDDLEWARE FOR TROUBLESHOOTING

BIG-DATA APPLICATIONS

3.1 Introduction

In the ‘big data’ era, live data analysis applications are becoming easy to scale, as well

as lucrative or even critical to a company’s operation. For instance, by continuously

analyzing the live number of page views on its products, an e-commerce website can

run a dynamic micro-promotion strategy in which when over 3000 customers are

looking at a product for over 10 seconds, an extra 20% discount appears on the web

page to increase sales. Other mission-critical examples for e-commerce sites are click

fraud and spam detection.

The importance of live data analysis is underscored by the recent creation of real-

time or ‘streaming’ big data infrastructures,1 including Flume, S4, Storm, Chukwa,

and others [32, 147, 137, 155, 63, 127, 74], as shown in Table 5. Conceptually, these

are based on the well-established paradigm of stream- or event-based processing [82],

but their recent attractiveness stems from the fact that they can be easily integrated

with other ‘big data’ infrastructures, such as scalable key-value stores and MapReduce

systems, to construct multi-tier platforms spanning thousands of servers or consoli-

dated virtual servers in data centers. A sample platform integrating Flume and other

data-intensive systems is depicted in Figure 18. In Flume, agents reside in web or ap-

plication servers, collecting logs and converting them into key-value pairs. Collectors

1In this chapter we use the term ‘real-time’ to refer a latency restriction within seconds or
hundreds of milliseconds.
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receive and aggregate the local results and insert them into HBase, a distributed, scal-

able key-value store by which users can query the analysis results on-the-fly. HBase

consists of region servers that are equipped with a memory cache, termed MemStore,

and a Write Ahead Log (WAL). The data are first written to the WAL and MemStore

before being asynchronously persisted to the back-end distributed file system, HDFS,

which is typically shared by other data-intensive batch systems, such as Hadoop-

based MapReduce codes used for off-line, long-term analyses. Each tier can scale to

1000s of servers or virtual machines.

Table 5: A List of Representative Real-Time Big Data Systems
Name Developer Example Application

Chukwa Apache Log Collection & Analysis
HOP Berkeley Text Processing

Flume Apache Impression Analysis
Kafka LinkedIn Relevance Analysis
Scribe Facebook Log Aggregation

S4 Yahoo! Real-Time Web Search
Storm Twitter Real-Time Tweet Analysis

System S [82] IBM Real-Time Stock Analy.

Crucial to maintaining high availability and performance for these multi-tier ap-

plications, particularly in light of their stringent end-to-end timing requirements, is

responsive troubleshooting – a process involving the timely detection and diagnosis

of performance issues. Such troubleshooting is notoriously difficult, however, for the

following reasons:

• Holistic vs. tier-specific troubleshooting. As illustrated in Figure 18, each tier

is typically a complex distributed system with its own specialized management

component, like the HBase or Flume masters. Developed by different vendors

and/or managed by different operation teams, tier-specific management can

improve the availability of individual tiers, but is not sufficient for maintaining

an entire application’s end-to-end performance, a simple reason being that issues
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Figure 18: A typical real-time web log analysis application.

visible in one tier may actually be caused by problems located in another.

Needed are holistic systems able to efficiently track problems across tiers.

• Dynamic, per-problem functionality. Problems in complex, large-scale systems

arise dynamically, and for each class of problems, there may be different de-

tection, analysis, and resolution methods. Troubleshooting, therefore, is an

inherently dynamic activity, involving on-line capabilities to capture differing

metrics and to diagnose/analyze them with potentially problem- and situation-

specific methods[187].

• Scalable, responsive problem resolution. In latency-sensitive applications like

the one in Figure 18, to maintain desired timing, troubleshooting must be con-

ducted both with low perturbation and with high responsiveness: issues must be

detected, diagnosed, and repaired without missing too many events and while

maintaining availability for other ongoing actions.
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• System-level effects. Holistic troubleshooting must extend beyond a single ap-

plication, to also identify the system-level bottlenecks that can arise in today’s

consolidated data center or cloud computing systems.
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Figure 19: E2E performance slowdown caused by debug-level logging.

Previous troubleshooting systems have not addressed all of these challenges. Solu-

tions that monitor ‘everything all the time’ [138, 193, 78], including both application-

and system-level events, do not scale for detailed diagnostics via say, debug-level

logging or tracing with consequent high levels of perturbation. This is shown in Fig-

ure 19, where continuously logging application-level debugging events on all of its

nodes slows down an application’s performance by more than 10 times over the base-

line. Sampling [156, 165, 73, 42] for some of the components and/or for some period of

time may not only miss important events, affecting troubleshooting effectiveness, but

will also bring about serious performance issues when using a homogeneous and/or

random sampling strategy across all nodes, e.g., with Dapper [165]’s use of a uniform,

low (1/1000) sampling rate. In Figure 19, debug-level logging in the Flume appli-

cation’s HBase tier, the smallest portion of the system (5/122 VMs), results in over
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10 times slowdown, which is more than an order of magnitude of the perturbation

imposed by debug-level logging in the Flume tier, which has the majority of nodes

(95/122). Thus, it is inadvisable to use a high sampling rate for the HBase tier,

whereas such a strategy for the Flume tier will likely lead to only modest additional

perturbation. An alternative troubleshooting approach chosen by GWP [156] is to

randomly pick some set of machines, this may work well if that set is in the HDFS

tier, but will be prohibitively costly if the HBase tier is picked. Other approaches

such as those taken by Fay [73] and Chopstix [42] to set sampling rates based on the

event population still remains unaware of application level perturbation, resulting in

the same issue as the one faced by GWP. We, therefore, conclude that a more flex-

ible system is needed for efficient troubleshooting, where methods can differ for each

behavior, tier, and type of analysis being performed.

The VScope middleware presented in this chapter makes it possible (1) to adjust

and tune troubleshooting dynamically – at runtime – for individual tiers and across

tiers, (2) to dynamically deploy any analysis action(s) needed to understand the

metric data being captured in the ways required by such troubleshooting, and (3) to do

so in ways that meet the perturbation/overhead requirements of target applications.

To achieve those ends, VScope, as a flexible monitoring and analysis system, offers

the following novel abstractions and mechanisms for troubleshooting latency-sensitive,

multi-tier data center applications:

1. Dynamic Watch, Scope, and Query. VScope abstracts troubleshooting as a

process involving repeated Watch, Scope, and Query operations. Respectively,

these (i) detect performance anomalies, (ii) ‘zoom-in’ to candidate problematic

groups of components or nodes, and (iii) answer detailed questions about those

components or nodes using dynamically deployed monitoring or analysis func-

tions. VScope can operate on any set of nodes or software components and thus,

can be applied within a tier, across multiple tiers, and across different software
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levels.

2. Guidance. Replacing the current manual ‘problem ticket’ mechanisms used in

industry, VScope-based troubleshooting is directed by on-line ‘guidance’, real-

ized by the Watch and Scope operations that first detect abnormal behavior,

followed by exploring candidate sources for such behavior, and only then lead to

more detailed queries on select entities. The current implementations of Watch

and Scope support ‘horizontal guidance’ to track potential problems across dif-

ferent tiers of a multi-tier application, and ‘vertical guidance’ to understand

whether problems are caused by how applications are mapped to machines.

3. Distributed Processing Graphs (DPGs). All VScope operations are realized by

DPGs, which are overlay networks capable of being dynamically deployed and

reconfigured on any set of machines or processes, supporting various types of

topologies and analysis functionalities [21, 38, 23]. First introduced in our

previous work [187], where we proposed the basic architecture of DPGs and an-

alytically analyzed their cost&benefits in data center management, this chapter

presents their implementation, APIs, and commands, based on which we then

build VScope’s troubleshooting functionality.

VScope’s capabilities and performance are evaluated on a testbed with over 1000

virtual machines (VMs). Experimental results show the VScope runtime to only

negligibly perturb system and application performance, and requiring mere seconds

to deploy 1000 node DPGs of varying topologies. This results in fast operation for on-

line queries able to use a comprehensive set of both application- to system/platform-

level metrics and a variety of representative analytics functions. When supporting

algorithms with high computation complexity, VScope serves as a ‘thin layer’ that

occupies no more than 5% of their total latency. Further, by using guidance that

correlates system- and application-level metrics, VScope can locate problematic VMs
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that cannot be found via solely application-level monitoring, and in one of the use

cases explored in the chapter, it operates with levels of perturbation of over 400%

less than what is seen for brute-force and most sampling-based approaches.

The remainder of this chapter is structured as follows. Section 4.3 introduces

a typical real-time multi-tier application. Our goal and non-goals are described in

Section 3.2.1. VScope design and implementation are in Section 3.2. We evaluate

VScope in Section 3.3 and discuss the use cases in Section 5.4. We describes related

work in Section 3.5 and concludes the chapter in Section 4.9.

3.2 System Design and Implementation

3.2.1 Goals and Non-Goals

The design of VScope is driven by several goals: (1) flexibility: to initiate, change,

and stop monitoring and analysis on any set of nodes at any time, supported by

operators for dynamically building and controlling user-defined actions for runtime

troubleshooting; (2) guided operation: programmable methods for detecting potential

problems and then tracking interactions that may contribute to them, between tiers

and across software levels, thereby focusing troubleshooting to reduce overheads and

improve effectiveness; and (3) responsiveness and scalability: to deploy troubleshoot-

ing methods with low delay at scales of 1000+ nodes.

VScope does not replace operator involvement, but aims to facilitate their trou-

bleshooting efforts. Further, while VScope may be used to seek the root causes

of failures, its current implementation lacks functionality like an off-line diagnostic

database and a rich infrastructure for determining and using decision trees or similar

diagnostic techniques [58]. Further, the methods presently implemented in VScope

focus on persistent performance problems that will likely render an application inop-

erable after some time, i.e., when there are frequent or repeated violations of certain

performance indicators that persist if they are not addressed. Having determined
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Figure 20: VScope System Overview

potential sources of such problems, VScope may trigger certain actions for mitigation

or recovery, but it currently assumes such functionality to be supported by other

subsystems (e.g., inherent to specific applications/tiers or software levels) or housed

in some external system for problem resolution.

3.2.2 VScope Overview

The system architecture of VScope is depicted in Figure 20. The machines (VMs or

physical machines) in the target application are managed by a server called VMaster.

Operators use VScope operations, DPG commands, or scripts with the DPG API,

in a console called VShell provided by VMaster. VMaster executes those commands

by deploying DPGs on requested machines to process their monitoring metrics, and

it returns results to operators. In detail, it starts a DPGManager to create a new

DPG, which essentially, is an overlay network consisting of processing entities named
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Figure 21: VScope Software Stack

VNodes residing on application machines. The DPGManager dynamically deploys

VNodes equipped with assigned functions on specified machines, and connects them

with a specified topology. VNodes collect and process monitoring metrics, transmit

metrics or analysis results to other VNodes or the DPGManager, which in turn relays

results to VMaster. DPGManager can initiate, change, or terminate its DPG on-the-

fly.

In VMaster, the metric library defines monitoring metric types and associated

collection functions. The function library defines the user-defined and default met-

ric analysis functions, including those used in guidance (see Section 3.2.5). The

above metrics and functions can be dynamically deployed into DPGs for various

troubleshooting purposes.

The VScope software stack, described in Figure 21, has three layers. The trou-

bleshooting layer exposes basic operations in VShell : Watch, Scope, and Query, which
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Table 6: Arguments of Watch(*Optional)
Argument Description

nodeList∗ a list of nodes to monitor
metricList a list of metric types

detectFunc∗ detection function or code
duration∗ duration
frequency∗ frequency

will be described in Section 3.2.3. The Watch and Scope operations constitute the

guidance mechanism, where Watch notifies the operator when and where end-to-end

anomalies happen, and Scope provides the potential candidate nodes contributing to

the anomalies. Operators can then use Query for in-depth analysis on those can-

didates yielded by guidance. These operations are built upon the DPG layer. In

particular, the guidance mechanism (Watch and Scope) relies on an anomaly detec-

tion DPG and on interaction tracking DPGs. The DPG layer also exposes API and

management commands to offer finer grain controls and customization. The lowest

layer, the VScope runtime, is comprised of a set of daemon processes running on all

nodes participating in the VScope system (i.e., the machines hosting the application

and additional management machines running VScope). This runtime maintains the

connections between machines and implements dynamic DPG creation and manage-

ment. In virtualized data centers, the VScope runtime can be installed in hypervisors

(e.g., Dom0 in Xen), in the virtual machines hosting the application(s) being moni-

tored, in both, and/or in specialized management engines [116, 135]. Our testbed uses

a VScope installation in the hypervisor and in the VMs hosting the Flume application.
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3.2.3 Troubleshooting Operations

Watch.

The Watch operation monitors a list of metrics on a set of nodes,2 and it applies to

them an anomaly detection function in order to detect and report anomalous behav-

iors for any specified metrics. The parameters of the Watch operation described in

Table 6 show its ability to monitor metrics on any VScope node, using some desig-

nated detection function specified with detectFunc. Sample functions used in our work

include thresholding key performance indicators (KPI) such as request latency and

statistics like those based on entropy described in [188]. The frequency and duration

of the Watch operation are also configurable. In our Flume application, the Watch

operation continuously executes on all of the Flume agent nodes, monitoring their

end-to-end message latencies and detecting the nodes with latency outliers. Internally,

Watch is implemented using an anomaly detection DPG explained in Section 3.2.5.

Scope.

The Scope operation (described in Table 7) discovers a set of nodes interacting with a

particular node specified by argument source, at a specified time by argument times-

tamp. This operation guides troubleshooting by informing operators which nodes are

related to the problematic node when the anomaly happens. Based on this guidance,

operators can deploy DPG on those nodes (or subset of them) for further diagnosis

using the Query operation. For instance, for the our Flume application, we have

‘horizontal guidance’ that identifies the HBase region servers a specified Flume agent

is interacting with through a Flume collector, and ‘vertical guidance’ tracks the map-

pings between a physical machine and VMs hosted by it. By default, the output of

Scope is a list of nodes directly interacting with the source. distance and direction are

optional arguments. The former specifies indirect interactions by setting the value >

2A node is a physical or a VM running the VScope runtime in example application.
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Table 7: Arguments of Scope(*Optional)
Argument Description

nodeList∗ a list of nodes to explore
graph name of interaction graph
source node in interest

timestamp∗ interaction at a specific time
distance number of edges

direction∗ backward, forward or both

1, and the latter specifies the direction of interaction, for instance, ‘receiving requests

from’ or ‘sending requests to’.

In a nutshell, Scope works by searching an in-memory, global graph abstraction

that describes interactions between every pair of nodes. Multiple types of interaction

graphs are supported, covering a range of interactions from event level to network

and system levels. These are shown in Table 12 and is specified by argument graph.

The creation and continuous update of the global graph is implemented using an

interaction tracking DPG explained in Section 3.2.5.

Query.

The Query function collects and analyzes metrics from a specified list of nodes, and

provides results to query initiators. Query has two modes: continuous mode and

one-shot mode, the latter being helpful when running monitoring or analysis actions

that have high overheads. This is in contrast to the Watch operation which is always

continuous because it is designed to monitor high level metrics to report on the target’s

global health. Query is flexible in that one can specify any group of nodes to analyze

using nodeList and in addition, state the exact function to be used as queryFunc (see

Table 8).
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Table 8: Arguments of Query(*Optional)
Argument Description

nodeList∗ a list of nodes to query
metricList∗ a list of metric types
queryFunc analytics function or code

mode∗ continuous or one-shot

3.2.4 Flexible DPGs

DPG as the Building Block.

All VScope operations described in Section 3.2.3 are implemented via DPGs. A DPG

consists of a set of processing points (Vnodes) to collect and analyze monitoring data.

It can be configured in multiple topologies to meet varying scale and analysis require-

ments. For example, it can be configured as a hierarchical tree or as a peer-to-peer

overlay or, for smaller scales, as a centralized structure. Managed by a DPGManager,

a DPG can be dynamically started on a specified set of nodes, where each VNode runs

locally on a designated node and executes functions specified in VScope operations.

These functions are stored as binaries in the function library, and they can be dy-

namically linked. As a result, DPGs are flexible in terms of topology, functions, and

metric types. As illustrated in Figure 22, DPG outputs can be (i) presented imme-

diately to the VScope user in VShell, (ii) written into rotating logs, or (iii) stored

as off-line records in a database or key-value store. The last two configurations are

particularly important when historical data is needed for troubleshooting. The use

case in Section 5.4.2 uses rotating logs to store past metric measurements.

Figure 22: Black Box View of DPG
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Table 9: Pseudo Functions for DPG API
DPG create (list, topology, spec) Create a DPG with a specified topology
int add (src, dst, DPG) Add a link from VNode src to VNode dst
int assign (func, spec, list, DPG) Assign function to a list of VNodes
int start (DPG) Start a DPG
int stop (DPG) Stop an operating DPG
int insert (new, src, dst, DPG) Insert a new VNode between existing VNodes
int delete (src, dst, DPG) Delete a link from VNode src to VNode dst

DPG API and Management Commands.

Figure 23 describes the DPG core API and sample topologies, with details shown

API Point-to-point (P) Centralized (C) Hierarchy (H)

start

add

delete

sender receiver master

slaves

root
parents

leaves

create

stop

insert

assign

Figure 23: DPG API and Topologies

in Table 9. The create() method automatically creates any size topology of type

point-to-point (P), centralized (C), or hierarchy (H) for some specified list of nodes.

Topology specifics are configurable, e.g., besides the number of nodes, one can specify

the branching factor of a hierarchical topology. Create() returns a unique DPG ID

for reference in subsequent operations, and in the assign() method, the parameter

func is a registered function ID. When a DPG is running, one can call the assign()

to change the functionality on any VNode or use the insert() and delete() methods

to change the DPG. The DPG API is exposed as commands in VShell, as well, and

there are additional auxiliary management commands such as list (listing metric

types, functions, or DPGs) and collect (returns the metric collection function).
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Though operators can just use VScope operations without knowing the underlying

DPG logic, new topologies, new operations and customization of existing functionality

can be added easily through direct use of DPG APIs, which is not described in detail

here because of space constraints.

3.2.5 Implementation

VScope Runtime.

The VScope runtime is implemented with EVPath [70], a C library for building

active overlay networks. Metric collection uses standard C libraries, system calls,

and JMX (at application level). Metrics are encoded in an efficient binary data

format [70], and a standard format template is used to define new metric types. Built-

in metrics and functions are listed in Table 10 and Table 21. As shown in the tables,

VScope has a comprehensive set of metrics across application, system and platform

levels, and a variety of representative analytics functions that are implemented with

standard C libraries and other open source codes [65]. The DPGs associated with

these functions have different topologies. For instance, Pathmap, PCA (Principle

Component Analysis) and K-Clustering are implemented as centralized DPGs, as

they require global data.

Table 10: Basic Metrics
Level Basic Metrics

Appli- E2E Latency, JMX/JVM Metrics
cation Flume/HBase/HDFS INFO Logs
Virtual VCPU, Memory, I/O Metrics
Machine Network Traffic, Connections
Dom0 & CPU, I/O and Memory Metrics
System Paging, Context Switch Metrics

End-to-End Anomaly Detection.

The Watch operation is implemented using a DPG with a hierarchical topology in

which the leaves are all of the nodes of the web log analysis application. This DPG
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Table 11: Built-in Functions
DPG Algorithms

Watch Hierarchy
MAX/MIN/AVE,
Entropy, Top-K

Scope Centralized Pathmap[21]

Query Centralized
K-Clustering,

PCA

collects the end-to-end latency on each Flume agent, which is defined as the duration

between the time when a new log entry is added and the time it (or its associated

result) appears in HBase. This is measured by creating a test log entry on each agent,

querying the entry in HBase and computing the difference. The latencies are then

aggregated through the tree using Entropy-based Anomaly Testing (EbAT) [188], a

lightweight anomaly detection algorithm, to output the agents that are outliers.

Interaction Tracking.

Table 12 shows built-in global graphs supported by Scope, covering a range of inter-

Table 12: VScope Interaction Graphs
Interaction DPG

Causality Event Flow Centralized
Graph between Nodes Using Pathmap

Connection Network Distributed
Graph Connection Using Netstat
Virtual Dom0-DomU Distributed
Graph Mapping Using Libvirt
Tier Dependency Distributed

Graph between Tiers Static Config.

actions from event level to network and system levels. For each graph type, in our

implementation, a DPG is deployed and

continuously run on all the nodes to construct and update the corresponding

graph structure in VMaster. There are two ways to track the global interactions,

centralized or distributed. For interactions like the causality graph implemented using
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Pathmap [21], a DPG collects metrics from leaves, compresses them at intermediate

nodes, and then constructs the graph at the DPG root. An alternate distributed im-

plementation of graph construction uses parallel analysis in which the leaves analyze

metrics to generate a local graph (e.g., in the connection graph, it is the ingress and

egress connections on a node), the local graphs are aggregated at parent nodes to

create partial graphs which are finally aggregated at the root to produce the global

graph. The current prototype uses adjacency lists to represent graphs and employs

the parallel algorithm shown in Algorithm 1 to merge adjacency lists.

Algorithm 1: Parallel Graph Aggregation

1. On each leaf node, generate an adjacency list
sorted by vertex IDs, and send it to the parent

2. On each parent or root node, merge n sorted
adjacency lists as follows:

1. Create an array P with size of n storing the first vertex ID in each
adjacency list.

2. If multiple IDs in P are the same and they are the smallest, merge their
records into a new record, else take the record with the smallest vertex ID
in P as the new record.

3. Place the new record into the merged adjacency list.

4. Update P to reflect the next record in each adjacency list.

5. Repeat ii to iv until all the records in n adjacency lists are visited.

3.3 Experimental Evaluation

Experiments are conducted on a testbed consisting of 1200 Xen VMs hosted by 60

physical server blades running Ubuntu Linux (20 VMs per server). Every server has

a 1TB SATA disk, 48GB Memory, and 16 CPUs (2.40GHz). Each VM has 2GB

memory and at least 10G disk space.
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Table 13: VScope Runtime Overheads
VNode CPU Usage Memory Usage
Number Increase Increase

1 < 0.01% 0.02%
5 < 0.01% 0.02%
50 < 0.01% 0.03%

3.3.1 VScope Base Overheads

To assess the basic costs of using VScope, we install it on a VM and vary the number

of VNodes used in that VM. Each such VNode collects all of the metrics shown in

Table 10, sending each metric to a separate DPG. As shown in Table 13, CPU and

Memory overhead is negligible even when there are 50 VNodes (i.e., 50 concurrent

DPGs) running. With continuous anomaly detection and via interaction tracking,

VScope imposes only 0.4% overhead on the end-to-end latency of application de-

scribed in Section 5.4. Note that in Section 5.4, VScope operations using tracing or

logging analysis may incur considerable overhead, but this is due to the high costs

of logging and tracking. The ‘thin’ VScope layer itself does not add notable costs,

but instead, its use should reduce the inevitably high overheads of heavier weight,

detailed logging and analysis by taking those actions only where and when they are

needed.

3.3.2 DPG Deployment

Fast deployment of DPGs is critical for time-sensitive troubleshooting. We evaluate

this by measuring the latency for deploying a hierarchical DPG on more than 1000

VMs, each of which has one VNode. The topology has a height of 2, and the total

number of leaf VMs varies from 125 to 1000.

As shown in Figure 3.3.2, deployment time (presented as latency at Y-Axis) rises as

the size of the DPG increases. However, latency remains within 5 seconds even at the

scale of 1000 VMs. This would be considered sufficient for the current troubleshooting
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Figure 24: DPG deployment time w.r.t number of nodes

requirements (typically 1 hour) stated in [43], but it suggests the utility of future work

on DPG reuse – to use and reconfigure an existing DPG, when possible, rather than

creating a new one, or to pre-deploy DPGs where they might be needed. Deploying

moderate scale DPGs with hundreds of nodes, however, usually happens within 1

second, suggesting that such optimizations are not needed at smaller scale. Also note

that deployment latency varies with different branching factors (bf). At scales less

than 750, deploying the DPG with bf 125 has larger latency than those with smaller

bf values; this is because parent nodes construct their subtrees in parallel and the

parents in the DPG with bf 125 have the biggest subtrees.

3.3.3 Interaction Tracking

The Scope operation relies on efficient methods for interaction tracking. We eval-

uate distributed DPG method (used for connection graph) by creating a two-level,

hierarchical DPG with bf 25. We vary its number of leaves from 125 to 1000, and

for this test, each VM has a randomly generated local interaction graph represented

by an adjacency list with 1000 vertex entries with each vertex connected to 1000

randomly generated vertices. We measure the total latency from the time the first

local graph is generated by leaf VMs to the time when the respective merged graph
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is created at the root. We also measure the average time of local processing incurred

during the per-node aggregation of connectivity graph information in order to study

the dominant factor in total latency.

  0

  1

  2

  3

  4

  5

1,000800600400200100

G
lo

ba
l A

gg
re

ga
tio

n 
L

at
en

cy
(S

ec
on

ds
)

Scale

Figure 25: Explore operation latency w.r.t number of nodes

As shown in Figure 3.3.3, the total latency for generating a global graph increases

as the system scales, but it remains within 4 seconds for 1000 VMs, where each VM

has a 1000×1000 local connection graph. This means that the system can generate

such a global graph at a resolution of every 4 seconds. Total latency is mainly due to

the queuing and dequeuing time on VNodes plus network communication time. This

is shown by the small measured local aggregation latency in Figure 3.3.3. At the same

time, since these latencies increase linearly with the total number of inputs, parallel

aggregation is a useful attribute to maintain for large scale systems. We also note

that the local graphs occupy a fair amount of memory, which suggests opportunities

for additional optimizations through use of more efficient internal data structures.

Finally, the analytics actions taken by Scope utilize the Pathmap for centralized

interaction tracking. In Section 3.3.4, Figure 27 shows that it can generate a 1000

VM graph within 8 seconds.

In summary, the Scope operation’s current implementation is efficient for the long

running enterprise codes targeted in our work, but it may not meet the requirements
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Figure 26: Global merge latency for guidance w.r.t number of nodes

of real-time codes such as those performing on-line sensing and actuation in highly

interactive settings like immersive games.

3.3.4 Supporting Diverse Analytics

We use the algorithms in Table 21 as micro-benchmarks to measure the base perfor-

mance of VScope operations. Tests randomly generate a 1000×1000 matrix of float

numbers on each VM, and vary the size of the hierarchical DPG (bf=25) from 125 to

1000 leaf VMs. We measure the latency for analyzing the data on all leaf VMs at each

scale. For centralized algorithms, the parent VNodes only relay the data. For the

Top-K algorithm, we calculate the top 10 numbers. We conduct K-Means clustering

with 5 passes.

Figure 27 shows latency breakdowns as well as the total latency of each function.

In general, most of the algorithms operate within seconds, with increasing latencies

for rising scales. Algorithms with high computational complexity are more costly, of

course, but for such ‘heavyweight’ algorithms, especially for PCA, although the total

latencies are over 1.5 minutes at the scale of 1000 VMs, VScope contributes only

about 4.5% to these delays, and this contribution decreases as the system scales.
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Figure 27: Analytics Microbenchmark Performance

3.4 Experiences with Using VScope

This section illustrates the utility of VScope for troubleshooting, using the application

described in Figure 18. The application’s Flume tier has 10 collectors, each of which is

linked with 20 agents. The HBase tier has 20 region servers, and the HDFS tier has 40

datanodes.3 Experiments use web request traces from the World Cup website [91] to

build a log generator that replays the Apache access logs on each of 200 agent VMs.

Each agent reads the new entries of the log and sends them to its collector. The

collector combines the ClientID and ObjectID as the keyword, and the log content as

the value, then places the record into HBase. The log generator generates 200 entries

per second. The worst case end-to-end latency in the problem-free scenario is within

300 milliseconds.

The VScope runtime is installed on all of the VMs and in addition, on all physical

machines (i.e., Xen’s Dom0s). In accordance with standard practice for management

infrastructures [116, 187], one additional dedicated VM serves as VMaster, and 5

dedicated VMs serve as parent VNodes in the two-level hierarchy DPGs used for

troubleshooting. Two use cases presented below validate VScope’s utility for efficient

3Each tier has one master node, and in HBase, 5 region servers serve as the ZooKeeper quorum.
For simplicity, we do not ‘count’ masters when discussing scale.
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troubleshooting.

3.4.1 Finding Culprit Region Servers

The first VScope use case crosses multiple tiers of the Flume application. The object

is to find some ‘culprit’ region server exhibiting prolonged execution times. Those are

difficult to detect with standard HBase instrumentation because debug-level logging

in region servers to trace their request processing times [33] generates voluminous

logs and high levels of perturbation for the running server(s). Troubleshooting using

brute force methods might quickly find a culprit by turning on all of the region

servers’ debug-level logging and then analyzing these logs (in some central place),

but this would severely perturb the running application. Alternative methods that

successively sample some random set of servers until a culprit is found would reduce

perturbation but would likely experience large delays in finding the culprit server.

More generally, for multi-tier web applications, while bottleneck problems like the

‘culprit’ region server described above commonly occur, they are also hard to detect,

for several reasons. (1) Dynamic connectivity – the connections between the Flume

and HBase tiers can change, since the region server to which a collector connects

is determined by the keyword region of the collector’s current log entry. (2) Data-

Driven concurrency – HBase splits the regions on overloaded region servers, causing

additional dynamic behavior. (3) Redundancy – a region server is typically connected

by multiple collectors. As a result, one region server exhibiting prolonged processing

times, i.e., the ‘culprit’ region server, may affect the end-to-end latencies observed on

many agents.

We synthetically induce server slowdown, by starting garbage collection(GC) in

the Java Virtual Machine (JVM) on one of the region servers. This prolonged dis-

turbance eventually slows down the Flume agents connected to the region server

via their collectors. Experimental evaluations compare VScope, the brute-force, and
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Figure 28: Find Culprit Region Server

the sampling-based approaches for finding the culprit region server. The VScope

approach follows the 3 steps illustrated in Figure 29.

(1) A user at a VShell console issues a low-perturbation Watch operation to find

which agents have prolonged end-to-end latencies. In Figure 28, the X axis shows the

5 problematic collectors, named 1 to 5, and the Y axis shows the 20 region servers,

named RS 1 to RS 20. A dot on the graph indicates a connection, i.e., a collector

has a network connection with a region server at that point in time. The red boxes

indicate the common region servers connected to all of the collectors. RS 13 is the

culprit.

(2) Use the connection graph (chosen from Table 12) and the Scope operation to

find the connected collectors and the region servers to which they connect. These

guidance actions involve using the connection graph as the graph parameter, using

the problematic agent node as the source, and choosing 2 as the distance parameter.

The output will be the collector and associated region servers. By iteratively ‘Scoping’

all anomalous agents, we find that they share 5 collectors. Furthermore, the Scope

operation returns the set of region servers in use by these collectors and we can
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Figure 29: Steps using VScope operations

determine that they have 4 region servers in common. Therefore, we select those four

as candidate culprits. Under the assumption of only one culprit region server, this

operation will succeed because the culprit affects all of these collectors. While it will

be rare to have multiple culprit region servers in a short period of time, in that case,

more candidates may be chosen, but they still constitute only a small set of all region

servers.

(3) Here, VScope has narrowed down the search for the problem region server, and

we can use the Query operation to turn on debug-level logging on the candidates. We

note that the region servers yielded by the Scope operation will always include the

culprit, because VScope tracks all connections. The user will still have to carefully

examine the region server logs to find the problem, but instead of having 20 candidates

(the brute-force approach), there are just 4. If the examination is done sequentially

(gather and examine logs one server at a time) to minimize perturbation, the user

can expect on average to examine 2 logs (requiring 20 minutes of logging and .45GB
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of data) with VScope, as opposed to 10 logs (requiring 100 minutes of logging and

2GB of data) with brute-force. If the log gathering is done in parallel to save time,

the information provided by VScope allows just 4 logs (0.9GB) as opposed to 20

logs (4.1GB) to be retrieved by the brute-force approach. Note that, as shown in

Figure 30, logging on multiple region servers simultaneously has a non-linear effect

upon system performance. Simultaneous logging on only 4 servers (with VScope)

slows the overall system down by 99.3%, but logging on all servers (brute-force) slows

it by 538.9%.

Obviously, in-between approaches, i.e. random sampling, might log on more than

one, but fewer than the total number of candidate region servers, hoping to trade

off perturbation with “time-to-problem-discovery”. In sum, the use of VScope has

narrowed the set of possible bad region servers, thus improving the expected pertur-

bation, log data sizes, and time to resolution in both the average and worst case.

These results validate the importance of VScope’s guided operation that explicitly

identifies the nodes on which troubleshooting should focus, in contrast to methods

that use sampling without application knowledge or that employ non-scalable ex-

haustive solutions. They also demonstrate VScope’s ability to assist with cross-tier

troubleshooting. We note that, for sake of simplicity, this use case assumes the root
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cause to be within the region servers. The assumption can be removed, and in that

case, operators can apply further analysis as shown in Figure 29 by iteratively using

VScope operations.

3.4.2 Finding a ‘Naughty’ VM

Previous research has shown the potential for running real-time application in vir-

tualized settings [124]. However, VMs’ resource contention on I/O devices can de-

grade the end-to-end performance of the application. A typical scenario is that some

‘naughty’ VM excessively uses a physical NIC shared by other VMs on the same phys-

ical host, thereby affecting the performance of the real-time VMs. Potential ‘naughty’

VMs could be MapReduce reducers exchanging voluminous data with a number of

other nodes (e.g. mappers), or HDFS datanodes replicating large files. Contention

could also stem from management operations like VM migration and patch mainte-

nance [167].

There are remedies for contention issues like those above. They include migrating

the ‘naughty’ VM and/or changing network scheduling. VM migration can involve

long delays, and changes to VMs’ network scheduling may involve kernel reboots not

suitable for responsive management. The solution with which we experiment performs

traffic shaping for the ‘naughty’ VM on-the-fly, in the

hypervisor, without involving guest VMs. To do so, however, support is needed

to locate the troublesome VM. VScope running in the Dom0’s of our virtualized

infrastructure provides such support, Specifically, VScope deploys VNodes in the

hypervisor’s Dom0 and uses the virtualization graph shown in Table 12 to track

mappings between VMs and hypervisors.

Experimental results with this use of VScope are obtained by emulating the

‘naughty’ VM issue by deploying a VM with a Hadoop datanode and tasktracker,

on the host where a ‘good’ VM is running one of the 200 Flume agents. This scenario
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Figure 31: Using VScope to Find a ‘Naughty’ VM
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is chosen to emulate co-running a real-time web log analysis with a batch system

using Hadoop, with long term analysis based on the data generated by the real-time

code. In this case, a problem is created by starting a HDFS benchmarking job called

‘TestDFSIO write’, which generates 120 2GB files with 4 replicas for each file in

HDFS. This ‘naughty VM’ generates 3 files (we have 40 slaves in the Hadoop config-

uration. Every slave carries out 3 map tasks, each of which writes a 2G file to HDFS)

and replicates them via the network. VScope is used to find that naughty VM, so

that its communications can be regularized via Dom0 traffic shaping.

The monitoring traces in Figure 31 demonstrate VScope’s troubleshooting process.

Trace 1 presents the latency data generated by the Watch operation. Latency rises

after the anomaly is injected. Using 1 second as the threshold for an end-to-end

performance violation, after 20 violations are observed within 5 minutes, the Watch

operation reports an anomaly and its location, i.e., the ‘good’ VM. After the anomaly

is reported, troubleshooting starts for the VM by querying basic VM level metrics,

including the number of packages per second represented by Trace 2,4 where we find

that metrics in the VM do not show abnormal behavior. In response, we use the

Scope operation to find which physical machine is hosting the VM and then Query its

aggregate packet rate. With these guided actions, we find in Trace 3 that the shared

NIC is sending a large number of packets, in contradiction to the low packet rate in

the ‘good’ VM. The next step is to further Scope the virtualization graph to find the

other VMs running on the same physical host and then Query the network metrics of

their VIFs.5 The ‘naughty’ VM is easily found, because its respective VIF consumes

the majority of the packets for the physical NIC, as shown in Figure 31 Trace 4. The

correctness of the diagnosis obtained via VScope is demonstrated by applying traffic

shaping in Dom0, which involves using TC to throttle the bandwidth of the ‘naughty’

4We only show NIC-related metrics for succinctness.
5A VIF is the logical network interface in Dom0 accepting the packets for one VM and in our

configuration, each VM has a unique VIF.
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VM. It is apparent that this action causes the end-to-end latency of the good VM

returns to normal in Trace 1. In Trace 3, the hypervisor packet rate goes down, and

in Trace 4 the network consumption of the ‘naughty’ VM also sinks, as expected, but

it still has its share of network bandwidth.

3.5 Related Work

Aggregation systems like SDIMS[193] and Moara[114] are most related to VScope in

terms of flexibility. SDIMS provides a flexible API to control the propagation of reads

and writes to accommodate different applications and their data attributes. Moara

queries sub-groups of machines rather than the entire system. In both systems, flexi-

bility is based on dynamic aggregation trees using DHTs (Distributed Hash Tables).

VScope’s approach is fundamentally different, in several aspects. First, VScope can

control which nodes and what metrics to analyze; neither SDIMs nor Moara provides

this level of granularity. SDIMS only controls the level of propagation along the tree,

and Moara chooses groups based on attributes in the query (e.g., CPU utilizations).

Second, the analysis functions in SDIMS and Moara are limited to aggregation func-

tions, while arbitrary functions can be used with VScope, including those performing

‘in transit’ analysis. Third, like other monitoring or aggregation systems, including

Ganglia[138], Astrolabe[179], and Nagios[78], SDIMS and Moara focus on monitoring

the summary of system state, while VScope’s goal is to provide in-depth troubleshoot-

ing solutions, including debugging and tracing, supported by basic metric aggregation

like that performed in the Watch operation.

GWP[156], Dapper[165], Fay[73], Chopstix[42] are distributed tracing systems for

large scale data centers. VScope is similar in that it can monitor and analyze in-

depth system or application behaviors, but it differs as follows. First, instead of

using statistical (Fay and Chopstix leverage sketch, a probabilistic data structure for

metric collection) or random/aggressive sampling (as used in GWP and Dapper),
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VScope can look at any set of nodes, making it possible to implement a wide range

of tracing strategies (including sampling) through its guidance mechanism. Second,

those tracing systems use off-line analysis, while VScope can analyze data on-line and

in memory, to meet the latency restriction for troubleshooting real-time applications.

HiTune[64] and G2[90] share similarity with VScope in that they are general sys-

tems for troubleshooting ‘big-data’ applications. HiTune extracts the data-flows of

applications, using Chukwa for data collection and Hadoop for dataflow analysis. G2

is a graph processing system that uses code instrumentation to extract runtime infor-

mation as a graph and a distributed batch processing engine for processing the queries

on the graph. VScope differs in its focus on on-line troubleshooting, whereas HiTune

and G2 are mainly for off-line problem diagnosis and profiling. Further, HiTune

and G2 are concerned with analyzing single applications, while VScope troubleshoots

across multiple application tiers. Other troubleshooting algorithms and systems, such

as Pinpoint[57], Sherlock[38], Project5[23], E2EProf[21], target traditional web appli-

cations. Plus, VScope is different because it is an infrastructure which can support

various algorithms.

3.6 Conclusions

VScope is a flexible, agile monitoring and analysis system for troubleshooting real-

time multi-tier applications. Its dynamically created DPG processing overlays com-

bine the capture of monitoring metrics with their on-line processing, (i) for responsive,

low overhead problem detection and tracking, and (ii) to guide heavier weight diagno-

sis entailing detailed querying of potential problem sources. With ‘guidance’ reducing

the costs of diagnosis, VScope can operate efficiently at the scales of typical data cen-

ter applications and at the speeds commensurate with those applications’ timescales

of problem development. The paper provides evidence of this fact with a real-time,

multi-tier web log analysis application.
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CHAPTER IV

EBAT & ANOMALY DETECTION ALGORITHMS

4.1 Introduction

The online detection of anomalous system behavior [55] caused by operator er-

rors [150], hardware/software failures [154], resource over-/under-provisioning [117,

119], and similar causes is a vital element of operations in large-scale data centers

and utility clouds like Amazon EC2 [2]. Given the ever-increasing scale coupled with

the increasing complexity of software, applications, and workload patterns, anomaly

detection methods must operate automatically at runtime and without the need for

prior knowledge about normal or anomalous behaviors. Further, they should be suf-

ficiently general to apply multiple levels of abstraction and subsystems and for the

different metrics used in large-scale systems.

The detection methods [10, 8, 13] currently used in industry are often ad hoc

or specific to certain applications, and they may require extensive tuning for sen-

sitivity and/or to avoid high rates of false alarms. An issue with threshold-based

methods, for instance, is that they detect anomalies after they occur instead of notic-

ing their impending arrival. Further, potentially high false alarm rates can result

from monitoring only individual rather than combinations of metrics. New meth-

ods [61, 23, 57, 40, 117, 21, 20, 38] developed in recent research can be unresponsive

due to their use of complex statistical techniques and/or may suffer from a relative lack

of scalability because they mine immense amounts of non-aggregated metric data. In

addition, their analysis often require prior knowledge about application SLOs, service

implementation, or request semantics.

This chapter proposes the EbAT – Entropy-based Anomaly Testing – approach to
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anomaly detection. EbAT analyzes metric distributions rather than individual metric

thresholds. We use entropy as a measurement to capture the degree of dispersal or

concentration of such distributions. The resulting ’entropy distributions’ aggregate

raw metric data across the cloud stack to form ‘entropy time series’, and in addition,

each hierarchy of a cloud (data center, container, rack, enclosure, node, socket, core)

can generate higher level from lower level entropy time series. We then use online

tools – spike detecting (visually or using time series analysis), signal processing or

subspace method – to identify anomalies in entropy time series in general and at

each level of the hierarchy. The current implementation employs wavelet analysis

and visual spike detection. The hierarchical entropy time series analysis provides us

with the ability to ‘zoom in’ to the components and metrics where anomalies may

be occurring. A typical response to a detected anomaly is to trigger heavier weight

diagnosis tools [21, 20, 61, 38, 57, 40, 23] that further identify anomaly causes and/or

suggest suitable remedies.

EbAT constitutes a lightweight online approach to scalable monitoring, capable of

raising alarms and zooming in on potential problem areas in clouds. Since the volume

of monitoring data is exponentially reduced along the cloud hierarchy, the approach

can easily scale as metric volume grows. When the metrics used are collected with

black-box methods [23] like hypervisor-level monitoring, applications and systems

can be monitored without client- or vendor-specific knowledge about their make,

nature, or expected behavior. When applying detection to metrics collected with gray-

box techniques [36], we exploit existing knowledge about certain hardware/software

components or applications. In either case, there is no need for human involvement

or intervention, thereby reducing operating costs, and there is minimum requirement

of prior knowledge about hardware/software or of typical failure models. As a result,

EbAT can detect anomalies that are not well understood (i.e., no prior models) or have

not been experienced previously, and it can operate at any one and across multiple
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of the levels of abstraction existing in modern systems, ranging from the hypervisor,

to OS kernels, to middleware, and to applications.

In summary and compared to prior work on cloud anomaly detection, EbAT’s

technical contributions include the following:

1. a novel metric distribution-based method for anomaly detection using entropy;

2. a hierarchical aggregation of entropy time series via multiple analytical methods,

to attain cloud scalability;

3. an evaluation with two typical utility cloud scenarios, to demonstrate the viabil-

ity and accuracy of the proposed techniques, and to compare EbAT’s methods

with the threshold-based techniques currently in wide-spread use.

Expanding on 3) above, experimental results are attained with representative cloud

applications that include RUBiS, a distributed set of auctioning services and a

data intensive application written with Hadoop. The first case study compares the

EbAT methods with a baseline method representing current best practices that use

threshold-based anomaly detection. When comparing the precision, recall and F1

accuracy score for anomaly detection attained with both techniques, results show

that EbAT outperforms threshold-based methods with on average 18.9% in F1 score

and also does better by 50% on average in false alarm rate with a ’near-optimum’

threshold-based method. The second case study uses a data intensive code to discuss

interesting properties of EbAT and the manner in which its methods should be used.

The remainder of this chapter is organized as follows. Section 4.2 describes the

research challenges. Section 4.3, Section 4.4, and Section 4.5 detail the EbAT ap-

proach. Experimental evaluation and discussion are described in Section 4.6 and 4.7.

Section 4.9 present conclusions and future work.
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Figure 32: A cloud hierarchy

4.2 Problem Description

4.2.1 Utility Cloud Characteristics

A utility cloud’s physical hierarchy is illustrated in Figure 32, where red numbers

are typical quantities of components at each level. The hierarchical relationship be-

tween hardware components and virtual environment – data center, container, rack,

enclosure, node, socket, core and virtual machines (VMs for short) – is typically con-

figured statically at hardware levels. Considering virtual components, the simplified

hierarchy used in our experiments describes VMs as direct children of nodes (hosts),

but this can be generalized as shown in Figure 33:

1. Exascale: for up to 10M physical cores, there may be up to 10 virtual machines

per node (or per core). Given a possibility of non-trivial number of sensors per

node and additional sensors for each level of physical hierarchy, the total amount

of metrics can reach exascale, 1018.

2. Dynamism: utility clouds serve as a general computing facility. Heterogeneous
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Figure 33: The functional view of a utility cloud

Table 14: Typical statistical approaches and their features
Technique Scalability Online Black-Box H-X V-X
SLIC [61] n n n y y

Nesting/Convolution [23] n n y y n
Pinpoint [57] n n n y n
Magpie [40] n n y y n

Pranaali [117] y y n y n
E2EProf[21] n n y y n
SysProf [20] n n y y n

Sherklock [38] n n y y n
EbAT y y y y y

applications include, but are not limited to, Map-Reduce, social networking, e-

commerce solutions and multi-tier web applications, streaming applications and

video sharing. While running simultaneously, these applications tend to have

different workload/request patterns. Online management of virtual machines

like live migration and power management make a utility cloud more dynamic

than existing data center facilities. Further, utility clouds experience ontinu-

ous churn of workloads with applications continuously entering and exiting the

system.
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4.2.2 Problem Definition

The scale and dynamic nature of future utility clouds require the solution of three

major problems in online anomaly detection: metric aggregation, reliable detection,

and anomaly zoom-in.

The aggregation problem involves the preprocessing and aggregating of raw metric

data. A good solution to the aggregation problem should (1) reduce the data volume

for further analysis so that it can scale well as the cloud grows. (2) It should retain

valuable information for anomaly detection and identification. Finally, (3) aggrega-

tion should be ‘horizontal crossing’ and ‘vertical crossing’, meaning that metrics from

different levels/components are collectively considered in order to detect anomalies.

The detection problem is the problem of designating, at runtime, the time in-

stances at which the utility cloud is experiencing anomalies. An effective algorithm

to the problem should have high detection and low false alarm rates. Further, it

should be an unsupervised method given the lack of sufficient a priori knowledge

about normal or anomalous behavior or conditions. Last, it should be an autonomic

approach in order to contain personnel costs for increasing cloud scales.

The zoom-in problem consists of localizing anomalies so as to narrow down the

search scopes for further diagnosing the causes of those anomalies. Zoom-in is im-

portant because it can speed up the problem finding process and can reduce the

overheads of heavier weight, detailed diagnosis tools.

The effectiveness of an anomaly detection approach depends on the solutions to

the above problems. As described in the next section, current methods do not already

provide such solutions.
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4.2.3 State of the Art

Threshold-Based Approaches

Threshold-based methods are pervasively leveraged in industry monitoring prod-

ucts [138, 78, 10, 8, 13]. They firstly set up upper/lower bounds for each metric.

Those threshold values come from predefined performance knowledge or constraints

(e.g., SLOs) or from predictions based on long-term historical data analysis. They

can be set statically or dynamically. Whenever any of the metric observation violates

a threshold limit, an alarm of anomaly is triggered.

Providing a moderate volume of metrics to operation teams with highly trained

expertise, threshold-based methods are widely used with advantages of simplicity and

ease of visual presentation. They however do not meet utility cloud requirements due

to their following intrinsic shortcomings:

1. Incremental False Alarm Rate (FAR): consider a threshold based method mon-

itoring n metrics: m1, m2 ... mn for each mi , if the FAR is ri, the overall FAR of

this method is
∑n

i=1 ri. Thus, this means that when monitoring 50 metrics with

FAR 1/250 each (1 false alarm every 250 samples), there will be 50/250 = 1/5,

i.e., 1 false alarm every 5 samples! Thus, the false alarm rate in threshold-based

technique grows fast with increase in the number of monitoring metrics.

2. Detection after the Fact : consider 100 Web Application Servers (WAS) running

the same service deficiently coded with memoryleaks. The memory utilization

metrics from all those WASes may stay below their thresholds for a period of

time as memory use is slowly increasing. Thus, no anomaly is detected. When

one of the WASes raises an alarm because it crosses the threshold, it is likely

that all other 99 WASes raise alarms soon thereafter, thereby causing a revenue

disaster.
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3. Poor Scalability : it is obvious that as we approach exascale volumes in moni-

toring metrics, it is no longer efficient to monitor metrics individually.

The lesson we learn from threshold-based approaches is that detecting anomalies

by individual metric value threshold may not work well in exascale, highly dynamic

cloud environments. Needed are new detection gauges and novel ways of aggregating

metrics.

Statistical Methods

There exist many promising methods for anomaly detection, typically based on sta-

tistical techniques. However, few of them can deal with the scale of future cloud

computing systems and/or the need for online detection, because they use statistical

algorithms with high computing overheads and/or onerously mine immense amounts

of raw metric data without first aggregating it. In addition, they often require prior

knowledge about application SLOs, service implementations, request semantics, or

they solve specific problems at specific levels of abstraction (i.e., metric levels). A

summary of features of well-known statistical methods appears in Table 14 along

with a comparison with EbAT.

Specifically, Cohen et al. [61] developed an approach in the SLIC project that

statistically clusters metrics with respect to SLOs to create system signatures. Chen

et al. [57] proposed Pinpoint using clustering/correlation analysis for problem deter-

mination. Magpie [40] is a request extraction and workload modeling tool. Aguilera.

et al’s [23] nesting/convolution algorithms are black-box methods to find causal paths

between service components. Arpaci-Dusseau et al. [36] develop gray-box techniques

that use information about the internal states maintained in certain operating sys-

tem components, e.g., to control file layout on top of FFS-like file systems [148].

Concerning data center management, Agarwala et al. [21, 20] propose profiling tools,

E2EProf and SysProf, that can capture monitoring information at different levels of
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Figure 34: EbAT workflow

granularity. They however address different sets of VM behaviors, focusing on rela-

tionships among VMs rather than anomalies. Kumar et al. [117] proposed Pranaali, a

state-space approach for SLA management of distributed software components. Bahl

et al. [38] developed Sherklock using inference graph model to auto detect/localize

internet services problems.

In contrast, our method (EbAT) aims to be address the scalability needs of Utility

Clouds, providing an online lightweight technique that can operate in a black-box

manner across multiple horizontal and vertical metrics. We leverage entropy-based

analysis technique that has been used in the past for network monitoring [121, 122],

but we adapt it for data center monitoring operating at and across different levels of

abstraction, including applications, middleware, operating systems, virtual machines,

and hardware.
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4.3 EbAT Overview

The EbAT approach is depicted in Figure 34 as operating in three steps: metric

collection, entropy time series construction, and entropy time series processing.

The metric collection happens at all components on each physical level of the

hierarchy. The types of data collected depends on the level. A leaf component collects

raw metric data from its local sensors. A non-leaf component collects not only its

local metric data but also entropy time series data from its child nodes.

In the entropy time series construction step, data is normalized and binned into

intervals. Leaf nodes only generate monitoring events (m-events for short) from its

local metrics. Non-leaf nodes generate m-events from local metrics and child nodes’

entropy time series, respectively. Those m-events are then counted at runtime to

calculate the entropy time series of current components. Details about m-event and

entropy calculation appear in Section 4.4.

In the entropy time series processing step, entropy time series are analyzed by

one or multiple methods from spike detection, signal processing or subspace method

in order to find anomalous patterns which are indications of anomalies in monitored

system. Details are discussed in Section 4.5.

4.4 Entropy Time Series

4.4.1 Look-Back Window

As an online detection method, EbAT maintains a buffer of the last n samples’ metrics

observed. We call this buffer a look-back window which slides sample by sample during

the monitoring process. The metrics in the look-back window at each time instance

serve as inputs for pre-processing, m-event creation, and entropy calculation. The

look-back window is used for multiple reasons. First, at exascale, it is impractical

to maintain all history data. Second, shifts of work patterns may render old history

data misleading or even useless. Third, the look-back window can be implemented in
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high speed RAM, which can further increase detection performance.

4.4.2 Pre-Processing Raw Metrics

The monitoring data within each look-back window is first pre-processed and trans-

formed into a form that can be readily used by EbAT. This pre-processing involves

two steps explained below (also shown in Figure 34). Note that at each monitor-

ing sample, multiple types of metric can be collected simultaneously , e.g. in our

experiment, we collect CPU utilization, memory utilization and VBD read/write in

each monitoring sample. In addition, the entropy values of child components can be

collected simultaneously by non-leaf components. The pre-processing steps below are

thus done for samples collected for every type of metric and/or child.

Step 1: Normalization In this step, EbAT transforms a sample value to a normal-

ized value by dividing the sample value by the mean of all values of the same type in

the current look-back window.

Step 2: Data binning Once normalization is complete, each of the normalized sam-

ple values are hashed to a bin of size m+1. This happens as follows. We predefine

a value range [0,r], and split it into m equal-sized bins indexed from 0 to m-1. We

define another bin indexed m which captures values larger than r. Both m and r are

pre-determined statistically but are configurable parameters to the method. Each of

the normalized values from Step 1 are put into a specific bin - if the value is greater

than r, then it is placed in the bin with index m, else it is put in a bin with index, the

floor of samplevalue/(r/m). Thus, now each of the sample values are associated with

a bin index number. This number is recorded and used to create m-events described

in next subsection.

Figure 35 shows an example illustration of the above steps for a look-back window

of size 3 with CPU and Memory utilization metrics.
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Table 15: Definitions of Btj and k
Btj k

global bin index of jth child entropy total# of children
local bin index of jth local metric total# of local metrics

4.4.3 M-Event Creation

Once the sample data is pre-processed and transformed to a series of bin index num-

bers for every metric type and/or child, an m-event is generated that includes the

transformed values from multiple metric types and/or child into a single vector for

each sample instance. More specifically, an m-event of a component at sample t, Et

is formulated as the following vector description:

Et =< Bt1,Bt2....,Btj, ....Btk > (1)

where Btj and k are defined as in Table 15,

The only restriction is that an entropy value and a local metric value should not

be in the same vector of an m-event. The m-event for the example illustrated in

previous subsection is shown in Figure 35.

According to the above definitions, at each component except for leaves, there will

be two types of m-events:

1. global m-events aggregating entropies of its subtree, and

2. local m-events recording local metric transformation values, i.e. bin index num-

bers.

Within a specific component, the template of m-events is fixed, i.e. the types and

the order of raw metrics in the m-event(local or global) vector are fixed. Therefore

two m-events, Ea and Eb have the same vector value if they are created on the same

component and ∀ j ∈ [1, k],Baj = Bbj
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Figure 35: An illustration of the EbAT method
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From above descriptions, an m-event is actually the representation of a monitoring

sample. Therefore, on each component, there will be n m-events in the look-back

window with size n. The next step is to extract the statistic characteristics of m-

events in this look-back window.

4.4.4 Entropy Calculation and Aggregation

Entropy [163] is a widely used measurement that captures the degree of dispersal

or concentration of random variable distributions. For a discrete random variable X

with possible values {x1,x2 ..., xn}, its entropy is:

H(X) = −
n∑
i=1

P (xi)logP (xi) (2)

where P (xi) is the probability mass function of outcome xi. −logP (xi) is called

surprisal or self-information of xi.

We deem the random variable as an observation E in the look-back window with

size n samples. The outcomes of E are v m-event vector values {e1,e2 ..., ev} where

v != n when there are m-events with the same value in the n samples. For each

of these v values, we keep a count of the number of occurrence of that ei in the n

samples. This is designated as ni and represents the number of m-events with vector

value ei. We then calculate H(E) by the Formula 3. By calculating H(E) for the

look back window, we get the global and local entropy time series describing metric

distributions for that look back window. Since, the look back window slides sample

by sample as mentioned in Section IVA, H(E) gets calculated at every monitoring

sample for the corresponding look back window.

H(E) = −
v∑
i=1

ni
n
log

ni
n

(3)

In the case of local entropy calculation, the m-events represent the pre-processing

results of the raw metrics. In the case of global entropy calculation, the m-events
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represent the pre-processing results of the child entropy time series. While Equation

3 is one way to calculate global entropy using child entropy m-events, one can imag-

ine other alternative aggregations too. We have in particular considered the following

alternative formula (Equation 4) in our implementation which considers the combina-

tion of sum and product of the individual child entropies, and we show the evaluation

comparison for the two approaches in Section 4.6.

A =
c∑
i=1

Hi +
c∏
i=1

Hi (4)

Above, c is the number of children nodes, say, VMs on the same host (as in our

experiment), and Hi represents the local entropy of the child i.

4.5 Entropy Time Series Processing

Entropy Time Series Analysis: After gathering the local/global entropy time series as

described in the previous section, we can use data analysis methods to identify nor-

mal entropies and anomalous ones. The detection will reveal anomalous distribution

changes in monitoring metrics. Appropriate techniques include 1) spike detection, 2)

signal processing, and 3) subspace methods. The EbAT software framework permits

one to choose any or multiple of those methods online, thereby enabling users to deal

with individual methods’ limitations and tune detection performance. The current

implementation uses visual spike detection, as shown in Figure 37(a) for visually ob-

vious spikes and wavelet analysis to identify abnormal patterns when visual detection

is infeasible, as shown in Figure 37(b).

Zoom-In Identification is triggered when an anomaly is detected in the global

entropy time series. By checking each child component’s entropy in the global m-

event, it is possible to reveal which one should be responsible for the anomaly. The

process may be continued into lower levels until the anomalous metric data are found.

87



4.6 Evaluation with Distributed Online Service

Online services are an important class of applications in utility clouds. Using the

widely used RUBiS benchmark deployed as a set of virtual machines, EbAT is eval-

uated for its’ viability and in terms of effectiveness compared to the threshold-based

methods in wide use. The goal is to detect synthetic anomalies injected into the

RUBiS services. Effectiveness is evaluated using precision, recall and F1 score as met-

rics which will be discussed in Section 4.6.4. Results show that EbAT outperforms

threshold-based methods with on average 18.9% increase in F1 score and we also do

better by 50% on average in false alarm rate with the ’near-optimum’ threshold-based

method I.

4.6.1 Experiment Setup

RUBiS [53] is a distributed online service benchmark implementing the core function-

ality of an auction site. When used in the cloud context, its services are deployed in

virtual machines mapped to the cloud’s machine resources, as depicted in Figure 36.

The testbed uses 5 virtual machines (VM1 to VM5) on Xen platform hosted on

two Dell PowerEdge 1950 servers (Host1 and Host2) with 2 x 2.8 GHz dual-core Xeon

processors, 2 x 2.66GHz dual-core Xeon processors, Red Hat Enterprise Linux 5 OS,

and 15GB RAM each. VM1, VM2, and VM3 are created on Host1. The frontend

server processing or redirecting service requests runs in VM1. The application server

handling the application logic runs in VM2. The database backend server is deployed

on VM3. The deployment is typical in its use of multiple VMs and the consolidation

of such VMs onto a smaller number of hosts.

A request load generator and an anomaly injector are running on two virtual

machines, VM4 and VM5, on another server, Host2. The generator creates 10 hours’

worth of service request load for Host1 where the auction site resides. The load

emulates concurrent clients, sessions, and human activities. During the experiment,
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Figure 36: The experiment setup for RUBiS

Table 16: Anomalies Injected
Anomaly Typical Source Type # of Anomalies

Frontend Unaccessible Operation Error 10
DB Server Unaccessible Operation Error 16

APP Server Unaccessible Operation Error 10
Frontend CPU Shortage Resource Provision 3
Database CPU Shortage Resource Provision 8

APP Server CPU Shortage Resource Provision 3

the anomaly injector injects 50 anomalies into the RUBiS online service in Host1.

Those 50 anomalies, as shown in Table 16, come from major sources of failures or

performance issues in online services [150, 117, 119, 154]. We inject them into the

testbed using a uniform distribution. The virtual machine metrics and the host

metrics are collected using Xentop and analyzed in an anomaly detector. Anomaly

detection applies threshold-based and EbAT’s methods to online observations of the

CPU utilizations of virtual machines and hosts (i.e., using black-box monitoring).

4.6.2 Baseline Methods – Threshold-Based Detection

We choose a threshold-based method as the baseline. This baseline method compares

observed CPU utilization with a lower bound and higher bound threshold. Whenever

the utilization goes below the lower bound threshold, or above the higher bound

threshold, a violation to the thresholds is detected, and the baseline method will

raise an alarm. Consecutive violations are aggregated into a single alarm. For our
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evaluations, we consider two separate values of the thresholds. The first one is a

near-optimum threshold value set by an ’oracle’-based method, and the other is a

statically set threshold value that is not optimum but representative of how current

state of the art real-world deployments use.

To obtain the near optimum threshold value, we feed the complete historical

knowledge of the host CPU utilization to the baseline method. This historical trace

matches exactly what the host will experience during the online RUBiS experimenta-

tion when the baseline method will be operating. From the historical CPU utilization

trace, we calculate the histogram and from that, the lowest and highest 1% of the

values are identified as representing outliers outside an acceptable operating range.

The corresponding 1%boundary values are then chosen as the lower and upper bound

thresholds. This is illustrated in Figure 38(b) for Host1. Specifically, 1.7% is chosen

as the lower bound and 20.3% as the upper bound. 2% is chosen as the total value

for outliers because the time taken by anomalies injected occupies 2% of the total

experiment period. 2% is then appropriate in the sense that it can catch as many

anomalies as possible without sacrificing accuracy, making the chosen threshold values

near-optimum/ideal.

Figure 38(a) shows the results when applying these near-optimum thresholds to

the host CPU utilization data for detecting anomalies. Red circles are violations when

applying the baseline threshold method Consecutive red circles are deemed as a single

anomaly because it may hold for some period of time. A successful alarm and the

according actual anomaly injection may not happen at the same time because there

is a latency between anomaly injection and its effects on the metrics being collected

and analyzed.

For the non-optimum statically set threshold values, we choose 90% and 5% as

the upper and lower bounds for the thresholds based on representative values used

in state of the art deployments. We employ a similar exercise on the Host1 CPU
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Table 17: Parameters for entropy calculation and aggregation
look-back window size range # of bins

local entropy calculation 20 5 6
entropy I aggregation 100 5 5

utilization data using these threshold values to detect anomalies. The overall results

are summarized in Table 18 which would be explained in Section 4.6.4.

4.6.3 EbAT Method Implementation

We apply the EbAT method implementation at the VM level and host level. As

mentioned in Section 4.2, we deem VM1 to VM3 as the direct children of Host1. We

thereby first calculate the local entropy time series in each VM and then aggregate

them to global entropy time series for Host1. Two aggregations for global entropy

described in Section 4.4.4 are evaluated and they are named “Entropy I” and “Entropy

II”, respectively (corresponding to Equations 3 & 4). The parameters chosen for

entropy calculation and aggregation are presented in Table 17.

4.6.4 Evaluation Results

We use four measures [159, 16, 5], in statistics to evaluate the effectiveness of anomaly

detection:

Precision =
# of successful detections

# of total alarms
(5)

Recall =
# of successful detections

# of total anomalies
(6)

Accuracy(F1) =
2 ∗ precision ∗ recall
precision+ recall

(7)

False Alarm Rate (FAR) =
# of false alarms

# of total alarms
= 1− Precision (8)
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Table 18: Experiment Results
Methods # of # of Recall Precision Accuracy FAR

Alarms Hits
Entropy I 45 43 0.86 0.96 0.91 0.04
Entropy II 56 45 0.90 0.80 0.85 0.20
Threshold I 49 37 0.74 0.76 0.75 0.24
Threshold II 30 29 0.58 0.97 0.73 0.03

Precision is used to measure the exactness of the detection. Recall measures

the completeness. Neither precision nor recall alone can judge the goodness of an

anomaly detection method. Therefore we further use Accuracy, or F1 score which

is the harmonic mean of precision and recall, to compare the performances of EbAT

and threshold-based methods. FAR is really 1-Precision.

A summary of results appears in Table 23, and detailed traces of entropy, raw

metrics, anomalies injected and alarms are depicted in Figure 37 and 38(a). Overall,

compared with the threshold-based detection methods, the use of EbAT results in on

average 18.9% improvement in F1 score. We also do better by 50% on average in false

alarm rate with the ’near-optimum’ threshold-based method I.

EbAT methods outperform threshold-based methods in accuracy and almost all

precision and recall measurements. The only exception is that of precision with

Threshold II, however Threshold II only detects 29 anomalies out of total 50, thus

missing detection of many anomalies reflected through poor recall. Entropy II has

worse FAR competed to Entropy I because the sum/multiply of entropies accumulate

false alarms in each VM’s entropy time series. The comparison between Entropy I and

Threshold I, for example, indicates that EbAT’s metric distribution-based detection

aggregating metrics across multiple vertical levels has advantages over solely looking

at host level, even when compared to an oracle detector.
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Figure 37: Fragment of Entropy I (a) and Entropy II (b) traces

Figure 38: (a) A Fragment of Threshold I Trace, and (b) CPU Util. Histogram
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4.7 Discussion: Using Hadoop Applications

Hadoop [4] is an implementation of the MapReduce framework [67] supporting

distributed computing on large data sets. This section uses Hadoop to explore and

illustrate select issues in using EbAT to monitor complex, large-scale cloud applica-

tions.

We deploy a Hadoop platform on three virtual machines named master, slave1

and slave2. Those VMs are hosted in one physical server with the same hardware

configurations as in the RUBiS experiment. Master acts as the master node in MapRe-

duce and also operates as a worker (i.e., running a worker process). Slave1 and slave2

are worker nodes. We run a distributed word counter application on the platform for

2 hours with 6 anomalies caused by application level task failures. EbAT observes

CPU utilization and the number of VBD-writes and VBD-reads (virtual block device

writes and reads), and calculates their entropy time series.

We first calculate entropies based on the CPU utilizations of the three VMs and

aggregate those entropies as the host entropy. The parameters, look-back window

size, range and bin number are presented in Table 17. Figure 39 shows each VM’s

CPU utilization trace. CPU utilizations are high when the associated VMs have tasks

to run, but approach 0 in idle state. As a result, the entropy of the host, which is

the aggregation of the three VM’s entropies, exhibits high variability due to the high

variations in raw metric values as seen in Figure 42(b). This demonstrates that it

is not suitable to apply EbAT to metrics whose ’normal’ behavior is highly variable.

Such variations are simply transferred to the entropy trace, thereby affecting detection

accuracy.

A more appropriate way of using EbAT with Hadoop applications is one in which

its methods are applied to a derived metric. Specifically and as shown in Figure 40,

although the VBD-write and VBD-read metrics keep increasing (will affect EbAT

anomaly detection as mentioned above), they are highly correlated, as intuitively
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Figure 39: CPU utilizations of master, slave1 and slave2

Figure 40: VBD-write and VBD-read in master, slave1 and slave2

obvious from the fact that data intensive codes implemented with Hadoop attain high

performance by best using the aggregate disk bandwidth of the underlying machines

on which they run. Thus, when calculating their correlation value traces as depicted

in Figure 41, these correlations are stable most of the time, but have sharp decreases

when anomalies occur. By applying EbAT calculations on correlation traces instead

of raw metric traces, with the same parameters as those used for CPU utilization, we

then attain the detection results presented in Figure 42(a). Here, six spikes in the

whole host entropy time series reflect the six anomalies during the experiment period.

The above being a preliminarily empirical study on Hadoop use case, we are con-

tinuing to explore more sophisticated clustering techniques to find correlated metrics

Figure 41: Correlations of VBD-write and VBD-read in master, slave1 and slave2
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Figure 42: (a) Aggregated correlation entropies, and (b) CPU utilization entropy

and then track multiple entropies using EbAT on those correlation values.

4.8 Related Work

Research efforts on anomaly detection in utility cloud management can be categorized

into two streams: data center management methods and performance debugging

methods.

Concerning data center management, Agarwala et al. [21, 20] propose profiling

tools, E2EProf and SysProf, that can capture monitoring information at different

levels of granularity. They address different sets of VM behaviors, focusing on rela-

tionships among VMs rather than anomalies. Kumar, et al. [117] proposed Pranaali, a

state-space approach for SLA management of distributed software components. Bahl,

et al. [38] developed Sherklock using inference graph model to auto detect/localize

internet services problems.

In performance debugging area, Cohen, et al. [61] developed an approach in the

SLIC project that statistically clusters metrics with respect to SLOs to create system

signatures. Chen, et al. [57] proposed Pinpoint using clustering/correlation analysis

for problem determination. Magpie [40] is a request extraction and workload model-

ing tool. Aguilera. et al’s [23] nesting/convolution algorithms are black-box methods

to find causal paths between service components which is a different research purpose

to ours. Arpaci-Dusseau et al. [36] develop gray-box techniques that use information

about the internal states maintained in certain operating system components, e.g.,
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to control file layout on top of FFS-like file systems [148]. Such methods can be

employed, for instance, when entropy-based monitoring first detects potential relia-

bility issues, but they are lacking in scalability and require prior knowledge about the

applications or systems being monitored. A detailed comparisons appears in Table

14.

Entropy-based analysis has been used in network monitoring [121, 122], but must

be adapted to the fact that data center monitoring should operate at and across

different levels of abstraction, including applications, middleware, operating systems,

virtual machines, and hardware, as evident from our work on zoom-in methods.

Most of current industry monitoring tools use fixed thresholds for anomaly de-

tection. Fixed upper and lower bounds are determined apriori and remain constant

during the entire process of anomaly detection. MASF [48] is one of the popular

threshold-based techniques being adopted in industry. MASF applies thresholds to

data segmented by hour of day, and day of week. As discussed earlier, these techniques

have limitations of accuracy and false alarm rates due to their assumed data distri-

butions, and limited adaptibility to changing workloads. They have poor scalability

and lack of correlation analysis.

Prior academic work has developed many useful methods for anomaly detection,

typically based on statistical techniques [61, 23, 57, 40, 117, 21, 20, 38]. A summary is

provided by [55]. However, few of them can operate at the scale of future data center

or cloud computing systems and/or have the ’lightweight’ characteristic desired for

online operation. Reasons include their use of statistical algorithms with high com-

puting overheads and their use of onerously large amounts of raw metric information.

In addition, they may require prior knowledge about application SLOs, service im-

plementations, request semantics, or they are focused on solving certain well-defined

problems at specific levels of abstraction (i.e., metric levels) in data center systems.
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In contrast, the techniques we propose are lightweight techniques that systemat-

ically improve on the state of art techniques widely adopted in industry. We have

proposed techniques to improve on current point fixed-threshold approaches, and we

have also developed new windowing-based approaches that observe changes in the

distribution of data. Our techniques are adaptable and can learn the workload char-

acteristics over time, improving accuracy and reducing false alarms. They also meet

the scalability needs of future data centers, are applicable to multiple contexts of

data (catching contextual anomalies), and can be applied to multiple metrics in data

centers.

4.9 Conclusions

EbAT is an automated online detection framework for anomaly identification and

tracking in data center systems. It does not require human intervention or use pre-

defined anomaly models/rules. To deal with the complexity and scale of monitor-

ing, EbAT uses efficient m-events to aggregate different levels of metrics in clouds,

leverages entropy-based metric distributions, time series diagnosis methods to detect

anomalies at runtime, and zoom in detection to focus on possible areas of causes.

Future work concerning EbAT includes (1) extending and evaluating the methods

for cross-stack (multiple) metrics, (2) evaluating scalability with large volumes of

data and numbers of machines, and (3) continued evaluation with representative

cloud workloads such as Hadoop.

Anomaly Detection is an important component for closed loop management in

data centers. In this paper, we presented statistical approaches for online detection

of anomalies. Specifically, we have presented methods based on Tukey and Relative

Entropy statistics, and experimentally evaluated them. The proposed approaches are

lightweight and improve upon prevalent Gaussian-based approaches.
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CHAPTER V

VFOCUS: GRAPH-BASED GUIDANCE APPROACH

5.1 Introduction

Troubleshooting large scale distributed systems/applications in data centers is criti-

cal and challenging. As illustrated in Figure 32 and Figure 18, there can be millions

of hardware entities (e.g. cores) or thousands of software components (e.g. region-

servers). If there is no effective ‘zoom-in’ approach which can reduce the search space,

troubleshooting could be like finding a needle in a haystack.

In Chapter II, The Monalytics research has proved the importance of ‘zoom-

in’ analysis in reducing the troubleshooting time, i.e. TTI (Time To Insight), and

monitoring data size. In Chapter III, The VScope research presents a series of ad hoc

solutions to track interactions among components, and validates their effectiveness

in terms of horizontal guidance and vertical guidance. Previous works [23, 21, 38]

use dependency graph to track relationships among hardware/software components.

However, the following challenges still remain

• A framework for general troubleshooting guidance: Previously pro-

posed solutions are only effective for specific usage scenarios and target ap-

plications. For instance, VScope provides a set of built-in DPGs to track inter-

actions. Sherlock and Orion focus on network services dependencies.Given the

diversity of possible root causes and complex performance problem symptoms,

those previous approaches fail to achieve broader applicability and better scal-

ability. Therefore, a unified guidance framework is needed for effective zoom-in

analysis.
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• A mechanism for analyzing interactions: Previous works focus on cap-

turing, not analyzing, interactions. Part of the reason is that they aim at

detecting performance bottleneck, where ‘knowing’ the dependencies is often

sufficient. However, as the interactions become more complicated and various

troubleshooting scenarios other than bottleneck detection arise, the analysis of

the interactions becomes necessary.

• Tracking and analyzing interactions on-line: Most of the previous

works operate offline, and do not support responsive and on-line interaction

tracking.

To address above issues, we propose VFocus , a framework for online interac-

tion tracking and analysis.VFocus implements a generic guidance framework which is

based on graph analysis, and enhances VScope’s rather ad hoc guidance component

described earlier.. Users can write various interaction tracking mechanisms by fol-

lowing the unified definitions of graph and snapshot. Users can also use the generic

guidance operations to ‘zoom-in’ the search space of analysis. The guidance opera-

tions are realized by the graph analysis functions provided by VFocus. From VScope’s

perspective, VFocus extends its Scope function.

In VFocus research, we make following technical contributions:

• A generic graph-based guidance framework: we design and implement

VFocus, an interaction graph construction and analysis framework, by which

the users can generate graphs describing specific interactions they want to track.

• Guidance operations using graph analysis algorithms: VFocus pro-

vides basic guidance operations, sort, group and explore, to reduce the search

space for troubleshooting. They are based on graph analysis algorithms, and

can be efficiently conducted online in real-time.
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• Validate VFocus on real world data center traces and use cases: we

validate VFocus’ guidance functions in three usecases. The first two usecases

are based on real-world data center traces. We replay trace in our testbed and

measure VFocus’ performance on troubleshooting and overheads of operation.

In the third use case we deploy VFocus on a running big-data application and

evaluate its performance on troubleshooting the representative HBase data con-

flict issue. The experimental results from the three usecases show that VFocus

can troubleshoot performance issues, such as VM migration failures with accu-

racy as high as 83%. The overhead of VFocus is low and the interference to the

application is lower than traditional brute-force approach.

5.2 Graph-Based Troubleshooting

5.2.1 Systems as Graphs

Most services and applications in data centers are distributed systems, for instance,

key-value stores, MapReduce platform and distributed file systems. In a distributed

system, software/hardware components interact to realize its functionalities, which

makes graph an intuitive means to understand the system’s behavior. The compo-

nents can be modeled as vertices while the interactions are modeled as edges, and

both vertices and edges can have attributes. Graph modeling focuses on interactions,

e.g. how the components of the system interact to affect the overall performance.

The key challenge in troubleshooting data center systems is to understand the com-

plex and dynamic interactions in large scale systems, and graph is a natural choice

to address this challenge.

In troubleshooting context, there are many scenarios which are suitable for graph

modeling, and they generally have two features: (1) to monitor multiple or potentially

many entities and (2) to monitor multiple or potentially many interactions among en-

tities to diagnose the performance issues. Example scenarios are listed in Table 19.
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Those examples are from the previous troubleshooting research and focus on various

performance diagnosis needs. In those scenarios, there are multiple or many system

entities, such as servers, network equipments or VMs, and the analytics focuses on

interactions among those entities, e.g. request paths, network communications. Ta-

ble 19 lists a few of scenarios suitable for graph modeling. In this paper, we will show

new use cases which use graph modeling to guide troubleshooting.

On the contrary, in the scenarios where single or a small number of entities are

analyzed and/or there are a few interactions among entities, graph may not be the

best choice. For instance, as shown in Table 20, detecting anomalies in time series

monitoring data only considers individual metrics rather than the interactions among

metrics or machines, therefore graph modeling is not suitable in such scenario. Simi-

larly, in the troubleshooting practice where statistical correlations among metrics of

servers or services are explored, it is difficult to fit it in graph modeling because the

actual interactions among entities are ignored.

Table 19: Scenarios suitable for graph modeling
Scenario Entity Interaction Approach

Network Servers and TCP/IP Packet Sherlock [38]
Dependency Network Equipments Exchange Orion [59]

Service Web Services Web Requests Project5 [23]
Dependency E2EProf [21]

Request Services, Functions RPC Request/Response vPath [169]
Tracking Processes,Threads Function Call/Return CAG [195]

VM Migration VMs, Hosts Migrations CCM [109]
Machine/VM VMs, Machines Network Net-Cohort [94]

Communication Communications
Monitoring Data Local Value, Aggregation Paths SDIMS [193]
Summarization Aggregate Value Astrolabe [179]

5.2.2 Interaction Graph as Guidance

In large scale troubleshooting, one of the most critical tasks is to locate entities which

cause the performance issue, for instance, the bottle-neck service, the failed disk and
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Table 20: Scenarios unsuitable for graph modeling
Scenario Entity Interaction Approach

Anomaly Detection Individual N/A MASF [48],
in Time Series Monitoring Metrics WISE [143]

Correlating Servers and N/A Pinpoint [110],
System Metrics Network Equipments Fingerprint [43]

Comparing Hardware/Software N/A Kahuna [170],
System Behaviors Components PeerWatch [105]

the out-lier monitoring metrics. Hence, we propose the guidance as a mechanism

consists of a graph builder and a set of graph analysis functions which can dynamically,

and automatically analyze distributed systems and output a subset of graph entities

which are relevant to the root causes. Figure 43 illustrates a two-phase guidance

mechanism. In the graph construction phase, VFocus collects metric data from all

monitored entities in the system and builds interaction graphs on-line, at real-time.

The interaction graphs are continuously updated to reflect the latest activities in the

system. The second phase is graph analytics in which VFocus provides primitive

operations to filter out the entities relevant to the performance issue. We will discuss

the operations in detail in Section 5.3.4.

Figure 43: Graph-based Guidance Illustration
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5.3 VFocus Design and Implementation

Though it is an integrated enhancement component of VScope, VFocus can be de-

scribed as a system for tracking and analyzing user-definable interactions among

components in data centers. If you look at VFocus as a black box, the input are

monitoring metrics, the vertex, edge, and attribute specifications. The output are

runtime graph snapshots taken on real time, and according analysis results. VFocus

serves as the guidance component in VScope software stack (shown in Chapter III,

Figure 21). It also provides extensions to VScope’s Scope operation.

5.3.1 Interaction Graph and Snapshot

Interaction graph is one of VFocus’ basic data structures. In an interaction graph,

vertices are entities which VFocus is monitoring, and an edge between vertices de-

scribes an interaction between the two entities. The entities can be physical ones, such

as physical machines or virtual machines in data centers. They can also be logical, for

instance different types of the latency metrics. The interaction graph examples with

physical and logical entities are illustrated in Figure 44 and Figure 45, respectively

Figure 44: Illustration of a Graph Describing Physical Interactions

The interaction graph in Figure 44 describes Virtual Machine(VM) migrations

among physical hosts. We will use this type of graph in Section 5.4.1 to troubleshoot

migration failures. The vertices are VMware ESXi servers. The edges have the

104



VM being migrated and the attributes associated with this migration, for instance

the servers’ active memory size. The direction of the edge indicates the source and

destination of migration.

Figure 45: Illustration of a Graph Describing Logical Interactions

The interaction graph in Figure 45 describes the relationships between the ag-

gregated latency and the individual latency measurements of a group of e-commerce

websites. The aggregated latency is essentially a TP50 aggregation of all latency

measurements from all the individual website’s requests.The vertices are latencies of

different websites. The edges describe the ‘weight’ of this website’s contribution to

the aggregated latency, the impact, which will be detailed in Section 5.4.2. We use

this type of graph in Section 5.4.2 to find dominating latencies which contribute most

to the aggregated latency.

A snapshot is simply an interaction graph with the timestamp when the graph

is constructed. By taking snapshots of interaction graphs, VFocus can track the

interactions evolving over time.

5.3.2 Graph Construction

VFocus uses DPG as the basic data collection and analysis infrastructure. As shown

in Figure 46, VFocus typically creates a global DPG to collect interaction related
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metrics from all the nodes in the monitored system. The DPG runs continuously

through the troubleshooting process. Based on our experience in VScope and the

experiments evaluating VFocus, a hierarchical DPG topology is enough to generate

global snapshots of over 1000 nodes in a timely manner.

Figure 46: VFocus Architecture

VNodes on the monitored nodes collect metrics and build local graph data struc-

tures, including edge lists and vertex lists. The local data structures are then trans-

mitted to intermediate VNodes for partial aggregation. The edge lists and vertex lists

are merged and updated, forming the local aggregated graphs which are finally ag-

gregated at the VMaster, generating a global graph. The global graphs are stored in

memory of VMaster node for various analysis, and can be persisted to Database after

a period of time. In our current implementation we focus on online troubleshooting,

so graphs are discarded after it expires by configurable time window.

5.3.3 Graph Analysis Functions

VFocus provides basic graph analysis functions which are listed in Table 21. There

are functions to calculate the basic properties of a graph, such as the number of
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Table 21: Graph Analysis Functions
Function Description Graph Algorithm

Attribute Search search a vertex/edge DFS/BFS
Vertex Count # of vertices vertex vector
Edge Count # of edges edge vector

Get Attribute get attribute edge/vertex attribute
Degree Count degree of a vertex adjacency lists

Neighbor Analysis direct/indirect neighbors adjacency lists
Cluster Analysis grouping vertices connected components, cliques

Table 22: Guidance Operations and Scenarios
Operations Analysis Used Scenarios

sort Degree Count, VM Migration (in this Chapter),
Get Attribute Dominator Analysis (in this Chapter)

group Cluster/Clique Analysis VM Clustering (in Chapter II)
Naughty VM (in Chapter III),

explore Neighbor Analysis Culprit Region Server (Chapter III),
Data Conflict (in this Chapter)

vertices and edges, degree of a specific vertex. In Section 5.4.2, we will present a use

case which uses degree count to find candidate servers which are likely to have VM

migration failures. There are also functions tracking the relationship among vertices

such as neighbor analysis and cluster analysis. In Section 5.4.3, we will describe a

use case which uses neighbor analysis to figure out the regionserver with data conflict

issue.

5.3.4 Guidance Operations

VScope provides three guidance operations sort, group and explore. Table 22 shows

the graph analysis functions which are used in each guidance operation.

Sort operation orders the attributes of all entities and takes top entities in the

ordered list as relevant. For instance, in Section 5.4.2, we sort hosts by the degree

(meaning number of migrations) of each vertex (meaning physical host), and pick

the top hosts which have most migrations as relevant hosts which are likely to have

migration failures.
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Group operation puts strongly connected entities together as a group, and picks

groups as relevant entities. Graph clustering algorithms can be used to identify closely

related entities. For instance, in Chapter II, we use hierarchical clustering algorithm

to cluster the VMs which has talked frequently to each other.

Explore operation finds the neighbors of a vertex at different distances (measured

by number of hops). A typical example is to find which components have with each

other. A good example is in in Chapter 5.4.3, where we use explore operation to

track the data connectivities among HBase region servers, Flume agents and HBase

clients, in order to troubleshoot the data conflict issue.

5.3.5 VFocus Implementation

We use igraph library [11] to implement graph structure and analytics. In igraph,

graphs are represented as an edge list which stores all the edges each of which are

described as a tuple of start and end vertices identifiers.

VFocus is implemented in two parts. The first part is a hierarchical DPG. Fig-

ure 47 illustrates the workflow of graph construction. At the leaf level, leaf VNodes

collect monitoring data and transfer them into local edge lists. Partial aggregations

at the parent VNodes need synchronization on the subset of leaf VNodes. The global

graph is created in a centralized way after the root (VMaster) receiving partially ag-

gregated graphs from all the parents. Most of the analysis on interaction graph are

conducted after the global graph is constructed and stored in memory. The reasons

are: (1) A graph may be reused by multiple analyses. (2) analyzing graph structure

in memory has low computation time. (3) some analytics functions require global

graph. However, there are several graph analysis functions which are implemented in

a distributed manner, e.g. counting the degree of a vertex.

The second part of VFocus implementation is the adapter to transform monitoring

metrics into edge lists at the leave VNodes. In our prototype, we have implemented
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Figure 47: VFocus Workflow

three different adapters which will be described in detail in Section 5.4.

5.4 Use Cases

5.4.1 Dominator Analysis

The use case is related to a practical management issue from a real-world e-commerce

service provider. A seller who wants to open an on-line store can use its services to

easily build and manage his/her website. The service provider has data centers to

host all the sellers’ websites, and the key performance indicator for the performance

of its service is the aggregated latency calculated by summarizing latencies of all the

requests from all the sellers’ websites, for instance, the p50 percentile of all the request

latencies. The operation team keeps tracking the aggregated latency to make sure it

is maintained at an acceptable low level. However, when it goes high, engineers need

to figure out the reason. A typical question to ask first is which sellers have the most

contributions to the increase. The challenges to answer this question come from (1)

how to describe an individual seller’s contribution to the aggregated latency. (2) how

to track and find out the key contributor, i.e. the dominator.
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The contribution, or impact, of one seller depends on two major factors. One is

the number of requests the seller’s website receives, and the other is the latencies of

individual requests. As shown in Figure 48, we can deem each request to a seller as

a circle. The larger the circle is and the more the circles are, the higher impact the

seller has to the aggregated latency.

Figure 48: Illustration of Impact Attribute

Based on this reasoning, we define the impact of an entity (e.g. seller) i to the

aggregated latency at a time t with a sampling rate of r minutes,

Ii =
n∑
j=0

Lij (9)

Where n is the total number of requests from entity i in the time period from t-r to

t, Lij is the latency of jth request from entity i .

Then we use VFocus to build a graph for tracking the relationship between each

seller and the aggregated latency. An example graph was shown in Figure 45. The

direction of the edges indicates ”aggregated to” relationships, and the attribute of an

edge is the impact of a seller calculated by Equation 9.

A snapshot of this interaction graph is created every r minutes (r is tunable). We
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use the sort operation to order the edges by their impacts, and the top sellers on the

list are the dominators. We also visualize the impact values of all the sellers at run-

time in a heat map format where each square represents the impact of a specific seller

(in row) at a specific time (in column), the brighter the color of the square the higher

impact that seller has at that moment. Figure 49 illustrates the implementation of

dominator analysis.

Figure 49: Dominator Analysis Workflow

Figure 5.4.1 shows an example of the heat map. We can easily identify a long

term dominator (A53 in the heat map) who has top impact at almost all the time.

At each specific time, one can also find the dominator at this time instance. We

can also identify the sudden change of a seller in its impact, which indicates a sharp

increase/decrease in number of requests for the latencies of requests.

Dominator analysis usecase shows that VFocus can be used to describe the log-

ical, aggregation relationship between summarized measurement and the individual

measurement. We can use the VFocus operations to identify the dominators to the

aggregated measurement.

5.4.2 VM Migration Analysis

The purpose of this use case is to validate the usefulness of graph-based guidance by

monitoring data from a real-world scenario. We have the traces of management oper-

ations in a virtualized data center in CERCS, Georgia Tech. The traces contain 256

servers running VMware vSphere Hypervisor (ESXi) v4.1, and hosting totally 1024

VMs. There are log files recording successful migrations. Each entry in the log has (1)
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Figure 50: Dominator Analysis Illustration in Heat Map

starting time and ending time of the migration, (2) the name of VM being migrated,

(3) the source host and destination host of the migration (3) VM CPU/Memory uti-

lizations (4) source and destination hosts’ CPU and memory utilizations. There are

also log files recording the migration failures. Each entry contains (1) time when the

failure happens (2) the name of the VM being migrated (3) the server hosting the

VM (4) CPU and memory utilizations of VM and host and (5) the explanation for

the issue. The logs record over 10000 migrations and over 1000 migration failures.

We use these log data to replay real time migration behavior. VFocus creates

graph snapshots based on successful migration log data. We use a sliding window

which takes a fixed number of migrations per window, and slide the window after every

migration. The size of the sliding window is adjustable. In Section 5.5, we change the

sliding window size to study VFocus’s performance. In each graph, the vertices are

the hosts and the edge is a migration linking the source host and destination host.

The logs are organized into 4 VCenters each of which is a management server in
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Table 23: VFocus Troubleshooting Accuracy
VCenter # overload # found overload # overload error / Accuracy

error error # total error

VC0 247 209 49% 85%
VC1 457 408 43% 89%
VC2 308 235 59% 76%
VC3 429 343 56% 80%

Overall 1441 1195 51% 83%

charge of a portion of 256 servers. To replay those logs, we initiate a DPG with 4

parents and each parent has one leaf VNode which takes the logs from a different

VCenter log. A VNode reads the log file, extract time, source/destination hosts and

VM names, and send the data to its parent. The parent will generate an edge list

and according local graph. The local graphs are sent to VMaster to be aggregated

into a global graph.

The methodology we used for validating VFocus is as follows. We take a snapshot

of all the previous migrations at each time instance when a failure happens, which

can be obtained from the migration failure logs, and we use the guidance operation

sort on degrees of all the vertices (hosts) and rank the hosts in a descending order, i.e.

the top hosts on the list are those with most migrations, and those hosts have more

resource pressure than others, hence are more likely to have resource scarcity issue

when new migration requests take place. To validate this idea, we then match the lists

output at each failure point. If the actual host with migration failure is in the list.

Then we consider it as a ’hit’, because the VFocus method has successfully predict

the failure node, otherwise we consider it as a ’miss’. In this research component

we only study the failures are due to high resource pressure. This type of failure is

indicated as Operation timed out in the explanation part of the failure record. We

call this type of failure ”overload error”.

Table 23 shows the accuracy of VFocus approach. We can see in the table that,

the overload errors are distributed evenly across VCenters (named vc0, vc1, vc2, vc3).
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The overload error has a significant percentage of all the errors (over 50%). The overall

accuracy is over 83%. The size of list we used is at most 45 hosts, which means, over

the 256 hosts sorted by their degrees, we only pick the first 45. When we look at the

histogram depicted in Figure 51 describing the percentage of the locations of hits (i.e.

where on the list with 45 nodes has the hit happened), we can find that about 70%

of hits happen within 30 hosts and nearly 40% is within 15 hosts. Therefore, with a

high prediction accuracy, VFocus can find a host with overload errors within 15 hosts

out of a search space with 256 hosts.

Figure 51: CDF of Hits

5.4.3 Data Conflict Analysis

One of the interesting issues we encountered in our stream analysis platform, which

has been illustrated in Figure 18, is that some region servers in HBase may be over-

loaded due to application data conflict problem. The problem is illustrated in Fig-

ure 52. A Flume agent is writing data as key-value pairs into HBase, and at the

same time, some other application such as a HBase client happens to write to the
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same HBase table as well. If the row-key is well designed, the writing requests from

both Flume and HBase would be distributed across all the region servers. However,

one of the common pitfalls is using monotonically increasing row-keys (i.e., using a

timestamp). In that situation, both Flume agent and HBase client are storing data

(illustrated as red rectangle) to the same region server which becomes a hot spot

of data conflict, i.e. they are writing to the same range of keys, causing resource

(region server’s memory heap) conflicts. Since that region server’s memory are con-

sumed much more quickly than other region servers, it will become the bottleneck of

the HBase and slow down the end to end performance of the whole stream analysis

platform.

This conflict is very difficult to detect because a HBase could be shared by different

applications as an shared infrastructure. Therefore the data conflict could happen in

an unexpected way because developers coming from different application may have no

idea about how each other design his/her row key. Furthermore, the maintainer of the

HBase may have absolutely no idea about any application’s key assignment. HBase’s

Autosplit may work, but a threshold of the number of key should be predefined, and it

is difficult to find a threshold because the key row designs of applications are dynamic

and hard to predict.

In this usecase, we setup a testbed using GTStream [6] benchmark running Flu-

meNG [3]. In this experiment, we configure the row key generated by HBaseSink

plugin, which is the Java class which Flume agents use to write key-value pairs to

HBase, as the timestamp. We also run another HBase client using timestamp as the

row key. The Flume agent and HBase client are writing to the HBase at the same

time. The HBase has two region servers. We deploy VFocus DPG on all the nodes in

the GTStream benchmark and track the TCP/IP packets exchanged between them.

In the network monitoring data collection, we use Libpcap [12] to sniff the network
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Figure 52: Illustration of Data Conflict Problem

traffic. Locally, each leaf VNode creates a local edge list with the source and desti-

nation host IPs as the source and destination vertices of an edge. We optimize the

sniffing mechanism by filtering the packets that are irrelevant to the application. We

ignore UDP packets and only record TCP packets sent to or received by the public

ports used in HBase, Flume and HBase client.

VFocus also counts the number of packets transferred on that edge as its attribute.

The graph snapshots are created per sampling period, and the duration of the sam-

pling is tunable. We tested the VFocus’s performance on different sampling durations

in Section 3.3.

By using VFocus, we can track the interactions among all the nodes at runtime.

Figure 53 shows the runtime snapshot of the partial graph between the among the two

region servers, flume agent and the HBase client.The thickness of the edge represents

the number of packets sent or received. We can tell that two edges on region server

2 is significantly thicker than the region server 1’s, which indicates that this region

server is overloaded by the unbalanced key-value pairs sent from the flume agent and

the HBase client. In real world with hundreds of region servers and a number of
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Figure 53: Illustration of an Interaction Snapshot

Flume agents and HBase client. The operator can use explore operation to figure out

each region server’s neighbors, i.e. the nodes with which each server interacts, and

at the same time find the intensity of the interaction. Then he/she could figure out

which region server is the potential hotspot with data conflicts.

This usecase validates that VFocus’s effectiveness on a running system. It also

shows the usefulness of the explore operation.

5.5 Performance Evaluation

5.5.1 Experimental Setup

Experiments are conducted on 100 VMs hosted by one physical server blades running

Ubuntu Linux. The server has a 1TB SATA disk, 48GB Memory, and 16 CPUs

(2.40GHz) and each VM has 2GB memory and at least 10G disk space. We deployed

GTStream benchmark with 60 agent VMs, 10 regionserver VMs and 20 HDFS Data

Node VMs. It is a fully distributed environment with FlumeNG deployed. We have

10 VMs serving as VFocus parents, HBase master, HDFS master and ZooKeeper

servers.
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5.5.2 VFocus Overhead

To test the overhead of VFocus on a VM, we run the network interaction tracking

on VFocus and change the durations of sampling. At each change, we measure the

CPU and Memory utilizations. The results are shown in Table 23. In addition we

compare VFocus with the brute-force approach which uses TCPDump, turning on

network sniffing all the time on all the packets. From the result table we can see

that the overhead for VFocus is within 2% in CPU utilization while the memory

consumption is neglectable. In contrast, brute-force approach consumes considerably

higher CPU resources than VFocus. We believe VFocus achieves a better performance

because the data collection part is implemented in a selective manner so it only looks

at the packets belonging to the application. In real world scenarios, the ports, IP

addresses are easily known to the application operators. Therefore it is trivial to

make those optimizations especially when troubleshooting application performance

issues. The CPU utilizations increase slightly as the duration increases because the

network sniffing consumes more CPU cycles as it continuously runs for a longer period

of time.

Table 24: VFocus v.s. Brute-force w.r.t. CPU & Memory Overheads
Sample Duration CPU Memory

(seconds) Overhead Overhead

50 0.4% 0.2%
100 1.2% 0.2%
150 1.8% 0.2%
200 1.9% 0.2%

brute-force 35.5% 0.3%

We measure the application performance as the average end to end latency of the

GTStream benchmark. We use the same method to measure the application perfor-

mance change as in Chapter III. The interferences of VFocus and brute-force approach

to the application are shown in Table 25. It shows that as the sampling duration in-

creases, VFocus’ interference to the application increases, while the interferences are
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within 30% when the duration increases from 50 seconds to 200 seconds. By contrast,

the always-on brute-force approach has a considerably higher interference at around

58%. To further study the breakdown of the overheads, we turned of the libpcap-

based data connection function on all the Flume agents, and instead stored network

connection metrics, which are pre-recorded in file using libpcap, in memory. Then

we make VFocus read the memory and process data in the same way as we did when

using libpcap. The third fourth column of Table 25 shows the Flume latency which

is close to the baseline, indicating that the VFocus itself does not play the major role

in the total overheads because it only incurs 7.06% slowdown, compared to 16.51%

slowdown when libpcap-based monitoring is enabled.

Table 25: VFocus v.s. Brute-force w.r.t. Interference to Application
Sample Duration Latency Base Line Without Slowdown Slowdown

(seconds) (useconds) (useconds) Libpcap without Libpcap

50 4638210 3980879 3976479 16.51% 7.06%
100 4690591 - - 17.83% -
150 4890121 - - 22.84% -
200 5039372 - - 26.59% -

brute-force 6296441 - - 58.17% -

The experiment shows that VFocus has considerably lower overheads to the virtual

machine and interference to the application compared to brute-force approach. By

leveraging sampling and filtering optimizations, the overheads are reduced.

5.5.3 Graph Construction Performance

To evaluate VFocus’ performance on graph construction, we conduct two experiments.

In the first experiment, we test graph construction latency on the 100 VMs running

GTStream benchmark. VFocus collects network communication data using Libpcap

on agent VMs, aggregates the local graphs and generates a global graph. We vary

the duration of sampling from 10 seconds to 150 seconds, Table 26 shows that the

total time for generating a global graph is within 220000 useconds.

119



We also test the graph construction performance by generating VM migration

graph in usecase 2 with different sliding window sizes, and compare two construc-

tion strategies, centralized and parallel. In the centralized strategy, we send all the

successful log data to a central node and generate a global graph; while in the par-

allel strategy, we create the graph in a distributed way illustrated in Figure 47. The

graph has up to 1000 edges. As shown in Figure 54, parallel construction outperforms

centralized strategy and as the size of sliding window increases the construction time

increases as well. However the maximum construction time is within 700 milliseconds,

and the parallel construction strategy has much smaller increases as the window size

increase than the parallel strategy’s.

Table 26: Graph Construction Time on 100 VMs
Sample Duration (seconds) Latency (useconds)

10 170943
50 174098
100 181646
150 213591

Figure 54: Graph Construction Time w.r.t Sliding Window Size

The results show than the graph construction is fast by using real data center

monitoring traces, hence VFocus is capable of generating online, runtime interaction

graphs. Parallel construction strategy used by VFocus is scalable and faster than the

centralized strategy.
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Figure 55: Graph Analysis Performance w.r.t Sliding Window Size

5.5.4 Graph Analysis Performance

We evaluate the VScope’s performance on graph analysis by measuring the computa-

tion time of analysis listed in Table 21. Cluster analysis has two functions (1) Number

of Cluster function that counts the number of cliques in the graph and (2) Max Clus-

ter function that yields the largest cliques in the graph. The monitoring data is the

successful VM migration logs and we measure computation times at different sliding

window size.

As shown in Figure 55, the computation time is within 10000 microseconds when

the sliding window size changes from 100 to 1000, which means for VM migration use

case, the graph analysis can be conducted in a timely manner. As the sliding win-

dow enlarges, the time increases slightly, because all the computation are processed

in memory, which make it suitable for real-time graph analysis. Among different

analysis functions, the two cluster analysis functions have longer computation time

because they have higher computation complexities than degree analysis and neighbor

analysis.
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CHAPTER VI

LITERATURE REVIEW

6.1 Terminology

A data center is a company’s facility housing servers and associated components, such

as networking equipment, storage systems, cooling systems, and power supplies. The

number of servers in a data center can be large. Unofficially, it is estimated to a range

from more than 1000 to over 1 million1. Data centers can be consolidated or/and

non-consolidated, where consolidated data centers use virtualization technology to

run virtual machines (VMs) on physical servers and deploy applications in VMs,

while non-consolidated data centers deploy applications on physical servers. Hybrid

data centers use both VMs and bare servers to host applications. Typically, the

applications running in these systems are server-side applications, such as traditional

web services, data analytics, and multimedia streaming services. They may belong

to a single enterprise or to multiple parties, since servers or VMs can be rented to

customers as managed data centers and/or cloud services.

Depending on management needs and service objectives, performance can be de-

fined at different levels of abstraction — application, VM, OS, hardware, and from

different viewpoints — application user, infrastructure provider, etc.. Performance

can also be described for an individual server (e.g., the server’s CPU utilization, mem-

ory utilization) or for a set of servers as aggregate metrics (e.g., ranked power usage,

application level request latency of a web service hosted by a number of servers).

1Companies like Google don’t officially reveal the size of their data centers. Estimates are based
on calculations of data center energy consumption, etc.
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However, in daily data center operations, there are typically a small number of met-

rics of importance to a company’s business interests. These metrics, termed key

performance indicators — KPIs — are commonly used as measurements describing

high-level performance objectives. Each data center management scenario may have

a unique set of KPIs.

We define performance problems [184] as violations of KPIs and/or issues (failures,

errors, resource contention, or other abnormalities) that contribute to KPI violations.

In practice, for each user and provider, there is a relatively small number of KPIs, but

there is an extensive set of low-level measurements for each problem, and operator

definitions/perceptions of such problems vary.

Performance problems occur due to a large variety of root causes. Faults can occur

at each level of the data center — from transient or permanent hardware faults,

to unforeseen component interactions, to software misconfiguration or bugs. This

bibliography focuses on only those methods and systems that address performance

troubleshooting, which can be defined as a procedure that (1) detects a performance

problem, (2) diagnoses the problem to the extent needed to remedy it, mitigate its

effects, or even determine its root cause, and (3) applies remediation activities to

restore the system back into correctly operating state.

6.2 Methodology

Performance troubleshooting in enterprise date centers typically involves the following

phases.

1. Detection is the phase that identifies violations of KPIs or anomalies that may

lead to KPI violations. The outcomes of detection includes the time(s) when the

problem is detected and the metrics or KPIs related to the problem. With KPIs that

denote end-to-end performance, detection of KPI violations is often too late because

performance degradation has already affected user experiences. These violations also
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typically lead to loss in revenue and/or system downtime. Furthermore, KPIs are hard

to define in some circumstances, particularly in public clouds, as a cloud users’ KPI

may be unknown. Research has responded to these issues by moving from directly

measuring KPI violations to detecting candidate anomalies before such violations

occur, and as a result, anomaly detection has become an important area of research

in performance troubleshooting. We will discuss this research in Section 6.3.

2. Diagnosis is the phase in which KPI violations or anomalies are analyzed to de-

termine their causes or/and suggest solutions. One of the outcomes of diagnosis phase

is the location of the problem, which enables subsequent mitigation or remediation.

However, identifying root-causes and fixing them typically require human involvement

and/or the use of sophisticated problem-solving tools that typically require domain

expertise to make intelligent inferences.

3. Remediation or mitigation is the phase of taking actions to recover the system to

normal state or to prevent it staying in an abnormal state. The result of remediation

can validate the detection and diagnosis phases, making it possible to create a ‘closed

loop’ for automated performance troubleshooting.

Though there is a few research in which there is no clear border between detection

and diagnosis phases, we follow the organization suggested above when categorizing

existing literature, for clarity sake. We also classify the systems and infrastructures

that support performance troubleshooting as follows.

1. Monitoring systems collect and aggregate metrics from the systems they observe.

Monitoring systems aim to provide a global view. They typically compile summary

statistics to facilitate continuous monitoring in large scale applications and systems.

2. Tracing systems aims to provide detailed information by collecting targeted

events from the systems being observed, such as the messages being sent and received,

system calls executed, etc. Tracing systems may also track certain system behaviors,

like the call patterns or service call paths present in distributed applications. Tracing
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can impose considerable overheads on target systems, with large trace logs stored

in files. Tracing has recently gained additional importance due to the widespread

use of instrumentation, logging user and/or system events by web companies able to

monetize such data.

3. Analytics systems support analysis and queries, based on monitoring and/or

tracing data acquired about the targets under observation. They may operate online

— as their target applications run, offline — based on previously collected monitoring

or log data, or both, sometimes also termed as operating on ‘data in motion’ vs. ‘data

at rest’.

6.3 Detection

Problem detection algorithms can be classified into two categories: (1) reactive ap-

proaches that detect anomalies after they occur, and (2) proactive approaches that

predict impending anomalies when the system state is still normal. The reactive ap-

proach does not incur any prevention cost but can lead to prolonged service downtime

— which can be prohibitive for real-time applications like online web logs, live sensor

stream processing [186], and many business applications [80]. In contrast, the proac-

tive approach offers better responsiveness, but at the risk of imposing continuous

overhead for prediction and possible penalties for inaccurate detection of anomalies

— false alarms. We will follow this categorization when detailing existing approaches

in Section 6.3.2 and Section 6.3.1.

6.3.1 Reactive Detection

Reactive approaches aim to detect problematic states of data center systems or ap-

plications. Data center users are concerned with external states, expressed by KPIs.

Data center operators are concerned with internal states — their daily jobs being to

handle abnormal internal states. However, abnormal states are difficult to describe

with simple metrics and associated thresholds. This is due, in part, to system scale
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and complexity; but a more important reason is that performance problems in the

data center may only manifest at application level. An instance reported in [110] is a

web site that correctly responds to pings, HTTP requests, and returns valid HTML;

yet, at the application-level, returns only partially filled web pages or incorrect page

content. These problems are difficult for data center operators to detect because they

have limited knowledge about applications. These difficulties are compounded by the

diversity of data center software and hardware provided and maintained by multiple

vendors or organizations. Problem detection methods are designed from many differ-

ent perspectives. From the knowledge base perspective, MASF (Multivariate Adap-

tive Statistical Filtering) [48] and WISE [143] are threshold-based algorithms setting

up thresholds of metric values along with the time pattern used for monitoring. They

detect performance problems as threshold violations on individual observations [48]

or on a series of observations [143]. Threshold-based approaches typically cater for

seasonal variations in workload, e.g., heavier load during the week and lighter load

over the weekend, by using different thresholds for different seasons. The main chal-

lenge with these techniques is selecting a threshold that maximizes true positives

while minimizing false positives.

Pinpoint [110], Console Log Analysis [192], SPA (System Performance Advi-

sor) [93] and the profile-driven model [168] are modeling-based approaches that use ma-

chine learning models [110, 192], time-series models [93] and queuing models [93, 168]

to describe computer system performance, where performance problems are recog-

nized by deviations from these models. Model-based approaches are well-suited for

detecting application-level problems. However, building models requires an in-depth

understanding of the system.

Flow Intensity [99], PeerWatch [105], Reference-Execution [164], Metric-

Correlation Models [102] and Invariants Mining [132] are correlation-based approaches.

Correlation-based approaches learn normal behavior by analyzing historical data to
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automatically discover correlations between metrics that are stable over time. They

assume that performance problems break these correlations. Care needs to be taken

when selecting thresholds for determining whether a correlation is significant — if the

thresholds are too low, these approaches may discover spurious relationships which

result in increased false positives.

Instead of detecting violations on metric values, as all aforementioned approaches

do, EbAT [188, 191, 183, 189, 123], NMI(Normalized Mutual Information) [101], and

Parametric Mixture Distribution [151] use information and probability theories to

detect anomalies in metric distributions. For instance, EbAT aggregates multiple

metrics into a random variable, and tracks their distribution patterns at runtime.

The anomalies are detected via identification of outliers in the distribution patterns.

There is also research on post-detection, concerned with reducing false positives or

false alarms and/or to prioritize the severity of anomalies. Examples include the

anomaly-ranking approaches described in [180, 181, 100].

6.3.2 Proactive Detection

A shortcoming of reactive approaches is that they cannot prevent performance prob-

lems from occurring. Proactive approaches usually assume that there are existing

measurements to describe normal or abnormal states of the system (KPIs or specific

metrics and associated thresholds/patterns). They raise alarms when the system in

still in normal state by looking at the predefined measurements, predicting when the

problem will happen and on which machine.

[171] investigated the predictability of real-world systems and concluded that

anomaly prediction approaches can be applied to them with high accuracy and sig-

nificant lead time. [87] employed Bayesian classification methods and Markov mod-

els to predict impending anomalies in distributed data streaming applications on-

line. ALERT [172] used an adaptive scheme to adjust the prediction models in
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different workload contexts, addressing the dynamism in date center environment.

Prepare [173] presents an anomaly prediction approach for virtualized cloud. [60]

proposed a integrated framework of measurement and system modeling techniques

to detect application performance changes and differentiating performance anomalies

and workload changes.

6.4 Diagnosis

6.4.1 Dependency Inference

An important topic in diagnosis is to understand the spatial or temporal relationships

between software or hardware components in enterprise data centers. Dependency in-

ference analyzes relationships between interconnected components for problem trou-

bleshooting, particularly when localizing the causes of problems that propagate across

a distributed system. Specific instances of insights sought by dependency inference

include service dependencies, request or call paths and transaction tracking through

a distributed system.

Dependencies can be described at different levels, leading to different inference

approaches. Orion [59], Project5 [23], Sherlock [38], ADD (Active Dependency Dis-

covery) [46], and E2EProf [21] infer machine level dependencies. For request level di-

agnosis, Spectroscope [161] is a diagnosis approach that identifies and ranks changes

in the flow and/or the timing of request processing, by comparing requests flows

from two executions of the same application. X-ray [37] diagnoses the root causes

of performance problems by instrumenting binaries as applications execute, and by

using dynamic information flow tracking to estimate the likelihood that a block was

executed due to each potential root cause. X-ray also highlights performance differ-

ences between two similar activities by differentially comparing their request execution

paths. State-transition-based Transaction Tracking [27], CAG [195], vPath [169], and

NetMedic [104] track process or thread level dependencies.
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Active Probing [160] uses an incremental approach to infer service dependencies

via active probing. Pranaali [117] also infers relationships and partitions between sub-

components of services. MonitorRank [112] periodically generates service dependen-

cies which are then leveraged by unsupervised machine learning models for suggesting

root cause candidates.

Researchers use a variety of techniques for inference. Orion [59], Project5 [23], and

E2EProf [21] use network traffic and signal processing methods to infer dependencies

without detailed knowledge about the application being observed, so that they can

operate in the ‘black box’ settings experienced in virtualized systems. Sherlock [38]

and NetMedic [104] leverage application-level knowledge such as configuration infor-

mation and historical failure/success records, along with network traffic information,

to infer dependencies. CAG [195] and vPath [169] use system- or kernel-level traces to

infer dependencies, while X-ray [37] uses binary instrumentation to infer application-

level dependencies.

State-transition-based Transaction Tracking [27] uses Markov Chain models along

with the ARM instrumentation metrics to infer the dependencies of transaction foot-

prints. ADD (Active Dependency Discovery) [46] finds dynamic dependencies by

systematically perturbing the system, which is also used in the Bayesian modeling

based approach in [117] to first partition a larger scale system into different state

spaces, each of which can then be investigated separately.

6.4.2 Correlation Analysis

Correlation analysis explores the correlations between the observed metrics and the

problematic/normal behaviors of data centers, or it considers correlations between

metrics to characterize the patterns of the system, (e.g., clustering metrics in some

normal system state to construct a model of such states). Most correlation analysis

approaches use machine learning techniques to correlate metrics to known problems.
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Signature [61, 62], HPD (Heath Problem Detection) [18], Symptom-Matching [45],

Fingerprint [43], iManage [119], Pinpoint [57], and Trace-based Problem Diagno-

sis [194] correlate SLA violations or known problems to system-level metrics. [19]

correlates system changes to the failure or success symptoms of the system. CAL [58]

correlates a request path to its failure or success states using decision tree methods.

Draco [107] uses Bayesian analysis to localize chronic problems by comparing the

distribution of features in successful and failed requests. [192] and Fa [68] build cor-

relation models among monitoring data in normal state by using clustering methods.

6.4.3 Similarity Analysis

Peer Comparison [106], Ganesha [152], Kahuna [170], and PeerWatch [105] detect

and localize problems by comparing behaviors of peer machines or peer software

components, under the assumption that in normal state the peers should perform

similarly. Hence, the outliers deviating from the similarity are the problematic nodes

or components. Peer-comparison approaches assume that the majority of peers in the

system are fault-free.

6.4.4 Detection vs. Diagnosis

Detection and diagnosis are typically applied to two different phases of performance

troubleshooting procedure. For instance, detailed diagnosis of root-causes usually

takes place after alarms are raised by anomaly detection. Based on the nature of the

their respective timings, a detection approach should primarily consider responsive-

ness while diagnosis should emphasize comprehensiveness and detailedness. That’s

why we can find that current detection methods are usually on-line and apply to small

volume, real-time monitoring metrics while diagnosis approaches are usually off-line

and analyze large volumes of historical monitoring data.

However, above differences are not decisive. Some diagnosis approaches such as

Kahuna [170] can do on-line diagnosis while some detection approaches like [192] need
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off-line analysis on history data to build a model beforehand for real-time anomaly

detection. In this sense, the difference between detection and diagnosis is blurring.

6.5 Supporting Infrastructures

6.5.1 Monitoring Infrastructures

Monitoring systems are the foundation for performance troubleshooting in data cen-

ters — their purpose being to keep track of the ‘health’ status of the whole data

center and/or the end-to-end performance of the applications. As a result, scalabil-

ity, on-line operation, and low overheads that minimally perturb running applications

are the dominant design criteria.

Monitoring infrastructures can be categorized into state monitoring vs. aggrega-

tion systems. Ganglia [138], Nagios [78], REMO [142], Query [157], CoMon [153],

and foTrack [196] are state monitoring systems that are able to track overall system

states in large scale data centers, ranging from thousands of nodes (as in Ganglia) to

60,000+ nodes (as in Query). These systems typically use simple analysis functions

like thresholding, and there has been research [142, 196] to optimize analysis algo-

rithms to reduce false positives and overheads in terms of resource consumption for

monitoring. Aggregation systems collect and summarize large volumes of monitor-

ing data distributed among data center nodes, to yield a global summary of system

health. Astrolabe [179], SDIMS [193], Moara [114], San Fermin [52], and Network

Imprecision [98] are representative systems in this category.

6.5.2 Tracing Infrastructures

The typical purpose of tracing infrastructures is to support the diagnosis phase of per-

formance troubleshooting. They provide mechanisms to trace events both along (i.e.,

horizontally) and across (i.e., vertically) the software stack in data center systems.

Data may be collected at hypervisor, kernel, middleware, and application levels, and

such data typically consists of extensive trace logs that are not typically seen in the
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monitoring systems described in Section 6.5.1 because of the potentially high over-

heads or perturbation associated with their collection and use. Research in this space,

therefore, is often concerned with (1) how to reduce tracing overhead and perturba-

tion, (2) how to easily and effectively instrument systems and applications, and (3)

how to carry out on-line tracing at acceptable cost.

Fay [73], Chopstix [42], Dapper [165], and GWP (Google-Wide Profiling) [156] use

sampling techniques to trace its large scale data center on-line with high effectiveness

in problem detection and diagnosis.

Whodunit [54], DARC [176], Stardust [174], X-Trace [75], D3S [128], and

Chirp [30] provide systems or programming tools to instrument data center appli-

cations or systems for tracing and querying their runtime states. SysProf [20] uses

kernel level instrumentation to realize fine-grained, low-overhead tracing. Pip [158] is

an instrumentation framework that allows programmers to embed expectations about

a system’s communications structure, timing and resource consumption. Pip detects

problems by comparing actual behavior against expected behavior.

6.5.3 Analytics Infrastructures

Analytics infrastructures support performance troubleshooting by making it easy to

apply various analytics functions to monitoring metrics in data center. Like data min-

ing systems, their focus is data analysis rather than the data collection actions taken

by tracking and monitoring infrastructures though some of these analytics systems,

however, have associated data monitoring and tracing functions. Magpie [39] is a

system for tracing and also clustering requests to learn about interaction patterns in

the system being observed. SelfTalk [83] is a query system supporting various queries

useful for understanding system behaviors of multi-tier web applications. Monalyt-

ics [120, 187, 190] combines monitoring and existing analytics approaches (detection,
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diagnosis approaches) to offer a flexible architecture by which a wide range of ana-

lytics can be applied to various monitoring metrics/traces on any node in data cen-

ters. Monalytics was built on the vManage [116] architecture designed for managing

virtualized data centers. VScope [185] is a flexible middleware for troubleshooting

performance problems in large scale real-time big data applications.

6.6 Remediation

As stated earlier, a wide variety of techniques and approaches are used to mitigate or

remedy problems. Below, we only review the representative recent work focused on

data center systems and applications.

The TCP splice-based web server [136], SLACH [200], and the data recovery sys-

tem [24] study novel system designs to support fault tolerance in enterprise data

center applications. NAP [41], Policy Refinement [84], QoS-aware fault tolerant mid-

dleware [199], and [201] specialize in planning and optimizing recovery policies to

best improve system performance. RobustStore [47], FATE and DESTINI [89], RFD

analysis models [133], and the analytic queuing models used in [162] are tools and

models that analyze the effects of recovery actions on applications.

Recovery actions most commonly use rebooting for failure recovery or perfor-

mance remediation, with improvements sought by methods like Micro-reboot [50],

JAGR [51], RETRO [113], Stochastic Reward Nets(SRNs), and Software Rejuvena-

tion [178].

In recent big-data frameworks, such as MapReduce, performance problems are

addressed by rescheduling slow tasks, and intelligent data placement. Mantri [29] uses

statistical tests to detect ‘straggler’ tasks caused by data skew, network congestion

and machine failures in large-scale MapReduce jobs. Mantri takes the appropriate

recovery action, e.g., task re-execution, based on the underlying cause. Scarlett [28]

tackles the file system performance problems in MapReduce clusters by predicting the
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data ‘hotspots’ and replicating data blocks based on their popularity. In virtualized

data center scenario, Net-cohort [94] leverages clustering techniques to discover VM

cohort which is a group of VMs working closely to each other. By migrating VMs,

which belong to the same cohort, to the same physical host, Net-cohort can effectively

relieve the resource bottleneck (e.g. cross-rack bandwidth contention) and thereby

improve the performance of big data applications running in the data center. There

is much valuable, previous and ongoing research in high reliability systems obtained

through redundancy and replication [92], which in turn builds on extensive prior work

in reliability study. In data center systems’ ‘scale-out’ infrastructures, this has led

to the common use of data replication, fail-over servers, quorums, and the many

associated methods for fault tolerant, high availability operation. We do not review

such work here, pointing the reader at previous summaries for research like [88].
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CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

We present the Monalytics software architecture for integrating monitoring and ana-

lytics in large scale data centers, with flexibility for supporting a variety of analytics

functions. We introduce pro re nata(PRN) methods and experimental evaluations

are carried out with a Monalytics software prototype implemented in small scale

data center running three tier enterprise applications and Hadoop codes. Results

clearly show the importance of using PRN, along with the ability of the current

Monalytics prototype to support the multiple and sophisticated monitoring/analysis

functions required by two realistic use cases. We contribute novel analytical formu-

lations modeling DCG’s effects on both the performance and the capital costs of

monitoring/analysis, with extensive analytical evaluations in large scale.

Based on Monalytics architecture and analytical models, we design and implement

VScope, a flexible, agile monitoring and analysis system for troubleshooting real-time

multi-tier applications. Its dynamically created DPG processing overlays combine the

capture of monitoring metrics with their on-line processing, (i) for responsive, low

overhead problem detection and tracking, and (ii) to guide heavier weight diagnosis

entailing detailed querying of potential problem sources. With ‘guidance’ reducing the

costs of diagnosis, VScope can operate efficiently at the scales of typical data center

applications and at the speeds commensurate with those applications’ timescales of

problem development. The dissertation provides evidence of this fact with a real-time,

multi-tier web log analysis application.

We also present EbAT which is an automated online detection framework for
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anomaly identification and tracking in data center systems. It does not require human

intervention or use predefined anomaly models/rules. To deal with the complexity

and scale of monitoring, EbAT uses efficient m-events to aggregate different levels of

metrics in clouds, leverages entropy-based metric distributions, time series diagnosis

methods to detect anomalies at runtime, and zoom in detection to focus on possible

areas of causes.

7.2 Future Work

Future research work includes, but not limited to, following directions:

• System Analytics Service. One possible future research direction is to trans-

form VScope which is an software tool for data center operators’ internal use

to a cloud service providing monitoring and analytics capabilities to different

outside applications. Monitoring/analysis as a service is an emerging research

area. Meng [141] has done extensive research on Monitoring-as-a-Service in

Cloud. Amazon has CloudWatch [1], which is a monitoring service with APIs

to monitor and analyze the cloud resources used by EC2 customers. The future

challenges include how to integrate more analytics capabilities into the cloud

services, and how to realize real-time streaming analysis on large volumes of

monitoring data.

• Automatic Management Planning. As data centers scales out, the cost and

performance of the management infrastructure increase accordingly. Previous

research [167] has shown the considerable management cost in virtualized data

centers. Controlling and optimizing the resources for management purposes

can only become more critical as data centers move to exascale. In monalytics

research, we have shown that, different management strategies can yield sig-

nificantly different capital cost and performance. In future research, we will

focus on how to design a control plane which can realize management strategies
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by deploying management infrastructure to data center accordingly, and more

interestingly, dynamically changing the management layout as the data center

and management needs change.

• Cloud Resource Management. VScope is a tool to collect and analyze monitor-

ing data for troubleshooting purposes. Future research will focus on extending

VScope’s capabilities for resource management purposes, such as Virtual Ma-

chine allocation and migration management. In this scenario, VScope can still

collect monitoring data and analyze them, but the challenges include (1) how

to expose a set of APIs that can be seamlessly integrated with the resource

management operations and facilities in large scale systems [198]. (2) what

analysis can be realized in VScope to facilitate cloud resource and power man-

agement [81].

• Cloud Security. As more and more critical applications move to the cloud,

security becomes one of most important issues. VScope’s real time analytic

capabilities can be used in security applications. By collecting and analyzing

network traffics, VScope can use network anomaly detection algorithms to find

out potential attacks or security breaches. One interesting research direction is

to monitor the network interactions at runtime to dynamically learn the normal

data center behavior, and adjust the normal behavior as new workload patterns

happen. The normal pattern can be used to identify abnormal behaviors.
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